
Robotica (2012) volume 30, pp. 343–349. © Cambridge University Press 2011
doi:10.1017/S0263574711000622

Dimensional synthesis of the Delta robot using transmission angle
constraintsDimensional synthesis of the Delta robot using
transmission angle constraints
LiMin Zhang, JiangPing Mei∗, XueMan Zhao and Tian Huang
School of Mechanical Engineering, Tianjin University, Tianjin 300072, China

(Received in Final Form: May 26, 2011; accepted May 24, 2011. First published online: July 1, 2011)

SUMMARY
This paper deals with dynamic dimensional synthesis
of the Delta robot using the pressure/transmission angle
constraints. Two types of pressure/transmission angles are
defined, with which the direct and indirect singularities
can be identified in a straightforward manner. Two novel
global dynamic metrics are proposed for minimisation,
which are associated respectively with the inertial and
centrifuge/Coriolis components of the driving torque.
Various geometrical and performance constraints are
taken into account in terms of workspace/machine volume
ratio, pressure/transmission angles, etc. The effects of
pressure/transmission angle constraints on the feasible
domain of design variables are investigated in depth via an
example, and a set of optimised dimensional parameters
is obtained for achieving a good kinematic and dynamic
performance throughout the entire task workspace.

KEYWORDS: Parallel robot; Transmission angle; Dimen-
sional synthesis; Design; Dynamic performance.

1. Introduction
In recent years, the parallel manipulators actuated by the
proximal revolute joints have widely been employed to
conduct high-speed pick-and-place operations in electronics,
packaging, pharmacy and many other light industries.
This statement can be exemplified by the very successful
applications of the 2-DOF Diamond robot,1,2 3-DOF Delta
robot,3,4 as well as 4-DOF H45 and Par46 robots with two
to three pure translational and/or three translational plus one
rotational movement capabilities.

Dimensional synthesis is an important design issue in the
development of such robots, which is primarily concerned
with the determination of a set of geometric parameters by
optimising a cost function subject to a set of appropriate
constraints. The approaches in previous work dealing with
this problem may be classified into two categories, i.e.
kinematic and dynamic dimensional synthesis, depending
upon the cost function to be optimised.

The kinematic dimensional synthesis of parallel robots
has been extensively investigated. The common routine is
to optimise a conditioning index generated by algebraic
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characteristics of the Jacobian matrix, the condition
number, determinant and minimum singular value, etc.
The earlier work in this phase mainly focused upon
finding the parametric loci necessary to generate an
isotropic configuration.7–11 Considering the global kinematic
performance not being guaranteed by merely conducting
local optimum design, Gosselin and Angeles12 proposed a
global conditioning index represented by the mean value
of reciprocal of conditioning number of the Jacobian for
maximisation. This index together with many modified
versions has been widely employed for the kinematic
design of the parallel manipulators actuated by the proximal
revolute joints. For example, Miller13,14 proposed a weighted
cost function for maximisation, where the weights were
associated, respectively, with mean value of the condition
number and the volumetric ratio of the task workspace
to the reachable workspace. Nabat et al.6 investigated
the dimensional synthesis problem of a Par4 robot by
maximising the ratio of task workspace/machine volume
provided that the workspace was bounded by a prescribed
condition number. Laribi et al.15 introduced the concept of
power of a point to evaluate kinematic performance of the
Delta robot within a prescribed workspace. Chio et al.16

evaluated the kinematic performance of a H4 robot using the
manipulability ellipsoid. By taking a 2-DOF translational
parallel robot as an example, Huang et al.17 found that
condition number of the Jacobian was unable to describe the
degeneration of the direct Jacobian when the platform moves
along the symmetrical axis of a rectangular task workspace.
Therefore, the minimum acute angle between the proximal
and distal links (i.e. transmission angle) had to be considered
as an additional constraint. Although this consideration has
been widely used to ensure the force transmission behaviour
of the planar linkages,18–20 little extension has been made to
the design of spatial parallel manipulators probably due to
the geometric complexity.

As to the high-speed parallel robots for pick-and-place
operations, the inertia of movable components should
be taken into account in the dimensional synthesis.
Conventionally, this leads to minimising a dynamic metric
generated by the algebraic characteristics of the inertia
matrix. The metrics available at hand include the dynamic
isotropy,21 dynamic manipulability22 and its modified
version.23 For the parallel manipulators actuated by proximal
revolute joints, however, selecting a more instructive and
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Fig. 1. (Colour online) 3D model of a Delta robot.

meaningful dynamic metric remains an open problem to be
tackled though many simplified dynamic models have been
available at hand.24–27

By taking the Delta robot as an example, this paper deals
with dynamic dimensional synthesis of high-speed parallel
robot actuated by proximal revolute joints using transmission
angle constraints. The paper is organised as follows. In
Section 2, the inverse kinematic and rigid body dynamic
analyses of the Delta robot are carried out. This is followed
in Section 3 by the definition of two types of transmission
angles. In Section 4, two novel global dynamic metrics are
proposed for minimisation subject to a set of appropriate
constraints in terms of the workspace/machine volume ratio
and the transmission angles, etc. An example is given in
Section 5 and the conclusions are drawn in Section 6.

2. Inverse Kinematics and Dynamics
In order to implement the dynamic dimensional synthesis, the
inverse kinematic and dynamic analyses of the Delta robot
are carried out as follows.

Figure 1 shows a 3D solid model of the Delta robot, which
is composed of a base, a movable platform and three identical
kinematic chains (limbs). The moving platform and active
proximal link are made of aluminium alloy and the distal
links are made of carbon fibre for a light-weight design.

Since the moving platform undergoes pure translation
motion and the motions of two distal links within a
parallelogram are identical, the kinematic model of the robot
can be simplified as shown in Fig. 2. In the reference frame
O − xyz, the position vector of point O ′ on the platform can
be written as

r = ei + l1ui + l2wi, i = 1, 2, 3, (1)
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Fig. 2. Schematic diagram of the Delta robot.

where ei = e( cos βi sin βi 0 )T is the vector pointing from O

to Ai (see Fig. 2), βi = (i − 1) 2π
3 − π

6 ; l1,l2, ui and wi are
the lengths and unit vectors of the proximal and distal links,
and

ui = (cos βi cos θi sin βi cos θi − sin θi)
T, (2)

where θi(i = 1,2,3) is the position angle of the ith proximal
link.

The inverse position analysis gives

θi = 2 arctan
−Ei −

√
E2

i − G2
i + F 2

i

Gi − Fi

, i = 1, 2, 3, (3)

where

Ei = 2l1(r − ei)
T ẑ,

Fi = −2l1(r − ei)
T(cos βi x̂ + sin βi ŷ),

Gi = (r − ei)
T(r − ei) + l2

1 − l2
2 .

x̂, ŷ and ẑ are the unit vectors of three orthogonal axes of the
O − xyz. Thus, ui can be determined by Eq. (2) and wi can
be determined by

wi = 1

l2
(r − ei − l1ui). (4)

Differentiating Eq. (1) with respect to time yields

ṙ = l1θ̇i (vi × ui) + l2ωi × wi , i = 1, 2, 3, (5)

where ṙ is the velocity of O ′; θ̇i is the magnitude of angular
velocity of proximal link i; ωi is the angular velocity of the
ithdistal link; vi = (− sin βi cos βi 0 )T is unit vector of the
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rotational axis of the ith proximal link, which is normal to
the plane spanned by ei and ui .

Taking the dot product with wi on both sides of Eq. (5) and
rewriting in matrix form gives the inverse velocity model of
the robot

θ̇ = J ṙ, (6)

where θ̇ = ( θ̇1 θ̇2 θ̇3 )T; J = J−1
q Jx is the Jacobian, and

Jq = diag[l1wT
i (vi × ui)], Jx = [w1 w2 w3 ]T are the direct

and indirect Jacobian, respectively.
Again, differentiating Eq. (6) with respect to time leads to

the inverse acceleration model of the system

θ̈ = J r̈ + f (ṙ), (7)

where r̈ is the acceleration of O ′; θ̈ = (
θ̈1 θ̈2 θ̈3

)T
with θ̈i

being the signed magnitude of the angular acceleration of the
ith proximal link; and

f (ṙ) = (f1(ṙ) f2(ṙ) f3(ṙ) )T, (8)

where

fi(ṙ) = ṙT H i ṙ,

H i = 1

l2
1�i

[
(vi × ui)T (vi × wi) wiw

T
i

�2
i

+ l1

l2

(
E3 − (vi × ui)wT

i

�i

)T (
E3 − (vi × ui)wT

i

�i

)]
,

�i = wT
i (vi × ui), E3 is a unit matrix of order 3.

In the formulation of inverse dynamics, the following
assumptions are made:

(1) Neglect friction and elasticity in joints;
(2) Referring to ref. [24], neglect moments of inertia of

the distal links using the concept of static equivalent
principle by which the mass of the link is divided and
concentrated at the two endpoints Bi and O ′.

Thus, the virtual work principle gives

(−mr̈ − mg ẑ)Tδ r + (τ − IAθ̈ − τAg)Tδ θ = 0, (9)

where τ = ( τ1 τ2 τ3 )T is the actuated joint torque vector;
m is the equivalent mass of the movable platform; IA is
the equivalent moment of inertia of the proximal link about
the axis of rotation, including the contributions from motor
rotor, active proximal link and the lumped mass of the distal
links; τAg = mArAg( cos θ1 cos θ2 cos θ3 )T with mArA being
the mass-radius product of the proximal link about its axis of
rotation.

Substituting δ θ = Jδ r into Eq. (8) yields a set of inverse
dynamic equations as follows:

τ = τ a + τ v + τ g, (10)

where τ a , τ v and τ g are the inertial, centrifuge/Coriolis and
gravitational components, respectively,

τ a = IAGr̈, τ v = IA f (ṙ), τ g = mg J−T ẑ + τAg,

G = [(η J−T + J)], η = m

IA
.

3. Pressure/Transmission Angles
In order to formulate the performance constraints in a visible
manner, we define the pressure/transmission angles of the
systems. Rewrite Eq. (6) such that

ṙ = J−1θ̇ , (11)

where

J−1 = J−1
x Jq, J−1

x = 1

�
[w3 × w2 w1 × w3 w2 × w1 ],

� = wT
1 (w3 × w2) = wT

2 (w1 × w3) = wT
3 (w2 × w1).

Examining Eq. (11) and Fig. 2 indicates that two types
of angles can be defined to describe the force transmission
behaviours of the robot at a specific configuration:

(1) The pressure angle ϕi within a limb

ϕi = arc cos(wT
i (vi × ui)), i = 1, 2, 3. (12)

This is the angle between the velocity (along vi × ui) of
point Bi , and the driving force (along wi) imposed by
the proximal link to the distal link at the same point.

(2) The pressure angle γi amongst limbs

γ1 = arc cos

(
wT

1 (w3 × w2)

|w3 × w2|
)

,

γ2 = arc cos

(
wT

2 (w1 × w3)

|w1 × w3|
)

, (13)

γ3 = arc cos

(
wT

3 (w2 × w1)

|w2 × w1|
)

.

In order to explain the physical meaning of γi , take γ3 as an
example. Assume that the proximal links 1 and 2 are locked.
Then, the distal links 1 and 2 becomes a fictitious link. Thus,
γ3 represents the angle between the driving force (along w3)
imposed by the distal link 3 to the fictitious link at point O ′,
and the velocity (along w2 × w1) of the same point.

Bearing in mind definition of the transmission angle,18,19

we refer to ϕ′
i = π/2 − ϕi as the transmission angle within a

limb, and γ ′
i = π/2 − γi as the transmission angles amongst

limbs. On the one hand, if ϕi = π/2 or ϕ′
i = 0, then wi , ui

and vi are coplanar, leading to the singularity of the direct
Jacobian, i.e. det( Jq) → 0. In this case, the system loses at
least 1-DOF. On the other hand, if γi = π/2 or γ ′

i = 0, w1, w2

and w3 are coplanar, leading to the singularity of the indirect
Jacobian, i.e. det( Jx) → 0. This means that at least one
uncontrollable degree of freedom is added to the system. In
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Fig. 3. (Colour online) The reachable and task workspaces.

addition, when ϕi = γi = 0 or ϕ′
i = γ ′

i = π/2 (i = 1, 2, 3),
an isotropic configuration can be achieved. In summary, the
pressure/transmission angles can be used to fully describe
the direct and indirect singularities of the robot at a specific
configuration.

4. Dimensional Synthesis
On the basis of foregoing analysis, dynamic dimensional
synthesis will be conducted in what follows by using
pressure/transmission angles to form the objective function
and the constraints.

4.1. Workspace and design variables
As shown in Fig. 3, given l1, l2, e and H , the reachable
workspace W of point O ′ is the intersection of the three
subspaces associated with the three limbs because of the
parallel architecture. Each subspace is the region enveloped
by two spherical surfaces with l2 being the radius. For pick-
and-place operations, a cylindrical task workspace, denoted
by Wt, of diameter D and modest height h can be tailored
from W .

Given D, h (λh = h/D = 0.2 ∼ 0.25) and cross sections
of moving links, dynamic dimensional synthesis of the Delta
robot can then be treated as a problem to determine the design
variables l1, l2, e and H such that a good kinematic and
dynamic performance can be achieved.

4.2. Dynamic performance index
It has been recognised that for high-speed pick-and-place
operations, the driving torque τ in Eq. (10) is primarily
dominated by the inertial torque τ a in the acceleration and
deceleration stages and by the centrifuge/Coriolis torque τ v

when the robot is running at very high speed.

On the one hand, the inertial torque of a single actuated
joint is given by

τai = IAGi r̈, i = 1, 2, 3, (14)

where Gi denotes the row of G associated with the ith limb,
and

G1 = ηl2
1 cos ϕ1

cos γ1

(w3 × w2)T

|w3 × w2| + wT
1

cos ϕ1
,

G2 = ηl2
1 cos ϕ2

cos γ2

(w1 × w3)T

|w1 × w3| + wT
2

cos ϕ2
, (15)

G3 = ηl2
1 cos ϕ3

cos γ3

(w2 × w1)T

|w2 × w1| + wT
3

cos ϕ3
.

The maximum inertial torque of the ith actuated joint
necessary to generate a unit acceleration of point O ′ at a
specific configuration can be obtained by

τai max = IA

√
Gi GT

i = IA

√
η2l2

1 cos2 ϕi

cos2 γi

+ 1

l1l2 cos2 ϕi

+ 2η.

(16)

It is easy to see from Eq. (17) that τai max can explicitly
be expressed in terms of dimensional and inertial parameters
as well as the pressure angles ϕi and γi . This means that
occurrence of either direct or indirect singularity leads to
τai max → ∞. Thus, the global maximum of τai max can be
taken as a dynamic metric for minimisation, i.e.

min
x

(
τaG= max

r∈Wt

{τai max(r, x)}), (17)

where x = ( e l1 l2 H ) denotes a set of design variables.
On the other hand, the centrifuge/Coriolis torque of a single

actuated joint is given by

τvi = IA ṙT H i ṙ, (18)

where

H i = 1

l2
1�i

[
(vi × ui)T (vi × wi) wiw

T
i

�2
i

+ l1

l2

(
E3 − (vi × ui)wT

i

�i

)T (
E3 − (vi × ui)wT

i

�i

)]
.

Note that the Hessian matrix H i only relates to vi , ui and wi

within the ith limb. It can be seen that the direct singularity
leads to τvi → ∞. Although τvi is nonlinear in terms of ṙ ,
we may take the global maximum of the maximal singular
value of H i

τvG= max
r∈Wt

{σmax (H i(r, x)) } (19)

as an additional dynamic metric, which could serve as a check
point of the validity of τaG by examining their consistency in
terms of minimisation.
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Table I. Equivalent moments of inertia of the proximal link.

Descriptions Value or expression

Moment of inertia IA1 contributed by the gearbox (kg · m2) 0.4714
Moment of inertia IA2 of the intermediate section (kg · m2) μ1l

3
1/3

Moment of inertia IA3 produced by the lump mass at B (kg · m2) mbl
2
1

Moment of inertia IA4 produced by the equivalent mass of distal links (kg · m2) 4μ2l2l
2
1/3

Total moment of inertia IAof the proximal link (kg · m2) IA1 + IA2 + IA3 + IA4

mb = 0.28kg, μ1 = 3.86g/mm, μ2 = 0.11g/mm

4.3. Constraints
4.3.1. Dimensional constraints. The first dimensional
constraint is the offset e that should be set such that

e ≥ emin. (20)

The reason for setting this constraint is that room should
be made available for situating three servomotors on the
base. Another constraint that should be taken into account is
the workspace/machine volume ratio. For the pick-and-place
robot, the constraint in this phase can be set by2

δ = D

2 (e + l1)
= 1.0 ∼ 1.1. (21)

Meanwhile, the following dimensional constraints should
also be set to allow the mechanism to be assembled:√

(H + h)2 + (D/2 + e)2 − l2 − l1 < 0, l2 − l1 −H < 0.

(22)

4.3.2. Transmission angle constraints. Velocity and
accuracy are two important yet contradictory factors that
should be considered in formulating performance constraints
in the dimensional synthesis of the Delta robot. From ṙ =
J−1q̇, it can be seen that given ‖q̇‖ = 1, ‖ṙ‖ is minimised
when the singular value of J−1 takes the minimum value,
which is the reciprocal of the maximum singular value of J .
So, the maximum value of the maximal singular value of J
throughout the entire task workspace should be minimised
in order to achieve a higher velocity transmission ratio from
the joint space to the Cartesian space, i.e.

min
x

max
r∈Wt

σmax( J(r, x)). (23)

While, the minimum value of the minimal singular value
of the Jacobian throughout the entire task workspace should
be maximised in order to reduce the error transmission ratio
from the joint space to the Cartesian space, i.e.

max
x

min
r∈Wt

σmin ( J (r, x)) . (24)

Therefore, a trade-off can be made such that⎧⎨
⎩

min
r∈Wt

σmin ( J (r, x)) ≥ bl,

max
r∈Wt

σmax ( J (r, x)) ≥ bu,
(25)

where bu and bl are the upper and lower bounds of the
maximal and minimal singular values of the Jacobian in a
global sense. However, the barrier encountered in practice is
the difficulty to blindly choose proper bu and bl without a
visible guidance. In order to overcome this problem, rewrite
the inverse of the Jacobian

J−1 = J−1
x Jq,

J−1
x =

[
w3×w2
|w3×w2|

1
cos γ1

w1×w3
|w1×w3|

1
cos γ2

w2×w1
|w2×w1|

1
cos γ3

]
, (26)

Jq = l1diag [cos ϕi] .

It can be seen that given the actuators’ movement error,
the maximum value of γi throughout the entire workspace
must be bounded by an allowable value [γ ] in order to
restrain the error transmission ratio as γi → π

/
2 leads to

σmax( J−1) → ∞. On the contrary, given the actuator rate, the
maximum value of ϕi throughout the entire task workspace
must be bounded by an allowable value [ϕ] in order to
ensure the velocity transmission ratio as ϕi → π

/
2 leads

to σmin( J−1) → 0. Thus, the constraints in terms of the
pressure/transmission angles can be formulated as follows:

max
r∈Wt

γmax ≤ [γ ], γmax = max[γ1 γ2 γ3 ],

max
r∈Wt

ϕmax ≤ [ϕ], ϕmax = max[ϕ1 ϕ2 ϕ3 ].
(27)

Taking the advantage of visible expressions, the pressure
/transmission angle constraints can be considered as an
alternative of maximal/minimal singular value constraints
given Eq. (26). The reasonable choice of [ϕ] and [γ ] will be
discussed in depth though an example in Section 5.

In what follows, the effects of the pressure/transmission
angle constraint bounds on the feasible domains of the design
variables will be discussed in detail via an example.

5. An Example
The proposed approach for dynamic dimensional synthesis
will be carried out on the Delta robot with a cylindrical task
workspace of D = 1100 mm in diameter and h = 250 mm in
height. The moment of inertia of the proximal link and the
equivalent mass of distal links are functions of link lengths
and cross sections. The inertial parameters varying with the
link lengths are listed in Tables I and II with μ1 and μ2 being
the mass per unit length of the proximal and distal links, and
mb being a sum of the lumped mass of the proximal link at
elbow B.

https://doi.org/10.1017/S0263574711000622 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000622


348 Dimensional synthesis of the Delta robot using transmission angle constraints

Table II. Equivalent mass of the moving platform.

Value or
Descriptions expression

Mass of the moving platform itself m′ (kg) 1.00
Equivalent mass me of the distal link at O ′ (kg) 2μ2l2
Total mass m (kg) m′ + me

mb = 0.28 kg, μ1 = 3.86 g/mm, μ2 = 0.11 g/mm
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Fig. 4. (Colour online) Variations of τaG and τvG vs. H and l2 given
l1 = 0.35 m and e = 0.15 m.

Although the problem can be resolved by the sequential
quadratic programming algorithm available in MATLAB
Optimisation Tool Box, it would be helpful to have a deep
insight into the effects of the pressure/transmission angle
constraints on the feasible domains of design variables via a
monotonic analysis.

Referring the ABB IRB 340 FlexPicker Delta robot, we
take δ = 1.1 and emin = 0.15 m, leading to l1 = 0.35 m.
Then, we investigate the effects of l2 and H on τaG and
τvG only considering the dimensional constraints given in Eq.
(23). Observation of Fig. 4 shows that: (1) the distributions of
τaG and τvG are extremely similar; (2) there is a continuous
curve composed by the nearly linear relationship between
Hand l2 such that τaG and τvG fall into the valleys of their
distributions simultaneously; (3) along the valleys, τaG and
τvG slightly decrease with the increase of H and l2 along the
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Fig. 5. (Colour online) Determination of the optimised H and l2
given l1 = 0.35 m and e = 0.15 m.

curve. Thus, this validates the hypothesis of using τaG as the
dynamic metric for minimisation.

Figure 5 shows the feasible domain of H and l2 bounded by
[ϕ] = 40◦, 50◦, 60◦ and [γ ] = 60◦, 70◦, respectively. It can
be seen that the domain decreases with the decrease of [ϕ],
i.e. for achieving a large velocity transmission ratio, H and
l2 must take relatively larger values. Meanwhile, [γ ] must
take relatively large value to ensure the curve is included
in the feasible domain of H and l2. Therefore, given a pair
of [ϕ] and [γ ], the optimised H ∗ and l∗2 can be obtained as
the intersection of the contour bounded by [ϕ] and the curve
along which τaG falls into the valley of its distribution. It
should be noted that the optimised H ∗and l∗2 are also the
minimum values. This is because increasing H and l2 has
little help for improving τaG but wastes materials and lowers
the rigidity of the system. For example, given [ϕ] = 50◦ and
[γ ] = 70◦, we have H ∗ = 0.675m and l∗2 = 0.905m. This
leads to

max
r∈Wt

ϕmax = [ϕ] = 50◦, max
r∈Wt

γmax = 65.71◦ < [γ ] = 70◦,

τ ∗
aG = 1.231N.s2, τ ∗

vG = 2.153 N.s2/m.

In order to show the effectiveness of the proposed design
approach, consider the existing ABB IRB 340 FlexPicker
Delta robot with the dimensional parameters as follows:

e = 0.15 m, l1 = 0.35 m, l1 = 0.8 m, H = 0.58m.

For comparison purpose, assume that the inertial
parameters of the robot are the same as those listed in Tables
I and II. The computer simulation shows that

max
r∈Wt

ϕmax = 58.02◦, max
r∈Wt

γmax = 71.28◦,

τaG = 1.383 N · s2, τvG = 4.779 N · s2/m.

It is obvious that the proposed design could achieve a better
kinematic and dynamic performance than the exiting design
of the Delta robot.
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6. Conclusions
This paper presents an approach for dynamic dimensional
synthesis of the Delta robot using the transmission angle
constraints. The conclusions are drawn as follows:

(i) We define two types of transmission angles for the Delta
robot, which enable the algebraic characteristics to be
closely related to the geometry of the system, thereby
can be used to describe the motion/force transmission
behaviours in a visible manner.

(ii) We propose two dynamic metrics associated,
respectively, with inertial and centrifuge/Coriolis
components for minimisation. It has been shown
that these metrics have a complete consistency. By
setting a set of appropriate constraints in terms of the
transmission angles, workspace/machine volume ratio,
etc., we can obtain a set of optimised dimensional
parameters for achieving good kinematic and dynamic
performances throughout the entire workspace.

(iii) The proposed approach could be useful for the dynamic
dimensional synthesis of other high-speed pick-and-
place parallel robots driven by the proximal revolute
joints, either the planar or the spatial.
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