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There is a lack of rigour in the usual explanation for the scaling of the vertical velocity
of shallow flows based on geometrical arguments and the continuity equation. In this
paper we show, by studying shallow axisymmetric swirl flows, that the dynamics
of the flow are crucial to determine the proper scaling. In addition, we present
two characteristic scaling parameters for such flows: Reδ2 for the radial velocity
and Reδ3 for the vertical velocity, where Re is the Reynolds number of the swirl
flow and δ =H/L is the flow aspect ratio with H the fluid depth and L a typical
horizontal length scale. This scaling contradicts the common assumption that the
vertical velocity should scale with the primary motion proportional to the aspect ratio
δ. Moreover, if this scaling applies, then the primary flow can be considered as quasi-
two-dimensional. Numerical simulations of a decaying Lamb–Oseen vortex served to
test the analytical results and to determine their range of validity. It was found that
the primary flow can be considered as quasi-two-dimensional only if δRe1/2 � 3 and
δRe1/3 � 1.

1. Introduction
Experiments on shallow fluid layers generally serve to study quasi-two-dimensional

flows as an approximation to fully two-dimensional flows. For example, experiments in
an electromagnetically forced shallow layer of electrolyte showed good agreement with
results of two-dimensional simulations and a theoretical study of two-dimensional
flows (Tabeling et al. 1991). In addition, the inverse energy cascade and the process
of self-organization, both characteristic of two-dimensional flows, were observed in
similar experiments in a stratified two-layer configuration (Paret & Tabeling 1997).
Furthermore, experiments on a horizontal turbulent impulsive jet have shown a
preponderant influence of the layer depth on the flow dynamics. For deep flows,
the jet remains fully three-dimensional and is not constrained by the boundaries.
On the other hand, for shallow layers, the flow is characterized by a damping of
the vertical motion and the formation of large-scale horizontal vortex structures,
which is also characteristic of two-dimensional flows (Sous, Bonneton & Sommeria
2005).

It is commonly assumed that in shallow flows, the magnitude of the vertical
velocity is constrained because of the small aspect ratio. This argument is derived
from continuity of mass and is valid if the flow has vertical shear and is fully turbulent
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(Jirka & Uijttewaal 2004). In Cartesian coordinates (x, y, z), the continuity equation
for an incompressible fluid reads

∂vx

∂x
+

∂vy

∂y
= −∂vz

∂z
, (1.1)

where z is the vertical coordinate and v = (vx, vy, vz) is the fluid velocity. If L is a
typical horizontal scale of the flow, and H is a typical vertical scale, then (1.1) implies
that

[vx]

L
∼ [vy]

L
∼ [vz]

H
, (1.2)

where the brackets denote the order of magnitude of the enclosed quantity.
Consequently,

[vz] ∼ H

L
[vx] ∼ H

L
[vy]. (1.3)

This suggests that for shallow flows (H/L � 1), the vertical velocities are much smaller
than the horizontal velocities and that the ratio of vertical velocity to horizontal
velocity scales with the aspect ratio δ =H/L. Furthermore, this argument is used to
neglect the vertical velocities in shallow flows and consider such flows as quasi-two-
dimensional.

However, recent experiments in a shallow fluid layer have revealed vertical
velocities higher than expected and complicated three-dimensional flow structures. For
example, electromagnetically generated dipolar vortices have shown persistent three-
dimensional structures and regions of high vertical velocities (Akkermans et al. 2008).
Furthermore, vertical velocities did not scale proportional to H/L. Consequently, it
was concluded that this shallow flow cannot be considered as quasi-two-dimensional.

In the current paper, we focus on shallow axisymmetric swirl flows like monopolar
vortices, which are considered as the building blocks of quasi-two-dimensional
turbulence. The flow, on top of a no-slip horizontal bottom, is initialized with a
specific azimuthal velocity distribution and is subsequently left to freely evolve. It is
well known that in such a swirling flow a secondary flow arises with both radial and
vertical velocity components. Of particular interest is the scaling commonly used to
quantify the degree of two-dimensionality of the flow of both the radial and vertical
velocities with respect to the primary azimuthal motion.

The degree of two-dimensionality of a shallow axisymmetric monopolar vortex has
been previously quantified in numerical simulations using three criteria based on (i)
the ratio of the kinetic energies associated with the radial and the azimuthal velocity
components, (ii) the ratio of the kinetic energies associated with the vertical and the
azimuthal velocity components and (iii) the deformation of the vorticity profile as
compared with the initial profile. It was found that the degree of two-dimensionality
depends not only on the aspect ratio but also on the Reynolds number (Satijn et al.
2001). This explains partly why some shallow flows behave in a quasi-two-dimensional
way, while some others do not, and it is also a sign that the scaling of the vertical
velocity cannot be simply derived from geometrical arguments based on the continuity
equation. Clearly, it is still not well understood why some shallow flows do not behave
in a quasi-two-dimensional way.

In the current work, by expanding the velocity components in powers of the aspect
ratio δ, we find at lowest order a simplified version of the axisymmetric Navier–
Stokes equations for shallow swirl flows where advection and radial diffusion are
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Figure 1. Sketch of the flow’s geometry.

neglected. Then, these equations are solved analytically for a realistic initial azimuthal
velocity profile. The analytical results are then compared with numerical simulations
of the full axisymmetric Navier–Stokes equations. This allows us to derive the proper
scaling for shallow axisymmetric flows and to find the range of validity for this
scaling.

The paper is organized as follows: § 2 presents the governing equations and the
geometry pertinent to the problem. In § 3, we present a perturbation approach leading
in lowest order to a simplified Navier–Stokes equation that is solved analytically
in § 4. Section 5 is devoted to the results from numerical simulations of a Lamb–
Oseen monopolar vortex, which serve to quantify the range of validity of the analytical
results. Finally, the conclusions are presented in § 6.

2. Governing equations and geometry
We consider a flow governed by the Navier–Stokes equations

Dv

Dt
= − 1

ρ
∇p + ν∇2v (2.1)

and the continuity equation for an incompressible fluid

∇ · v = 0, (2.2)

where D/Dt is the material derivative; v is the velocity; ν is the kinematic viscosity;
p is the pressure; and ρ is the density of the fluid.

Since we are interested in axisymmetric swirl flows, it is convenient to use cylindrical
coordinates (r, θ, z); the velocity is then written as v = (vr, vθ , vz) and the vorticity as
ω = ∇ × v = (ωr, ωθ , ωz).

The fluid is vertically confined by a no-slip bottom (v = 0 at z = 0) and a rigid, flat
surface (at z = H ) that is assumed to be stress free (see figure 1).

The flow is initialized with a particular axisymmetric azimuthal velocity profile
vθ (r, z, t = 0) �= 0 while vr (r, z, t = 0) = vz(r, z, t =0) = 0; afterward, the flow is left to
freely evolve.
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3. Shallow-swirl-flow approximation
In order to non-dimensionalize the governing equations (2.1) and (2.2), we introduce

the following non-dimensional variables denoted by the tildes:

t̃ =
ν

H 2
t, r̃ =

r

L
, z̃ =

z

H
,

[ṽθ , ṽr , ṽz] =
1

U
[vθ , vr, vz], ω̃θ =

H

U
ωθ,

where U is a typical velocity scale of the flow.
Since we consider a flow with azimuthal symmetry (∂/∂θ = 0), we can rewrite (2.1)

and (2.2) in terms of ṽθ and ω̃θ , so that we obtain

∂ ṽθ

∂ t̃
+ Reδ2

(
ṽr

∂ ṽθ

∂r̃
+

ṽθ ṽr

r̃

)
+ Reδṽz

∂ ṽθ

∂z̃
= δ2

[
∂2ṽθ

∂r̃2
+

∂

∂r̃

(
ṽθ

r̃

)]
+

∂2ṽθ

∂z̃2
, (3.1)

∂ ω̃θ

∂t̃
+ Reδ2

(
ṽr

∂ ω̃θ

∂r̃
− ω̃θ ṽr

r̃

)
+ Reδṽz

∂ ω̃θ

∂z̃
− Reδ2 1

r̃

∂ ṽ2
θ

∂z̃

= δ2

[
∂2ω̃θ

∂r̃2
+

∂

∂r̃

(
ω̃θ

r̃

)]
+

∂2ω̃θ

∂z̃2
, (3.2)

δ
1

r̃

∂

∂r̃
(r̃ ṽr ) +

∂ ṽz

∂z̃
= 0, (3.3)

ω̃θ =
∂ ṽr

∂z̃
− δ

∂ ṽz

∂r̃
, (3.4)

with δ = H/L the aspect ratio and Re = UL/ν the Reynolds number. To simplify
notation, the tildes will be omitted from here on.

Note that the continuity equation (3.3) does not provide any relation between the
azimuthal velocity and the vertical velocity. Consequently, the scaling of the ratio
of the azimuthal velocity to the vertical velocity must be determined by the flow
dynamics.

In this context, the term

Reδ2

r

∂v2
θ

∂z
=

2Reδ2

r
vθ

∂vθ

∂z
(3.5)

in (3.2) is of special interest, since it couples the azimuthal velocity vθ with both the
radial velocity vr and the vertical velocity vz, implying that a vertical gradient in vθ

will drive a secondary flow in the (r-z) plane
To study the limit of shallow flows (δ � 1), we propose an asymptotic expansion of

the variables in powers of δ:

ωθ =

∞∑
n=0

δnωθ,n, vθ =

∞∑
n=0

δnvθ,n, vr =

∞∑
n=0

δnvr,n, vz =

∞∑
n=0

δnvz,n. (3.6)

By substituting (3.6) into (3.3), we immediately obtain that vz,0 = 0.
Substitution of (3.6) into (3.2) yields

∂ωθ,0

∂t
− ∂2ωθ,0

∂z2
= 0 (3.7)

at zeroth order,

∂ωθ,1

∂t
− ∂2ωθ,1

∂z2
= 0 (3.8)
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at first order and

∂ωθ,2

∂t
+ Re

(
vr,0

∂ωθ,0

∂r
+

vr,0ωθ,0

r
+ vz,1

∂ωθ,0

∂z

)
− Re

1

r

∂v2
θ,0

∂z

=
∂2ωθ,0

∂r2
+

∂

∂r
r−1ωθ,0 +

∂2ωθ,2

∂z2
(3.9)

at second order.
Note, from (3.7) and (3.8), that ωθ,0 and ωθ,1 are not affected by the primary motion

and only depend on the initial condition for ωθ . In fact, if vr = vz = 0 at t =0, then
ωθ,0 = ωθ,1 = 0 and vr,0 = vr,1 = vz,1 = vz,2 = 0. Substituting these results into (3.9) yields

∂ωθ,2

∂t
− ∂2ωθ,2

∂z2
= Re

1

r

∂v2
θ,0

∂z
. (3.10)

It can be seen from this equation that a vertical gradient in vθ will drive a secondary
flow that at lowest order (δ ↓ 0) scales as follows:

ωθ = δ2ωθ,2, vr = δ2vr,2, vz = δ3vz,3, (3.11)

provided that ωθ = 0 at t = 0. Therefore, it is convenient to define the new variables

ω̂θ =
ωθ

δ2Re
, v̂r =

vr

δ2Re
, v̂z =

vz

δ3Re
, v̂θ = vθ , (3.12)

through which (3.1) and (3.2) simplify to

∂ v̂θ

∂t
− ∂2v̂θ

∂z2
= 0, (3.13)

∂ ω̂θ

∂t
− ∂2ω̂θ

∂z2
=

1

r

∂ v̂2
θ

∂z
, (3.14)

where ω̂, v̂r , v̂z, v̂θ are all O(1) for δ ↓ 0. This implies that the velocity components
scale to lowest order as

vr

vθ

= O(Reδ2) (3.15)

and
vz

vθ

= O(Reδ3). (3.16)

If we consider the azimuthal velocity as the typical horizontal velocity – a common
choice – the latter result contradicts the usual assumption that the ratio of vertical
velocity to horizontal velocity should scale with δ. Not only does the vertical velocity
scale with δ3, but it also depends linearly on the Reynolds number of the primary
motion. The range of validity for the scaling proposed in (3.15) and (3.16) will be
studied using numerical simulations in § 5.

4. Analytical solution for a shallow swirl flow
Equation (3.13) is a diffusion equation, where both radial diffusion and advection

by the secondary motion have been neglected as compared with (3.1). Since at lowest
order the evolution of the main flow is independent of the secondary flow, flows
governed by (3.13) and (3.14) can be considered as quasi-two-dimensional.

To analyse the two-dimensionality and the evolution of shallow swirl flows, (3.13)
and (3.14) are solved analytically. For this, we consider as initial condition a swirl
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flow with a Poiseuille-like vertical structure and a radial dependence which is, at this
stage, arbitrary:

v̂θ (r, z, 0) = R(r) sin(πz/2), (4.1)

where R(r) is such that dR(r)/dr is of the same order of magnitude as R(r). This
is achieved by choosing the appropriate radial length scale L. Furthermore, for the
secondary motion we consider

ω̂θ (r, z, 0) = 0. (4.2)

The Poiseuille-like vertical profile was used as initial condition, since the vertical
structure of shallow axisymmetric vortices dominated by bottom friction tends quickly
to such a profile (Satijn et al. 2001).

The solution of (3.13) that satisfies the no-slip boundary condition at the bottom
(v̂θ =0 at z = 0), the stress-free boundary condition at the top (∂v̂θ/∂z =0 at z = 1)
and the initial condition (4.1) is given by

v̂θ (r, z, t) = R(r) sin

(
π

2
z

)
exp

(
− π2

4
t

)
. (4.3)

We note that the azimuthal velocity v̂θ decays exponentially at a rate λR = π2/4
(λ′

R = (π2ν)/(4H 2) in dimensional form) which is, in some studies, referred to as the
external friction parameter. For shallow flows, it is also known as the Rayleigh
friction parameter, and it is commonly used to parameterize the vertical dependence
of shallow flows in two-dimensional equations with a linear friction term (Dolzhanskii,
Krymov & Manin 1992; Satijn et al. 2001).

By substituting (4.3) into (3.14), we obtain an equation for the secondary flow that
is driven by the primary swirl:

∂ ω̂θ

∂t
− ∂2ω̂θ

∂z2
=

π

2

R(r)2

r
sin(πz) exp

(
−π2

2
t

)
. (4.4)

To solve (4.4) with the appropriate boundary conditions, it is useful to introduce the
stream function ψ̂ defined by

v̂r = −1

r

∂ ψ̂

∂z
, (4.5)

v̂z =
1

r

∂ ψ̂

∂r
. (4.6)

From this and (3.4), ω̂θ is given by

ω̂θ = −1

r

∂2ψ̂

∂z2
− δ2 ∂

∂r

(
1

r

∂ ψ̂

∂r

)
(4.7)

which at lowest order (δ ↓ 0) reduces to

ω̂θ = −1

r

∂2ψ̂

∂z2
. (4.8)

The evolution of the secondary flow is now governed by the following equation:

∂4Ψ

∂z4
− ∂

∂t

∂2Ψ

∂z2
= sin(πz) exp

(
−π2

2
t

)
, (4.9)
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t

ψ̂

Figure 2. Normalized stream function as a function of time.

where

Ψ (z, t) =
2

π

ψ̂(r, z, t)

R2(r)
, (4.10)

with the boundary conditions

Ψ (0, t) = 0, Ψ (1, t) = 0,
∂Ψ (z, t)

∂z

∣∣∣∣
z=0

= 0,
∂2Ψ (z, t)

∂z2

∣∣∣∣
z=1

= 0 (4.11)

and the initial condition

Ψ (z, 0) = 0. (4.12)

The detailed procedure to solve the initial-value problem (4.9)–(4.12) is given in the
Appendix, and the solution is

Ψ (z, t) =
2 sin(πz)

π4
e−π2t/2

+
2

π3(tan(π/
√

2) − π/
√

2)

{
tan

(
π√
2

)[
1 − z − cos

(
π√
2
z

)]
+ sin

(
π√
2
z

)}
e−π2t/2

−
∞∑

n=0

4γn

π tan2(γn)
(
π2 − γ 2

n

)(
π2 − 2γ 2

n

) [tan(γn)(1 − z − cos(γnz)) + sin(γnz)] e−γ 2
n t ,

(4.13)
where γn are solutions of the transcendental equation tan(γn) = γn.

Figure 2 shows the temporal evolution of the normalized stream function at
an arbitrary location in the (r-z) plane and which is characteristic for the overall
behaviour of ψ̂ . Initially, the normalized stream function shows a rapid increase as
the secondary motion is set up by the primary flow. During this transient period, the
infinite series in (4.13) forms the dominant contribution to ψ̂ . For longer times,
the behaviour of the secondary motion is dominated by the first and second terms
on the right-hand side of (4.13) since π2/2 � γ 2

n . Note that the second term is present
in the solution because the first term alone does not satisfy the boundary condition
at the no-slip bottom.
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From the stream function ψ̂ , we can calculate both the radial and vertical velocity
components,

vr = −Reδ2

r

∂ ψ̂

∂z
= −πReδ2

2

R(r)2

r

∂Ψ (z, t)

∂z
, (4.14)

vz =
Reδ3

r

∂ ψ̂

∂r
=

πReδ3

2r

∂R(r)2

∂r
Ψ (z, t), (4.15)

which will be compared in the next section with results from numerical simulations.

5. Numerical study
Numerical simulations were performed to determine the range of validity of the

analytical results presented in the preceding sections. A finite-element code (see
Comsol AB 2009) was used to solve the full Navier–Stokes equations. The flow was
assumed to be incompressible and azimuthally symmetric (∂/∂θ = 0).

The initial azimuthal flow was taken to be

vθ (r, z, 0) = R(r) sin

(
π

2
z

)
, (5.1)

where the radial dependence was specified as

R(r) =
1

2r
[1 − exp(−r2)]. (5.2)

Such vortex is known as a Lamb–Oseen vortex, and it was chosen because of its
similarity to some vortices created in the laboratory (e.g. Hopfinger & van Heijst
1993). However, as shown in § 3, the scaling of vr and vz is independent of the radial
profile for δ ↓ 0.

The computational domain extends in the (r-z) plane for 0 � r � 12 and 0 � z � 1.
The radial length of the container is approximately 10 times the radius of maximum
velocity of the Lamb–Oseen vortex and large enough to neglect the effects of this
boundary on the secondary motion.

As boundary conditions, we applied axial symmetry at r = 0 and a stress-free
condition at r = 12 to further reduce the influence of this lateral boundary. In the
vertical, a stress-free condition was applied at z =1 and a no-slip boundary condition
at the bottom (z =0). At the top boundary, a ‘rigid-lid’ approximation is implemented,
so excluding free-surface deformations.

We performed simulations at Reynolds number Re = 100, 1000 and 2500 where
the typical velocity U is defined as U = Lω0, with ω0 the maximum of the vertical
vorticity component at t = 0. In addition, for each Re value the aspect ratio δ was
varied within the range 1 � δ2Re � 160.

To study the scaling of the velocity components, we define the kinetic energy for
each velocity component vi (where i = r, θ, z) as

Ei = π

∫ 1

0

∫ 12

0

v2
i r dr dz (5.3)

and the kinetic energy ratio of each velocity component vi as

qi =
Ei

Eθ

. (5.4)
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1.5

Figure 3. (a) Kinetic energy ratio qr/δ
4Re2 as a function of time for Re = 1000, 2500 and

δ2Re = 1, 2, 5. (b) Kinetic energy ratio qz/δ
6Re2 as a function of time for Re = 1000, 2500 and

δ2Re = 1, 2, 5. Time is normalized with 1/λ.

100 101
10–6

10–4

10–2

δ Re1/2

m
ax

(q
r)

∝ δ4

(a)

100
10–10
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10–6

10–4
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δ Re1/3

m
ax

(q
z)

∝ δ6

(b)

Figure 4. Values of (a) max(qr ) as a function of δRe1/2 and (b) max(qz) as a function of
δRe1/3 for Re =100 (circles), Re = 1000 (crosses) and Re = 2500 (squares). The dashed line
represents the analytical solution given by (4.3), (4.14) and (4.15).

In addition, a typical decay rate λ for each numerical solution is obtained by fitting
the exponential function exp(−2λt) to Eθ .

Figure 3 shows (a) the value of qr/(Re2δ4) and (b) the value of qz/(Re2δ6) as a
function of time for Re =1000, 2500 and δ2Re = 1, 2, 5. Clearly, the six curves collapse
to one curve in each graph. This means that the evolution of qr is self-similar when
scaling qr with (δ2Re)2 for δ2Re = 1, 2, 5 and that the evolution of qz is self-similar
when scaling qz with (δ3Re)2 for the same values δ2Re = 1, 2, 5. This is consistent
with the analytical solution obtained in the previous section (see (4.14) and (4.15))
for δ ↓ 0.

To quantify the range of validity of the observed self-similarity, we now focus on
characteristic values of the quantities qr and qz, namely max(qr ) and max(qz).

Figure 4(a) shows the maximum value of the kinetic energy associated with the
radial velocity, i.e. max(qr ), for simulations with Re = 100, 1000 and 2500 as a function
of δRe1/2 together with the results obtained from the analytical expressions (4.3), (4.14)
and (4.15). As can be seen, for δRe1/2 � 3, the numerical results coincide well with
the analytical solution; hence, max(qr ) scales like δ4Re2. For larger values of δRe1/2,
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Figure 5. (a) The typical decay time λ/λR as a function of δRe1/2 and (b) λ/λR as a function
of δRe1/3 for simulations with Re =100 (circles), Re =1000 (crosses) and Re = 2500 (squares).

there is a change in the slope of the curve given by the numerical results. For high
Re values (e.g Re =1000, 2500), this change in the slope is due to the increasing
importance of advection. However, for these large Re values the results tend to the
same curve, suggesting that the radial velocity only depends on Reδ2. On the other
hand, for low Re values (e.g. Re = 100), the numerical results show a larger change
in the slope. This can be explained since the aspect ratio is not small, and hence,
horizontal diffusion cannot be neglected, and the approximation (4.8) does not hold.

The results obtained so far are reminiscent of the flow in curved pipes studied
initially by Dean (1927). In such a flow there are two characteristic parameters: a
geometrical parameter δD = a/RD , where a is the radius of the pipe and RD is the
radius of curvature of the pipe; and a dynamical quantity, the Reynolds number ReD .
Following this analogy, a straight pipe would be equivalent to an axisymmetric flow
in a plane where, in both cases, no secondary motion exists. Furthermore, a loosely
coiled pipe (δD � 1) corresponds to a shallow flow δ � 1. Dean (1927) expanded
the Navier–Stokes equation in powers of δD and found that for δD � 1 only one
parameter κ = δ

1/2
D ReD – known now as the Dean number – governs the flow. This

gives rise to the so-called Dean number similarity. As found in the present paper, the
governing parameter for shallow axisymmetric flows is Re2δ.

The graph in figure 4(b) shows the maximum of the kinetic energy associated
with the vertical velocity, i.e. max(qz), for simulations with Re =100, 1000 and 2500
as a function of δRe1/3 together with the analytical results given by (4.3), (4.14)
and (4.15). As can be seen, for small values of δRe1/3, the values of max(qz) agree
with the analytical results, indicating that the vertical velocity scales with δ3Re. This
contradicts the usual assumption that the vertical velocity scales with δ. However, this
scaling breaks down for δRe1/3 � 1 because of the effects of the advection associated
with the secondary motion in the (r-z) plane.

Finally, we show how the change of regimes in the scaling of vr and vz relates
to the primary motion and hence to the two-dimensionality of the flow. Figure 5
presents the decay parameter λ of the primary flow normalized by the Rayleigh
parameter λR = π2/4 as a function of (a) δRe1/2 and (b) δRe1/3. For Re = 1000, 2500
and δRe1/2 � 3, it is observed that λ/λR ≈ 1, suggesting that (4.3) is valid in this
regime. However, λ/λR starts to deviate strongly from unity for δRe1/2 ≈ 3, which
corresponds with the value of δRe1/2 where the scaling of max(qr ) starts to deviate
from the analytically obtained results for the secondary motion. For Re =100, λ/λR

deviates from unity for smaller values of δRe1/2 than for Re = 1000, 2500. This is
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due to the damping related to the horizontal momentum diffusion, which becomes
important for large δ-values.

The deviation of λ from λR is related to qualitative changes in the azimuthal flow.
For small values of Reδ2, the flow has a Poiseuille-like vertical structure. However, for
large values of Reδ2, the flow consists of a thin boundary layer at the bottom and an
inviscid interior. This is very similar in flows in curved pipes, where for small Dean
number the main flow through the pipe is of Poiseuille type, while for large Dean
number the flow is composed of a thin boundary layer and an inviscid core (Berger,
Talbot & Yao 1983).

As shown in figure 5(b), for δRe1/3 � 1, λ/λR ≈ 1 for all Re values. However, for
δRe1/3 � 1, it is observed that λ/λR deviates strongly from unity. Note that δRe1/3 ≈ 1
is also the value of δRe1/3 for which max(qz) starts to strongly deviate from the
analytical results. This suggests that for δRe1/3 � 1 the secondary motion strongly
affects the primary azimuthal flow and hence that the secondary motion cannot be
neglected.

6. Discussion and conclusions
Using a formal perturbation approach in the aspect ratio δ, we obtained at lowest

order (δ ↓ 0) a set of simplified Navier–Stokes equations for the evolution of a shallow
axisymmetric swirl flow over a no-slip bottom. Flows governed by these simplified
equations can be considered as quasi-two-dimensional, since the secondary motion
can be neglected in the evolution of the primary azimuthal motion.

It was shown that for shallow axisymmetric swirl flows dominated by bottom
friction the radial velocity scales with δ2Re, while the vertical velocity scales with δ3Re

with respect to the primary motion. Consequently, we conclude that the dynamics
of the flow play a crucial role in the scaling of the vertical velocity and that the
argument based only on the continuity equation is inadequate to explain this scaling.
However, this argument seems to become valid for large values of Reδ2, i.e. when the
shear flow is fully turbulent as considered by Jirka & Uijttewaal (2004). This can be
seen in figure 4 since the value of max(qr ) tends towards being independent of δ for
such large values of Reδ2. Nevertheless, we wish not to expand this work towards a
fully turbulent case, since such regime should be treated differently.

Numerical simulations served to test the analytical results and to determine their
range of validity. We compared the results from full three-dimensional numerical
simulations of a decaying Lamb–Oseen vortex with the analytical solution of the
simplified Navier–Stokes equations obtained for shallow swirl flows where advection
due to the secondary flow has been neglected. Good agreement between the numerical
and analytical solutions was found for δRe1/2 � 3 and δRe1/3 � 1. Consequently,
for these values of δRe1/2 and δRe1/3 this flow can be considered as quasi-two-
dimensional.

To quantify the two-dimensionality of shallow flows is a complicated matter.
One quantity commonly used is the ratio of kinetic energy of the vertical velocity
component to the kinetic energy of the horizontal velocity components. For example,
Satijn et al. (2001) considered this ratio together with two other characteristic
quantities and argued that the flow can be considered as quasi-two-dimensional
if these quantities are smaller than a certain threshold, which is rather arbitrary.
Another way to quantify the two-dimensionality of shallow flows is to estimate the
dynamical forces related to the vertical or secondary motions. In this case, it is
not a priori obvious whether these dynamical forces should be evaluated at a certain
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location in the fluid or need to be averaged over a certain domain (see e.g. Akkermans
et al. 2008). Hence, arbitrariness also exits depending on the position at which these
forces are evaluated.

The regime in which the primary flow can be considered as quasi-two-dimensional
is rarely studied in shallow-layer experiments. For example, experiments of a shallow
electromagnetically driven dipolar vortex (Akkermans et al. 2008) were performed
for 4 � δRe1/3 � 7.7 and Re ∼ 4800. Clercx, van Heijst & Zoeteweij (2003) performed
experiments of quasi-two-dimensional turbulence in a shallow layer with a lower
bound for δRe1/3 ≈ 2.17 with Re ≈ 2500. These experiments fall outside the range
where vz/vθ =O(δ3Re). Therefore, we propose experiments to be performed in the
parameter regime studied in the current paper.

Even though the scaling proposed in the present paper is limited to the particular
case of axisymmetric swirl flows, it is expected that it also applies to more complex
flows, such as dipolar vortices and quasi-two-dimensional turbulence, since monopolar
vortices can be considered as their building blocks. Research in this direction is still
to be carried out.

M. D. M. gratefully acknowledges financial support from CONACYT (Mexico).

Appendix. Analytical solution
To solve (4.9), we perform a Laplace transform (L) yielding

∂4Ψ̄

∂z4
− s

∂2Ψ̄

∂z2
=

2 sin(πz)

2s + π2
, (A 1)

where Ψ̄ = L(Ψ ). This equation has a solution of the form Ψ̄ = Ψ̄h + Ψ̄p , where

Ψ̄h(z, s) = A + Bπz + C sinh(
√

sz) + D cosh(
√

sz) (A 2)

is a solution of the homogeneous equation, with A, B , C and D being integration
constants, and

Ψ̄p(z, s) =
2 sin(πz)

π2(s + π)(2s + π)
(A 3)

is a particular solution of (A 1).
Equations (A 2) and (A 3) give the following expression for the Laplace transform

of the stream function:

Ψ̄ (z, s) = A + Bπz + C sinh(
√

sz) + D cosh(
√

sz) +
2 sin(πz)

π2(s + π)(2s + π)
. (A 4)

Applying the boundary condition yields

Ψ (0, t) = A + D = 0, (A 5)

∂Ψ (z, t)

∂z

∣∣∣∣
z=0

= Bπ + C
√

s +
2

π2(π2 + s)(π2 + 2s)
= 0, (A 6)

Ψ (1, t) = A + Bπ + C sinh(
√

s) − A cosh
√

s = 0 (A 7)

and

∂2Ψ (z, t)

∂z2

∣∣∣∣
z=1

= sC sinh(
√

s) − sA cosh(
√

s) = 0. (A 8)
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Im(s)

R→∞

Re(s)

Figure 6. Integration contour for (A 13). The crosses in the real-s axis denote the poles.

Then, by combining (A 5)–(A 8), we obtain

C = − 2

π2(π + s)(2s + π)

1

tanh(
√

s) −
√

s
, (A 9)

B = − 2 tanh(
√

s)

π3(π + s)(2s + π)

1

tanh(
√

s) −
√

s
(A 10)

and

A= −D =
2

π2(π + s)(2s + π)
, (A 11)

so that

Ψ̄ (z, s) =
2

π2(π2 + s)(π2 + 2s)

×
(

1

tanh(
√

s) −
√

s
{tanh(

√
s)[1 − z − cosh(

√
sz)] + sinh(

√
z)} + sin(πz)

)
. (A 12)

The stream function Ψ can be recovered by inverting the Laplace transform, i.e.

Ψ (z, t) =
1

2πi

∫ c+i∞

c−i∞
Ψ̄ (z, s)est ds, (A 13)

where c is to the right of all the singularities of Ψ̄ . These singularities are at s = π2/2
and s = π2, which are simple poles, and at s = −γ 2

n , where γn are solutions of the
transcendental equation tan(γn) = γn.

We perform the integration (A 13) in the complex s-plane along the contour of
figure 6 which has a branch cut at s = 2ρ2 exp(3iπ/2). However, it can be shown that
this branch cut does not contribute to the integral and that

Ψ (z, t) =
1

2πi

∫ c+i∞

c−i∞
Ψ̄ (z, s)est ds =

∑
residues. (A 14)
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