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We describe the evolution of a plasma equilibrium having a toroidal topology in the
presence of constant electric resistivity. After outlining the main analytical properties of
the solution, we illustrate its physical implications by reproducing the essential features
of a scenario for the upcoming Italian experiment Divertor Tokamak Test Facility, with a
good degree of accuracy. Although we find the resistive diffusion time scale to be of the
order of 104 s, we observe a macroscopic change in the plasma volume on a time scale of
102 s, comparable to the foreseen duration of the plasma discharge by design. In the final
part of the work, we compare our self-consistent solution to the more common Solov’ev
one, and to a family of nonlinear configurations.
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1. Introduction

The theory underlying plasma equilibrium in axial symmetry, in particular in
toroidal configurations like tokamak devices (Wesson 2011), consists of the so-called
Grad-Shafranov equation (GSE) (Grad & Rubin 1958; Shafranov 1966; Biskamp 1993).
This equation is nothing more than the implementation of the basic magnetostatic equation
(i.e. steady magnetohydrodynamics (MHD) in the absence of bulk plasma velocities) to
the axial symmetry, making explicit use of the magnetic flux function as the fundamental
variable (Landau & Lifshitz 1984) (see also Alladio & Crisanti (1986) and, for a detailed
review on this topic, Dini et al. (2011) and references therein).

In the practice of tokamak experiments, stationary configurations have actually a finite
lifetime, both for the intrinsic finiteness of the discharge duration and for the emergence
of instabilities, able to grow and then to destroy such steady profiles. Nonetheless, the
physical meaning of the GSE solutions is ensured by the different time scales between their
validity and the growth rates of the most common instabilities (Biskamp 1993). The basic
feature of tokamak devices is their toroidal topology, characterized by a nearly constant
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toroidal magnetic field and a smaller poloidal component (the ratio of the latter to the
former is typically taken to be of the order of the torus aspect ratio ∼1/3 Wesson 2011).
The presence of the poloidal magnetic component, mainly due to the induced current in the
plasma, implies a certain rotation of the field lines around the torus axis, which improves
the stability properties of charged particles in such machines.

The role of resistive diffusion in a non-stationary axisymmetric tokamak plasma was
discussed originally in the seminal paper Grad & Hogan (1970) (see also Nührenberg 1972;
Grad 1974; Grad, Hu & Stevens 1975; Pao 1976; Grad & Hu 1977; Grad et al. 1977; Reid &
Laing 1979; Miller 1985; Strand & Houlberg 2001). The theoretical analysis outlines that
two transient processes are involved: the skin effect, i.e. the same mechanism responsible
for the penetration of magnetic field lines in a solid conductor, and the nonlinear diffusion
of pressure across magnetic field lines. These two processes are, in general, nonlinearly
coupled and they can be disentangled by considering the two limiting cases for the
generalized Ohm’s law: no bulk velocity, resulting in E = J/σ and associated with the
first process, and no electric field, resulting in v ∧ B = J/σ and associated with the second
process (here, and in the following, E and B denote the electric and magnetic fields,
respectively, while σ , J and v are the plasma electric conductivity, current density and
fluid velocity, respectively). Indeed, the characteristic time scales of both processes are
generically longer than those of instabilities and of wave propagation.

In this paper, we investigate an analytical treatment of the equilibrium of a magnetized
plasma in the presence of non-ideal effects. We consider the case without convection
and we demonstrate how the influence of resistive diffusion due to the skin effect can
be treated analytically. This is due to a technical reason, already noted in Grad et al.
(1977): the diffusion equations for the magnetic poloidal flux and for the toroidal current
function coincide in the limit of constant resistivity and no convection (see (2.6) and (2.7)
below). This allows us to construct a consistent non-stationary equilibrium solution in
which the time dependence is only within the poloidal magnetic flux function, dubbed ψ ,
which dynamics is governed by the generalized Ohm’s law. In other words, we describe a
diffusion process in which all the relevant plasma quantities remain instantaneously frozen
in a non-stationary magnetic field configuration. In this sense, we speak of a non-stationary
GSE.

It is worth noting that our analytical setting differs from the traditional Solov’ev
configuration, which was originally studied in Solov’ev (1968) and has formed the basis
of most analytical studies on tokamak plasma equilibrium properties since then. To
understand this, we recall that the explicit form of the GSE depends on the choice of two
arbitrary functions, namely the thermodynamic pressure and the poloidal current function,
as functions ofψ . It turns out that the Solov’ev choice, while having the merit of simplicity
and versatility, is not compatible with diffusion due to constant resistivity. Here, we outline
the proper assumptions to be made in order to obtain a consistent evolutive solution. We
recover a class of equilibria that was actually already considered in Mc Carthy (1999), even
though that work was not at all motivated by dynamical considerations and was performed
in an ideal, time-independent setting. We also remark that a linear assumption on the
poloidal current with respect to ψ , as considered in (2.10), is of interest for machines other
than tokamaks, where the plasma region includes the central axis of symmetry (e.g. see
Alladio et al. 2017), while Solov’ev-like profiles are not suitable in such geometries.

After defining the lifetime of the configuration, we outline the basic eigenvalue structure
of the mathematical problem and solve the relevant equation. Then, to illustrate a real
physical situation, we implement this model to in specific plasma scenario for the Italian
Tokamak proposal named Divertor Tokamak Test (DTT) Facility (Albanese & Pizzuto
2017; Albanese et al. 2019). We show how our solution is able to reproduce the essential
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features of the 5 MA double-null scenario described in Albanese et al. (2019) with a
good degree of accuracy. The reconstructed equilibrium is associated with a theoretical
time scale, defined as the inverse decay rate of the magnetic flux function due to resistive
diffusion, of approximately 104 s, while the foreseen duration for the discharge according
to machine parameters is approximately 50 s. However, we spot the emergence of an
effective lifetime in our model, corresponding to the loss of confinement of the plasma
configuration, which we observe on a time scale of 102 s, comparable to the discharge
duration. It is important to remark how the obtained radial pressure profiles indicate that
our model refers to low confinement states only and that the presence of a pedestal, typical
of the H-mode (Wagner et al. 1984; Keilhacker 1987; Wagner 2007), could significantly
increase the configuration lifetime.

In our study, the GSE is self-consistently verified at all times along the plasma
dynamics, with an analytical expression for the equilibrium under the limiting assumption
of a constant resistivity in the plasma region. In different approaches, usually used in
tokamak numerical simulations, more realistic transport dynamics is the result of specific
assumptions and the consideration of flux-averaged variables, allowing for a numerical
integration of the profile evolution, once the static equilibrium is assigned. Hence, in such
schemes, any compatibility condition on the source terms in the GSE is neglected. In the
last part of this work, to estimate the possible discrepancies of different approaches in the
present case, we consider a Solov’ev-like configuration, disregarding one of the dynamical
equations (namely (2.9)), and we use this solution to model the same double-null scenario
previously considered. We find the two profiles to be in good accordance at all times up
to deconfinement, arguably due to the linearity of the system. As a further test, we also
perform a numerical study on a family of nonlinear scenarios, taking the Solov’ev result
as reference. We find a bigger discrepancy in the damping rate of the profile, hence we
suggest that larger errors could arise in nonlinear situations.

The paper is organized as follows. In § 2, we describe the basic MHD equations
which characterize the dynamics of the plasma configuration. In § 3, the details of the
considered dynamical scenario as due to resistivity are developed, outlining the analytical
implications of this effect and the temporal decay of the profile. In § 4, we solve the
resulting eigenvalue problem, and use our solution to model a DTT-like double-null
plasma scenario. The lifetime of the configuration and its profile are outlined. In § 5,
we use the Solov’ev-like solution to model the same plasma scenario. We also provide
estimates of the error associated with a class of nonlinear scenarios. Concluding remarks
follow in § 6.

2. Basic equations

We study a plasma confined in a magnetic field B and having negligible macroscopic
motion, i.e. its fluid velocity v identically vanishes. The plasma is also characterized by
a finite electric conductivity σ � const. The electric field in the plasma is then provided,
via the current density, according to the generalized Ohm’s law

E = 1
σ

J . (2.1)

Expressing the electric field via the scalar and vector potentials (ϕ and A, respectively),
i.e.

E = −∇ϕ − ∂tA/c, (2.2)
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observing that B = ∇ ∧ A and noting that in the Coulomb gauge (i.e. ∇ · A = 0) J =
−(c/4π)ΔA (c is the speed of light), we can finally rewrite (2.1) as follows:

∂tA = −c∇ϕ + c2

4πσ
ΔA. (2.3)

We now consider an axial symmetry, associated with a toroidal topology by the choice
of cylindrical coordinates r, φ and z, having the following ranges of variation: R0 − a �
r � R0 + a, 0 � φ < 2π. Here, R0 denotes the major radius of a standard tokamak
configuration, while a is the minor radius (we also have |z| � a). The axial symmetry
is implemented by requiring the independence of all the physical quantities from φ.

We write the vector potential as follows:

A = Ap + ψ

2πr
êφ, (2.4)

where êφ is the toroidal versor and the poloidal (radial–axial) vector potential Ap is
described by the relations

∇ · Ap = 0, ∇ ∧ Ap = Bφ ≡ 2
c

I
r
, (2.5a,b)

The functions ψ = ψ(t, r, z) and I = I(t, r, z) denote the flux function and the axial
current function (in the cross-section πr2), respectively, and they are the considered
dynamical degrees of freedom.

Since the scalar electric potential gradient is poloidal in axial symmetry, we easily get
the dynamics of ψ from the toroidal component of (2.3), and that of I by taking the curl
of the remaining poloidal components (so eliminating the gradient of ϕ) and by taking
into account (2.4) and (2.5a,b). Thus, we arrive to the following two (identical) dynamical
equations:

∂tψ = c2

4πσ
Δ∗ψ, (2.6)

∂tI = c2

4πσ
Δ∗I, (2.7)

where we have defined Δ∗(· · · ) ≡ r∂r(1/r∂r(· · · ))+ ∂2
z (· · · ). Now, the toroidal

component of the momentum conservation equation (p denoting the plasma pressure),
i.e.

∇p = (∇ ∧ B) ∧ B/4π, (2.8)

reduces to the constraint ∂rψ∂zI − ∂zψ∂rI = 0, implying the basic restriction I = I(ψ).
Once we substitute this expression into (2.7), the compatibility with (2.6) leads to the
condition

d2I
dψ2

|∇ψ |2 = 0, (2.9)

which is either trivially solved by ψ = const., or by letting

d2I
dψ2

= 0 ⇒ I = A1ψ + A0, (2.10)

where A1,0 are two integration constants. Near the magnetic axis, (2.10) would correspond
to considering a first-order expansion of I(ψ), in a similar fashion as in Solov’ev (1968),
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where analytical solutions of the GSE in the same regime are found by expanding the
quantities dp/dψ and I dI/dψ . In this context, however, the Solov’ev solution fails to
guarantee the compatibility of the resistive system, de facto neglecting (2.7). In § 5, we
study this incompatible scenario in detail, providing a comparison with the formally
correct solution, which is derived in the following section.

The poloidal components of (2.8) reduce to the usual GSE,

Δ∗ψ = −16π3r2 dp
dψ

− 16π2

c2
I

dI
dψ
, (2.11)

in which we also implement choice (2.10), i.e.

Δ∗ψ = −16π3r2 dp
dψ

− 16π2

c2
(A2

1ψ + A1A0). (2.12)

Finally, the mass conservation equation (ρ being the plasma mass density), i.e.

∂tρ + ∇ · (ρv) = 0, (2.13)

becomes, in the present scenario, the simple relation ρ ≡ ρ0(r, z), where ρ0 denotes is the
time-independent plasma mass density.

3. Dynamical implications

The discussion above clarified how ψ(t, r, z) is the only dynamical variable of the
system, which has to obey (2.6) and (2.12). These two equations can be combined into
a new one

∂tψ = c2

4πσ

(
−16π3r2 dp

dψ
− 16π2

c2
(A2

1ψ + A1A0)

)
, (3.1)

which remains coupled to (2.12).
In order to look for analytical solutions, having to deal with a dp/dψ term, we preserve

the linearity of the system by assuming the following expression for the pressure:

p(ψ) = C2ψ
2/2 + C1ψ + C0, (3.2)

where C2,1,0 are generic real constants. Taking (3.2) into account, it is easy to check that
the general solution of (3.1) takes the form

ψ(t, r, z) = ψ0(r, z) e−γ (r)t + δ(r), (3.3)

where ψ0(r, z) is a generic function yet to be determined, while the quantities γ (r) and
δ(r) are given by

γ (r) ≡ 4π

σ
(A2

1 + πc2C2r2), δ(r) ≡ −πc2C1r2 + A1A0

πc2C2r2 + A2
1
. (3.4a,b)

By substituting (3.3) and (3.4a,b) into (2.12), we obtain an equation for ψ0(r, z)

e−γ (r)t
[
Δ∗ψ0 + 8π2c2

σ
C2rt

(
−2∂rψ0 + 8π2c2

σ
C2rtψ0

)]
+ 8π2c4A1C2(A1C1 − A0C2)

(πc2C2r2 + A2
1)

3

= −16π3r2[C2(ψ0 e−γ (r)t + δ(r))+ C1] − 16π2

c2
[A2

1(ψ0 e−γ (r)t + δ(r))+ A1A0],

(3.5)

which involves terms proportional to 1, t and t2, which of course must be equated
separately. In order to solve the time-dependent equations, the constant C2 must be set to 0,
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which implies that also the pressure must be linear in the flux function, like the axial
current function I. This kind of choice for the functions p and I has been previously studied
in Mc Carthy (1999), although in our work we show how such an assumption is naturally
motivated by dynamical considerations.

After choosing C2 = 0, (3.3) and (3.4a,b) reduce to

ψ(t, r, z) = ψ0(r, z) e−γ t + δ(r), (3.6)

and

γ ≡ 4πA2
1

σ
, δ(r) ≡ −πc2C1

A2
1

r2 − A0

A1
, (3.7a,b)

respectively. Finally, the equation for ψ0(r, z) takes the form

Δ∗ψ0 = −16π2A2
1ψ0/c2. (3.8)

Before studying the morphology of the plasma profile, we observe that the magnetic
configuration is always damped in time by a constant rate γ , which we associate with
a resistive diffusion time scale, towards an asymptotic constant field B∞ = (c2C1/A2

1)êz.
The present study has the merit of defining quantitatively a lifetime for a given plasma

configuration, once resistive diffusion is consistently taken into account. In particular, we
showed how the lifetime is very sensitive to A1, i.e. the proportionality constant between I
and ψ . This approach in not intended as an alternative choice to standard transport studies
on assigned equilibria. In fact, we simply clarify the influence of the considered correction
to Ohm’s law on the evolution of a plasma profile, which could play a significant role in
the physics of future steady-state tokamak machines.

4. Magnetic profile

In order to investigate the constant poloidal flux function ψ0(r, z) predicted by (3.8), we
observe that its linearity allows us to consider the following Fourier expansion:

ψ0(r, z) =
∫ ∞

0
dkχk(r) eikz + c.c., (4.1)

where c.c. indicates the complex conjugate, and χk(r) verifies the eigenvalue problem

d2χk

dr2
− 1

r
dχk

dr
= Ekχk, Ek ≡ k2 − 16π2A2

1

c2
. (4.2)

The equation for χk admits an analytical solution in terms of Bessel functions. In
particular, defining x ≡ r|Ek|1/2 and setting χk ≡ rε(k, x), (4.2) can be rewritten as

x2 d2ε

dx2 + x
dε
dx

− (1 ± x2)ε = 0, (4.3)

where the sign − corresponds to Ek < 0, i.e. to k < k∗, where k∗ = 4πA1/c, while the sign
+ to the case Ek > 0, i.e. to k > k∗.

In correspondence to the sign ∓, the solutions of (4.3) are

ε−(k, x) = ε1(k)J1(x)+ ε2(k)Y1(x), (4.4)

ε+(k, x) = ε3(k)I1(x)+ ε4(k)K1(x), (4.5)

where J1, Y1 (I1, K1) denote ordinary (modified) Bessel functions of index 1, while
the coefficients εj(k) (with j = 1, 2, 3, 4) have to be assigned via the initial condition

https://doi.org/10.1017/S002237782100057X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782100057X


Diffusive time evolution of the Grad–Shafranov equation 7

ψ(0, r, z) = ψ0(r, z)+ δ(r). In this scheme, taking into account that the r variable is
bounded and that I1(∞) is divergent, the flux function ψ(t, r, z) admits the following
representation:

ψ(t, r, z) = −A0/A1 +Λr2

+ e−γ t
∫ k∗

k0

dk[[rε1(k)J1(r
√

|k2 − k∗2|)

+ rε2(k)Y1(r
√

|k2 − k∗2|)] eikz + c.c.]

+ e−γ t
∫ ∞

k∗
dk[rε4(k)K1(r

√
|k2 − k∗2|) eikz + c.c.]. (4.6)

Here,Λ = −πc2C1/A2
1 and, to exclude wavelengths greater than the machine diameter, we

have introduced a minimum wavenumber k0 = π/a, i.e. k � k0. We also remark that, by
suitably choosing the constant C0 in (3.2) for the plasma pressure, the basic requirement
p � 0 can be easily implemented in our confined plasma region.

4.1. Specific implementation
In order to investigate the morphology of the plasma configuration, we analyse the level
surfaces of ψ(r, z, t) at given times, together with the surface p = 0 (representing the
plasma boundary layer). The general solution for ψ as in (4.6) can be adapted to a given
scenario by imposing specific initial conditions. In this respect, for the sake of simplicity,
we assign to the functions εj(k) a set of sufficiently narrow Gaussians, centred around
arbitrarily given wave vectors kj,i and weighted by amplitudes 
εj,i. Then, a given set of
points (rl, zl) lying along the boundary curve of the addressed scenario generates an
associated set of algebraic equations of the form ψ(rl, zl, 0) = ψB, where ψB is the value
of the magnetic flux at the plasma boundary. Since we require p = 0 on the same surface,
recalling (3.2) and that C2 = 0, we set C0 = −C1ψB. The rest of the constants have to be
determined according to the relevant plasma parameters.

As an illustrative example, let us assume the parameters characterizing a tokamak
equilibrium specified for the DTT facility, as in Albanese et al. (2019). In particular,
the main machine parameters are major radius R0 = 2.11 m, minor radius a = 0.64 m,
averaged electron density ne = 1.8 × 1020 m−3 and electron temperature Te = 6.1 keV.
The resulting plasma frequency is ωp = 7.57 × 1011 s−1 and, considering the Spitzer
electric conductivity for a hydrogen plasma (with the Coulomb logarithm of O(10)),
we obtain σ = 5.34 × 108Ω−1 m−1. We implement an initial condition matching the
double-null scenario, with main plasma parameters as reported in table 1. In the same
table, we also report the fitted values associated with our analytic solution, which is able
to correctly reproduce most of the parameters. In this scheme, we obtain a configuration
characteristic time of γ −1 = 1.1 × 104 s. As a stability check, the safety factor q meets the
Kruskal–Shafranov condition for stability q > 1 over the whole plasma region, with an
average value of 2.6.

In figure 1, we plot the level surfaces of the flux function ψ(t, r, z) at different times,
where the initial condition at t = 0 is shown in the first panel. At later stages, the allowed
domain for the plasma configuration decreases, and the central pressure is correspondingly
suppressed (cf. (3.2)). Since the area inside the separatrix is decreasing in time, the
axial symmetry implies that the confined plasma volume is also diminishing, but keeping
a constant plasma density ρ ≡ ρ0. As a consequence, the plasma evolution has to be
associated with a loss of particles through the boundary layer of the toroidal plasma profile.
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DTT scenario Compatible configuration Solov’ev configuration

rA (m) 2.17 2.16 2.15
ψB (Vs) 2.50 2.55 2.53
ψA (Vs) 11.48 8.02 7.94
BA (T) 6.19 6.23 6.23
βp 0.43 0.43 0.43
IP (MA) 5.00 5.00 5.00
li 0.80 0.39 0.38

TABLE 1. Data relative to the double-null DTT scenario, as in Albanese et al. (2019), and
the corresponding fitted values from our solution and the Solov’ev configuration, which is
introduced in § 5. The subscript A refers to quantities along the magnetic axis,ψB is the magnetic
flux at the plasma boundary, βp is the ratio of the plasma pressure to the poloidal magnetic
pressure, IP is the total plasma current and li is the internal inductance.

FIGURE 1. Contour plot of the flux function (in the physical plane (r, z)) integrated from (4.6)
according to the proposed double-null scenario for DTT (Albanese et al. 2019), for different
instants as indicated over the panels (colour scheme from beige (ψ = 2.50 Vs, also red line)
to purple (ψ = 8 Vs)). The separatrix p = 0 is enlightened in red. The initial condition is
imposed through 14 boundary points, plus two conditions on the derivatives of ψ at the x-point.
Wavenumbers k run from 0.52 to 1.72 in steps of 0.2.

The behaviour of this outgoing flux of matter must be described in a different physical
setting, having to deal with the behaviour of non-confined plasma in the scrape-off layer.

Concerning the lifetime of the configuration, it is important to stress that we observe
the opening of all magnetic lines, determining the loss of confinement, at t = 99 s. This
time scale is two orders of magnitude shorter than γ −1, and is comparable to the predicted
duration of the discharge of about � 50 s. This behaviour can be understood if we consider
that the plasma region can also be defined as the points satisfying ψ � ψB. Indicating the
initial peak value of the magnetic flux as ψA, in correspondence to the magnetic axis, it is
clear that after an overall decrease in ψ of the order Δψ ≡ |ψA − ψB| the whole profile
will lie below the ψB threshold, i.e. all magnetic lines will be open. Then, it is natural to
define an effective lifetime according to the condition ψ̄0(1 − e−γ t∗) = Δψ (where ψ̄0 is
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the order of magnitude of the function ψ0(r, z)), which provides the expression

t∗ = −γ −1 ln(1 − Δψ/ψ̄0). (4.7)

In the case under study, Δψ � 5.5 Vs and ψ̄0 � 600 Vs, so that t∗ = 99 s, as shown in the
plots.

We also remark that the solution outside the boundary layer takes a different character,
being described by a vacuum problem at the initial stage of the evolution. In this outer
region the current density must be set to zero, according to the pressure profile. Therefore,
outside the separatrix p = 0, we must require that A1 = A0 = C1 = C0 ≡ 0 and also that
the toroidal current Jφ vanishes. This last condition leads to the equation

Δ∗ψ(t, r, z) = 0, (4.8)

which is the only surviving equation for the vacuum configuration. Clearly, the time
dependence of the magnetic flux function in vacuum is ensured by the matching conditions
on the boundary layer.

4.2. Implications of temperature dynamics
As already noted at the end of § 2, the continuity equation (2.13), in the absence of velocity
fields, implies a time-independent profile of the mass density ρ = ρ0(r, z). In the limit of
applicability of the perfect gas law to the plasma (coherent with a non-zero resistivity), we
thus see that the temperature must decay in time like the pressure does, as implied by (3.2)
and (3.6).

From this point of view, the assumption of dealing with a constant conductivity, on
which the present analysis is based, is questionable. In fact, it is well known from Spitzer
& Härm (1953) that the plasma conductivity increases as σ ∼ T3/2, therefore the validity
of the present scheme extends as far as a time-averaged value of this quantity can be
considered, namely for a time scale t � γ −1.

The question could be addressed in a more rigorous way by including the temperature
dynamics in the model, via the conservation equation for energy. The simple diffusive
equation we could assign for the temperature evolution in cylindrical coordinates is the
following:

∂tT = 2
3n0KB

1
r
∂r(rκT∂rT)+ 2

3n0KB
∂z(κT∂zT), (4.9)

where κT denotes the thermal conductivity coefficient, KB is the Boltzmann constant and
n0(r, z) is the equilibrium plasma particle density, equal to ρ0(r, z)/mi in the case of a
single atomic species plasma with ion mass mi. However, assuming the validity of the
perfect gas law for the plasma, we must also have T = p(ψ)/n0, which clearly opens
a problem of compatibility between the equation above and (3.6), describing the flux
function evolution.

This compatibility request cannot be easily solved and shows, once again, how the
complete self-consistency of a plasma evolution implies serious restrictions on the
relations among the involved physical quantities. Our analysis calls attention to how
fixing the equilibria and then evolving transport on that configuration, recalculating it
in a later step and iterating the procedure, as in typical fusion codes, could cut off all
these mathematical questions from the problem. In general, this procedure is reliable and
efficient due to the different time scale of the equilibrium variation with respect to the
transport phenomena, but it could lead to non-trivial miscalculations when the magnetic
flux function and the other physical plasma quantities, for instance the velocity field,
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evolve together in a coherent and consistent MHD scheme. Our study of resistive diffusion
acting on equilibria is just a simple example of a more general problem of consistency
which could emerge when equilibrium and transport codes are matched together.

Coming back to the question of the temperature behaviour, we observe that, as
discussed in Montani, Rizzo & Carlevaro (2018), where an astrophysical context has been
investigated, the compatibility of the system for T = T(ψ) is still possible for a local
model, where all the background quantities are considered constant, and the perturbations
have a sufficiently short wavelength. A similar picture, with some minor modifications
of the physical framework, could also be applied to a tokamak configuration, if we
were interested to study local effects of diffusion near a given regular magnetic surface
ψ(r, z) = ψ0. This study could be of interest in determining the stochastization of the
magnetic flux dynamics and the onset of an island formation. This process is clearly absent
in the present model, in which the magnetic flux surfaces are differentiable topological sets
and evolve in time, preserving this main feature and their basic shape. Using a local model
near each assigned background surface, considering also a space-dependent resistivity,
could allow a study of the instability of this scenario versus a stochastic domain.

Before closing this section, it is worth recalling the hypotheses at the heart of the
present analysis and their physical motivation or interpretation. We consider a non-steady
(slowly varying) axisymmetric plasma configuration, characterized by zero velocity fields,
a space–time-independent temperature and a constant conductivity coefficient.

The assumption to deal with zero advective flows is rather natural in the analysis of
equilibria (Biskamp 1993) and it is justified by the absence of evidence for macroscopic
plasma motion during a wide class of discharges in tokamak devices. However, the
observation of spontaneous toroidal and poloidal rotation, as well as rotation due to plasma
interaction with hot neutral beams and other power sources (Rice 2016) suggests that,
under specific conditions, the present analysis needs to be extended in this direction.
In the present work, the main task is to investigate the role of resistive diffusion by
slowly altering an equilibrium configuration over time. Thus, we focus our attention on
the resistive time scale as the fundamental one which drives the plasma evolution. In this
sense, the introduction of a velocity field is surely of interest, but only after the basic
resistive mechanism of diffusion is understood in its intrinsic nature.

The assumption of a uniform plasma temperature is more serious and definitely
unrealistic close to the separatrix region of the plasma, but it is also commonly employed
in the study of tokamak physics, when the equilibrium configuration is viewed in its
most basic features (see, e.g. Tamain et al. 2016). More precisely, the possibility of
considering a constant temperature must be implicitly thought of as a restriction on the
considered plasma space and time region. In the present case, this restriction must be
referred to what we defined as the effective lifetime of the configuration, corresponding
to the disappearance of a closed separatrix (see § 4.1). In fact, since this time scale is
approximately two orders of magnitude shorter than the resistive diffusion time (derived
in § 3), it is safe to consider the plasma as isothermal during the evolution. As far as
the plasma is sufficiently hot so that its collisional nature is negligible (e.g. the thermal
conductivity discussed above), the isothermal nature of the plasma within the separatrix
is a satisfactory approximation, up to the beginning of a disruption, before the thermal
quench has occurred (Nedospasov 2008).

For what concerns the constant nature of the conductivity coefficient, we can develop
similar considerations about its restriction to a limited space and time region of the plasma,
as argued for the temperature. However, in view of capturing the basic feature of a slowly
varying equilibrium due to resistive diffusion, the uniformity of σ seems to be natural.
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In fact, a non-uniform coefficient σ would only affect the diffusion properties in different
space regions, without introducing any new conceptual modification of the present picture.

Although some of the above hypotheses could be weakened in a future semi-analytical
analysis, we stress once more that the loss of an analytical treatment for a more
general configuration outlines possible shortcomings in the complete separation between
equilibria and transport, often introduced in plasma transport codes.

5. Comparison to alternative approaches

In order to compare our self-consistent approach to other standard methods, we begin by
studying an alternative analytical solution in correspondence to the well-known Solov’ev
configuration (Solov’ev 1968). In this sense, we go back to the original GSE, (2.11), and
assume its right-hand side to be independent of ψ

Δ∗ψ = −16π3C1sr2 − 16π2

c2
A1s, (5.1)

where C1s and A1s are constants (the subscript s indicates quantities relative to the Solov’ev
scenario). The corresponding choices for p(ψ) and I(ψ) are the following:

ps(ψ) = C1sψ + C0s, Is(ψ) =
√

2A1sψ + A0s, (5.2a,b)

so that the pressure is of the same kind as previously considered (remember that C2 =
0), while the axial current has a different functional form. It is important to remark that
substituting the latter expression into (2.9) we get

d2Is

dψ2
|∇ψ |2 = − A2

1s

(2A1sψ + A0s)3/2
|∇ψ |2 = 0, (5.3)

which admits only the trivial solutions A1s = 0 or ψ = const. However, if the equation
above is excluded from the model, (2.6) and (5.1) lead to the expression

ψs(r, z, t) = −a(r)t + b(r)+ ψ0(r, z), (5.4)

with

a(r) = 4π2c2

σ

(
C1sr2 + A1s

πc2

)
, (5.5)

b(r) = 2π3r2

[
−C1sr2 + 2A1s

πc2
(1 − 2 log r)

]
. (5.6)

Here, ψ0(r, z) is formally equivalent to the solution already considered in § 4, since it must
satisfy (4.1) and (4.2), with the only difference that now Ek = k2. The most striking feature
of ψs(r, z, t) is the linear time dependence, which differs from the exponential decay of
the consistent solution.

To test this discrepancy, we fit the new expression, (5.4), to the same double-null
scenario of § 4.1. The agreement is sufficiently good, as can be noted from the fitted values
in table 1. Moreover, the time evolutions of the two profiles follow the same dynamics up to
the loss of confinement, which, in this case, takes place after 98 s. This similarity between
exponential and linear decays can be explained noting that confinement is lost on a time
scale much shorter than γ −1, when the exponential in (4.6) is still in its linear phase.
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FIGURE 2. Variation of ε(ψ, n) for values of ψ corresponding to the DTT double-null plasma
scenario (Albanese et al. 2019), and n ∈ (−2, 5). The colour scheme goes from white (ε < 0)
to red (ε > 5), while each contour is labelled by the corresponding value, with shorter dashes
indicating greater values.

Although this result suggests that (2.9) can be safely disregarded in the DTT plasma
scenario, this cannot be considered as a general proof. The Solov’ev case has the good
property of preserving the linearity of the system, which instead is usually broken in the
context of numerical equilibrium solvers, such as EFIT (Lao et al. 1985), where nonlinear
forms of dp/dψ and I dI/dψ are assumed. In such scenarios, (2.11) cannot be solved
through simple analytic means, so an exact comparison lies outside the scope of the present
work. We propose an effective estimate of the incompatibility of the nonlinear case, by
considering the following generalization of (2.10):

In(ψ) = A1,nψ
n + A0,n, (5.7)

where the coefficients A1,n and A0,n are determined according to the relevant plasma
parameters of table 1. Assuming |∇ψ |2 to be of the same order of magnitude in all
configurations (i.e. ∼ (Δψ/a)2), the error committed in (2.9) is quantified by the second
derivative of In with respect to ψ

d2In

dψ2
= n(n − 1)A1,nψ

n−2. (5.8)

The same quantity, calculated for the Solov’ev configuration, is taken as a reference, so
we study the function

ε(ψ, n) ≡ log10

∣∣∣∣ d2In

dψ2

/
d2Is

dψ2

∣∣∣∣ =
∣∣∣∣A2

1s
n(n − 1)A1,nψ

n−2

(2A1sψ + A0s)3/2

∣∣∣∣ , (5.9)

defined as a logarithm for convenience.
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In figure 2, it clearly emerges that the magnitude of ε grows quickly for n different than
0 and 1 (the only two analytically correct values). In particular, the whole region below
n = 0 takes up values larger than 3, i.e. the left-hand side of (2.9) is at least three times
larger in these cases than in the Solov’ev case. A fiducial interval can be defined around
n = 1, in which the discrepancy is less than one order of magnitude. According to this
estimate, more detailed studies should be performed on the viability of the coupling of
evolutive codes with nonlinear GSE configurations.

6. Concluding remarks

We analysed a varying tokamak plasma equilibrium, in which the magnetic field profile
is damped by resistive effects. In such a dynamical scheme, the GSE is coupled with an
evolutionary equation for the magnetic flux function dynamics, i.e. the induction equation.

The main result has been the determination of a lifetime for the plasma confinement,
here discussed in the particular case of an initial condition corresponding to the 5 MA
double-null scenario for the DTT tokamak proposal, as in Albanese et al. (2019). A
secondary, effective lifetime also arises from the observation of the loss of magnetic
confinement on a time scale much shorter than expected, and comparable to the duration
of the discharge.

Clearly, the present analysis cannot be directly applied to the discharge evolution of
a tokamak machine. In fact, during a discharge, the current is governed by inductive
processes associated with the time dependence of the current running in the magnetic field
coils. Furthermore, when a flat-top configuration is reached, it is maintained with a steady
profile also via different current drive mechanisms, such as radio frequencies coupled to
the plasma.

Our analysis is mainly aimed at providing some physical insight in view of the following
delicate matter. The ideal GSE is usually assumed to describe the plasma equilibrium
at any given time, while the generalized Ohm’s law, on which transport computations
are based, takes into account all the non-ideal processes involved in the construction
of the steady current profile, including the resistive diffusion. Hence, from a rigorous
mathematical point of view, the matching of such different pictures is inconsistent since
the evolution of transport quantities would clearly influence the behaviour in time of
the magnetic flux function, which instead is taken as fixed between different steps of an
iterating procedure. Moreover, even ideal effects like the presence of velocity fields pose
similar questions, whenever particle transport is calculated over an underlying equilibrium
obtained from a static version of the GSE.

The physical predictivity of this standard strategy in describing tokamak physics relies
on the different time scales of the transport processes and of the equilibrium variation,
but this approximation clearly fails when the plasma configuration is subject to abrupt
modifications, as during the L–H transition (Wagner 2007) or disruptions.

For instance, we show that the compatibility of the dynamics requires the poloidal
current function I to have a linear dependence on the magnetic flux function. As
discussed in § 5, this constraint could produce significant deviations between the steady
and the dynamical versions of the GSE, namely when nonlinear contributions to I(ψ) are
considered, as it is often the case in numerical codes (Lao et al. 1985).

In other words, the present analysis cannot be directly applied to the operation of a
tokamak device, but it suggests a more careful understanding of the underlying physical
assumptions with which different codes separately face different pieces of tokamak
physics. In large sized machines, having also large discharge durations, the consistency
of the dynamics, raised here, could play a significant role.
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For what concerns the application of our model to the DTT scenario, it is worth
observing that our capability to analytically reproduce the plasma configuration is affected
by a certain degree of approximation, since our solution lacks the sufficient number of
parameters to constrain all the relevant plasma quantities. In this respect, the number of
parameters that can be fixed is naturally related to the linear prescription I ∝ ψ , which is a
remarkable conceptual implication of including resistivity into the magnetic flux function
dynamics.

We also studied two cases where this prescription is not respected, de facto disregarding
(2.9). In the Solov’ev configuration, which keeps the system linear, no dramatic changes
are observed on the profile, while in nonlinear cases we obtain numerical evidence of a
larger discrepancy. We conclude that, before saying a definitive word on the relevance of
resistive diffusion to the equilibrium properties, a more systematic study on commonly
used nonlinear plasma codes could be of interest.
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