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For m > 0 and p ∈ (1, (N + 2)/(N − 2)), we show the uniqueness and a linearized
non-degeneracy of solutions for the following problem:

∆u − |x|mu + up = 0, u > 0 in R
N and lim

|x|→∞
u(x) = 0.

1. Introduction and statement of main results

We are interested in the uniqueness and linearized non-degeneracy of solutions
satisfying

∆u − |x|mu + up = 0, u > 0 in RN and lim
|x|→∞

u(x) = 0. (1.1)

Throughout this paper, we assume that N � 2, m > 0 and p ∈ (1, (N +2)/(N −2))
for N � 3 and p ∈ (1,∞) for N = 2. Equation (1.1) comes from the study of
standing waves for the nonlinear Schrödinger equation

i�ψt = − 1
2�2∆ψ + V (x)ψ − |ψ|p−1ψ in RN × R, (1.2)

where � is the Planck constant and i is the imaginary unit. A solution ψ(x, t) of (1.2)
is called a standing wave if

ψ(x, t) = exp
(

− i
E

�
t

)
u(x)

for some real-valued function u. Then the function u satisfies
1
2�2∆u − (V (x) − E)u + up = 0 in RN .

We are interested in semi-classical standing waves. Thus, shifting E to 0 without
loss of generality, we consider

ε2∆u − V (x)u + up = 0, u > 0 in RN and lim
|x|→∞

u(x) = 0 (1.3)
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for sufficiently small ε > 0. The case infx∈RN V (x) > 0 has been studied exten-
sively by many authors (see [2–4, 10] and references therein). On the other hand,
for the case infx∈RN V (x) = 0 some solutions contrasting with those for the case
infx∈RN V (x) > 0 have been obtained in [1–3]. In fact, for each isolated connected
component L of {x ∈ RN | V (x) = 0}, there exists a solution uε of (1.3) such that

lim
ε→0

‖uε‖∞ = 0, lim inf
ε→0

ε−2/(p−1)‖uε‖∞ > 0

and that, for each δ > 0, there exist some C, c > 0 satisfying

uε(x) � C exp
(

− c

ε
dist(x, L)

)
if dist(x, L) > δ.

In particular, if L = {x0} and V (x) = |x − x0|m for small |x − x0|,

ε−(2/(p−1))(m/(m+2))uε(ε2/(m+2)x + x0)

converges to a least energy solution of (1.1) as ε → 0. Furthermore, in [1] we glue
together uε with other semi-classical standing waves of different energy scales. For
this, we assume the uniqueness and linearized non-degeneracy of solutions of (1.1).
For m = 2, the uniqueness of solutions of (1.1) was proved in [6]. In this paper,
we will prove the uniqueness and linearized non-degeneracy of solutions of (1.1) for
any m > 0.

In addition to the uniqueness of positive solutions, we are interested in a linearized
non-degeneracy of the unique positive solution. To see a linearized non-degeneracy
of the unique positive solution, we consider the uniqueness of solutions for the
following problem, which is more general than (1.1):

∆u− (V (x)+ δa(x))u+(1+ δb(x))up = 0, u > 0 in RN , lim
|x|→∞

u(x) = 0. (1.4)

Here, δ > 0 and two functions a, b are radially symmetric functions with compact
supports. To see a linearized non-degeneracy of the unique positive solution, we
will require a = bup−1

0 , where u0 is a solution of (1.4) for δ = 0. Then the u0 is
also a solution of (1.4) for δ > 0. In view of the bifurcation theory, the uniqueness
of solutions of (1.4) for δ > 0 may imply a linearized non-degeneracy of (1.4) for
δ = 0. We will show the linearized non-degeneracy by a variational argument.

To state our main results, we define

β =
2(N − 1)(p − 1)

p + 3
∈ (0, 2),

L =
2(N − 1){(N − 2)p + N − 4}

(p + 3)2
,

G(r) = V (r)rβ + Lr−(2−β),

H(r) = r3−βG′(r) = βr2V (r) + r3V ′(r) − L(2 − β).

We note that L < 0 for N = 2 and L > 0 for N � 3. We make the following
conditions on V .

(V0) a and b are radially symmetric non-negative functions with compact supports
a ∈ C2, b ∈ C3, and b = 1 in a neighbourhood of 0.
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(V1) V (x) = V (|x|), V ∈ C([0,∞)) ∩ C2((0,∞)), lim inf |x|→∞ V (x) > 0 and
λ1(−∆ + V (x)) > 0, where λ1(−∆ + V (x)) is the minimum value of the
spectrum of −∆ + V (x).

(V2) one of the following hold:

(i) {r > 0 | G′(r) = 0, G(r) � 0} = ∅;

(ii) infr>0 H(r) > 0 for N = 2, and H has the unique simple zero in (0,∞)
and lim supr→0 H(r) < 0 for N � 3.

(V3) V is non-decreasing and non-constant on (0,∞).

A radial solution u(x) = u(r), r = |x| of (1.4) solves

urr +
N − 1

r
ur − (V (r) + δa(r))u + (1 + δb(r))up = 0, u > 0 in (0,∞),

ur(0) = 0,

lim
r→∞

u(r) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.5)

Theorem 1.1. Suppose that (V0), (V1) and (V2) hold. Then, for small δ � 0,
(1.5) has a unique solution.

Definition 1.2. A solution w for δ = 0 of (1.4) is non-degenerate in H ⊂ H1,2(RN )
if φ = 0 is the unique solution in H of ∆φ − V (x)φ + pwp−1φ = 0.

Theorem 1.3. Suppose that (V1), (V2) and (V3) hold. Then, for δ = 0, (1.4) has
a unique solution which is non-degenerate in H1,2(RN ).

Remark 1.4. In fact, for δ = 0, we can prove the uniqueness of radial solutions
of (1.4) under (V1) and the following conditions weaker than (V2). One of the
following holds:

(i) {r > 0 | G′(r) = 0, G(r) > 0} = ∅;

(ii) H is non-negative for all r > 0 and H �≡ 0 if N = 2, and the zero set of H(r)
is connected in (0,∞) and lim supr→0 H(r) < 0 for N � 3.

We will give sufficient conditions for (V2) in § 4 (see propositions 4.1 and 4.2).
In particular, we have the following.

Corollary 1.5. Let V (x) = |x|m − µ, m > 0. Assume that λ1(−∆ + |x|m) > µ.
Then, for δ = 0, (1.4) has a unique solution which is non-degenerate in H1,2(RN ).

Remark 1.6. Let λ(m, N) = λ1(−∆ + |x|m). Then one can show that

lim
m→0

λ(m, N) = 1

and that limm→∞ λ(m, N) exists and equals the square of the first zero of the Bessel
function of order 1

2 (N − 2). It is also known that λ(2, N) = N .
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2. Proof of theorem 1.1

Under condition (V1), there exists a solution of (1.5) for small δ > 0. To prove the
uniqueness, we follow the approach used in [7, 8]. We use an argument similar to
the proof of [7, theorem 0.1] for N = 2.

Let u be a solution of (1.5). For r � 0, let

Kδ(r) ≡ 1 + δb(r) and Vδ(r) ≡ V (r) + δa(r).

Note that
u′′ +

N − 1
r

u′ − Vδ(r)u + Kδ(r)up = 0. (2.1)

We define

α =
2(N − 1)

p + 3
, Aδ(r) ≡ rαK

1/(p+3)
δ (r), v(r) = Aδ(r)u(r).

Then v satisfies
Bδ(r)v′′ + 1

2B′
δ(r)v

′ − Gδ(r)v + vp = 0,

where

Bδ(r) ≡ rβK
−4/(p+3)
δ (r),

Gδ(r) ≡ Bδ(r)
[
Vδ(r) +

L

r2 +
(N − 1)(p − 1)

(p + 3)2
K ′

δ(r)
rKδ(r)

− p + 4
(p + 3)2

(K ′
δ)

2(r)
K2

δ (r)
+

1
p + 3

K ′′
δ (r)

Kδ(r)

]
.

Let
Eδ(r; v) ≡ 1

2Bδ(r)(v′)2 − 1
2Gδ(r)v2 +

1
p + 1

vp+1. (2.2)

Then it follows that
E′

δ(r; v) = − 1
2G′

δ(r)v
2. (2.3)

Note that K ′
δ(r) = 0 in a neighbourhood of {0,∞}, and that G0(r) = G(r). Since

2α + β − 2 =

⎧⎪⎪⎨
⎪⎪⎩

2N − 4 − 4(N − 1)
p + 3

> N − 3 for N � 3,

− 4
p + 3

∈ (−1, 0) for N = 2,

it follows that

lim
r→0

Gδ(r)v2 = lim
r→0

K
−4/(p+3)
δ (Lr2α+β−2u2(r) + Vδ(r)r2α+βu2(r))

=

{
−∞, N = 2,

0, N � 3.
(2.4)

Hence, we see that

lim
r→0

Eδ(r) =

{
∞, N = 2,

0, N � 3.
(2.5)
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Note that

2α + β =
2(N − 1)(p + 1)

p + 3
< 2(N − 1).

Then, from lemma A.1, we see that

lim sup
r→∞

Eδ(r) = 0. (2.6)

We now claim that if δ � 0 is small,

Eδ(r) � 0 for all r > 0 and Eδ �≡ 0. (2.7)

Case (i) of (V2)

By (2.2) and (2.3), it follows that

{r > 0 | E′
δ(r) = 0, Eδ(r) < 0} ⊂ {r > 0 | G′

δ(r) = 0, Gδ(r) > 0} ≡ Z.

Note that Gδ(r) = G(r) for large r > 0. Suppose that there exists rδ ∈ Z > 0
for small δ > 0. Then, from (V2) case (i), we see that {rδ} is bounded. Then we
may assume that rδ → r0 � 0 as δ → 0. Then, G′(r0) = 0 and G(r0) � 0. Since
limr→0 |G(r)| = ∞, it follows that r0 > 0. This is a contradiction. Thus, by (2.3),
(2.5) and (2.6), we have Eδ � 0 for all r > 0 if δ � 0 is small as claimed.

Assume by contradiction that Eδ ≡ 0 for small δ � 0. Then Gδ is constant. This
contradicts limr→0 |Gδ(r)| = ∞. This proves (2.7) when (V2) case (i) holds.

Case (ii) of (V2)

Define Hδ(r) = r3−βG′
δ(r). Then, if Hδ �≡ 0, Eδ �≡ 0.

Let N = 2. Then, by (2.3), E′
δ(r) � 0 if δ � 0 is small. Hence, it follows from (2.5)

and (2.6) that Eδ(r) � 0.
Let N � 3 and R ∈ (0,∞) be the unique zero of H. From the fact that

lim supr→0 H(r) < 0, we see that H (and hence G′) is negative in (0, R) and pos-
itive in (R, ∞). Then, from (V0), we deduce that, for small δ > 0, there exists
Rδ > 0 such that limδ→0 Rδ = R and Rδ is a unique simple zero of Hδ. Moreover,
lim supr→0 Hδ(r) < 0 for small δ > 0. By (2.3), Eδ is non-decreasing in (0, Rδ) and
non-increasing in (Rδ,∞). Then, from (2.5) and (2.6), it follows that Eδ � 0 for
small δ � 0. This proves (2.7) when case (ii) of (V2) holds.

Let us assume by contradiction that (2.1) has another positive solution ũ. We
may assume that ũ(0) > u(0). By lemma A.3, we can choose a ũ which intersects
u at most once. Then, by lemma A.2,

d
dr

(
ũ(r)
u(r)

)
< 0, r > 0. (2.8)

Let ṽ(r) = Aδ(r)ũ(r), Eδ(r) = Eδ(r; v), Ẽδ(r) = Eδ(r; ṽ) and

Fδ(r) ≡ Ẽδ(r) −
(

ṽ

v

)2

Eδ(r).
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It then follows from (2.8) that

F ′
δ(r) = Ẽ′

δ −
(

ṽ

v

)2

E′
δ −

{
d
dr

(
ṽ

v

)2}
Eδ

= − 1
2G′

δ ṽ
2 + 1

2G′
δv

2
(

ṽ

v

)2

−
{

d
dr

(
ṽ

v

)2}
Eδ

= −
{

d
dr

(
ṽ

v

)2}
Eδ � 0. (2.9)

This also implies that

0 <

(
ṽ(r)
v(r)

)2

�
(

ṽ(0)
v(0)

)2

for all r � 0. Then it follows that

lim inf
r→∞

Fδ(r) � 0. (2.10)

On the other hand, note that

Fδ(r) = AδA
′
δBδ

{
ũũ′ −

(
ũ

u

)2

uu′
}

+ 1
2A2

δBδ

{
(ũ′)2 −

(
ũ

u

)2

(u′)2
}

+
1

p + 1

{
(Aδũ)p+1 − (Aδu)p+1

(
ũ

u

)2}

and that

Aδ(r) = (1 + δ)1/(p+3)rα, Bδ(r) = (1 + δ)−4/(p+3)rβ for small r > 0,

β + 2α − 1 = 2N − 3 − 4(N − 1)
p + 3

> N − 2,

u′(0) = ũ′(0) = 0, 0 < u(0) < ũ(0).

Thus, we see that Fδ(r) → 0 as r → 0. Then, from (2.9), (2.10), we see that Fδ ≡ 0.
By (2.8) and (2.9), it follows that Eδ ≡ 0, which is a contradiction. This completes
the proof of theorem 1.1.

3. Proof of theorem 1.3

We define

‖φ‖ =
( ∫

RN

|∇φ|2 + V (x)φ2 dx

)1/2

,

and let X and Xrad be the completion of C∞
0 (RN ) and {φ ∈ C∞

0 (RN )|φ(x) = φ(|x|)}
with respect to ‖ · ‖, respectively. We note that

‖φ‖2 � λ1(−∆ + V (x))
∫

RN

φ2 dx

and X ⊂ H1,2(RN ).
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By the condition (V3), any solution of (1.4) with δ = 0 is radially symmet-
ric (see [5, 9]). Thus, it follows from theorem 1.1 that (1.4) with δ = 0 has a
unique solution. Let w be the unique solution of (1.5) with δ = 0. Multiplying
−(rN−1wr)r + rN−1V (r)w = rN−1wp by w and integrating over (0, r) yields

−rN−1w′(r)w(r) +
∫ r

0
((w′)2(s) + V (s)w2(s))sN−1 ds =

∫ r

0
wp+1(s)sN−1 ds.

Then we see that w ∈ Xrad by lemma A.1. We shall prove that w is non-degenerate
in H1,2(RN ). Assume by contradiction that there exists ψ ∈ H1,2(RN ) \ {0} such
that

∆ψ − V (x)ψ + pwp−1ψ = 0, ψ �≡ 0.

Then, by lemma A.5, ψ(x) = ψ(|x|); hence, by lemma A.1, ψ ∈ Xrad. It is obvious
that w �= ψ. Let T ≡ span〈w, ψ〉 be a two-dimensional subspace of Xrad. We take
R > 0 to be sufficiently large such that

αw + βψ = 0 ∈ BR(0), α, β ∈ R =⇒ α = β = 0.

Choose b ∈ C∞
0 ([0,∞); [0, 1]) such that b(r) = 1 for r ∈ [0, R], b(r) = 0 for r ∈

[R + 1,∞) and let

Kδ(r) ≡ 1 + δb(r), Vδ(r) = V (r) + δa(r) ≡ V (r) + δb(r)wp−1(r), r � 0,

with small δ > 0. Then, we see that w is also a solution of (1.5) for all δ � 0. We
define an energy functional Γδ on Xrad as follows:

Γδ(u) ≡ 1
2

∫
RN

|∇u|2 + (V (x) + δa(x))u2 dx − 1
p + 1

∫
RN

(1 + δb(x))up+1 dx.

Then, the unique solution w of (1.5) corresponds to a critical point of the functional
Γδ. It is standard to see that for small δ � 0, there exists a minimizer of Γδ over a
Nehari manifold M . Here M is defined by

M =
{

u ∈ Xrad \ {0}
∣∣∣∣
∫

RN

|∇u|2 + (V (x) + δa(x))u2 − (1 + δb(x))up+1 dx = 0
}

.

The minimizer is a solution of (1.5). Thus, by theorem 1.1, the minimizer should
be the solution w. Note that

Γδ(u) = 1
2

∫
RN

|∇u|2 + V (x)u2 dx − 1
p + 1

∫
RN

up+1 dx

+ δ

∫
RN

1
2a(x)u2 − 1

p + 1
b(x)up+1 dx

≡ Γ (u) + δG(u),

and that, for any ϕ ∈ Xrad,

Γ ′′
δ (w)(ϕ, ϕ) = Γ ′′(w)(ϕ, ϕ) + δ

∫
RN

a(x)ϕ2 − pb(x)wp−1ϕ2 dx

= Γ ′′(w)(ϕ, ϕ) + δ(1 − p)
∫

RN

a(x)ϕ2 dx.
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Thus, we see that, for any ϕ ∈ T \ {0}, we have Γ ′′
δ (w)(ϕ, ϕ) < 0. This contradicts

our assertion that w is a minimizer of Γδ over the Nehari manifold M .
This completes the proof of theorem 1.3.

4. Proof of corollary 1.5

It is obvious that the function V (x) = |x|m − µ with m > 0, λ1(−∆ + |x|m) > µ
satisfies (V1) and (V3). Thus, it suffices to show that V satisfies (V2).

Case 1 (N = 2). Since V is non-decreasing, the following proposition implies that
V (x) = |x|m − µ, m > 0, satisfies case (i) of (V2).

Proposition 4.1. Let N = 2. Assume that V ∈ C([0,∞)) ∩ C1((0,∞)) is non-
decreasing. Then V satisfies case (i) of (V2).

Proof. If G′(r∗) = 0 for some r∗ > 0, then

V (r∗) = −r∗V
′(r∗)
β

− L(β − 2)
r2
∗β

.

Noting that V ′(r) � 0 for all r > 0 and L < 0, we have

G(r∗) = rβ
∗

{
− r∗V

′(r∗)
β

− L(β − 2)
r2
∗β

}
+ Lrβ−2

∗

=
2Lrβ−2

∗ − rβ+1
∗ V ′(r∗)

β
< 0.

It follows that
{r > 0 | G′(r) = 0, G(r) � 0} = ∅,

namely, case (i) of (V2) holds.

Case 2 (N � 3). The following proposition implies that case (ii) of (V2) holds for
V (x) = |x|m − µ, m > 0.

Proposition 4.2. Let N � 3. Assume that V ∈ C([0,∞)) ∩ C2((0,∞)), and that
V and rV ′(r) are non-decreasing and limr→∞ V (r) = ∞. Then V satisfies case (ii)
of (V2).

Proof. Since limr→0 rV ′(r) ∈ [0,∞) and L > 0, limr→0 H(r) = −L(2 − β) < 0. By
the assumptions, a function

H(r)
r2 = βV (r) + rV ′(r) − L(2 − β)

r2

is strictly increasing. Note that limr→∞ H(r)/r2 = ∞ and limr→0 H(r)/r2 = −∞.
Thus, H has a unique zero. Note that

d
dr

(
H(r)
r2

)
= βV ′(r) + (rV ′)′(r) + 2

L(2 − β)
r3 .

Since β, V ′, (rV ′)′ � 0 and 2L(2 − β)/r3 > 0 for r > 0, it follows that

d
dr

(
H(r)
r2

)
> 0 for all r > 0.
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Then, for a unique zero r0 > 0 of H,

0 <
d
dr

(
H(r)
r2

)∣∣∣∣
r=r0

=
−2H(r0) + r0H

′(r0)
(r0)3

=
H ′(r0)
(r0)2

.

Thus, we see that H ′(r0) > 0. Hence, case (ii) of (V2) holds.
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Appendix A.

Lemma A.1. Let u be a solution of

urr +
N − 1

r
ur − V (r)u + K(r)up = 0, u(r) > 0 in r ∈ (0,∞), lim

r→∞
u(r) = 0,

where V ∈ C((0,∞)), lim infr→∞ V (r) ≡ c ∈ (0,∞] and K ∈ C((0,∞)), 0 � K �
c1 < ∞. Then, for any γ ∈ (0,

√
c), there exists a constant C > 0 such that

u(r) � C exp(−γr), r � 1.

Moreover, for sufficiently large r > 0, ur(r) < 0 and

lim
r→∞

rN−1ur(r) = lim inf
r→∞

rN−1V (r)u(r) = 0.

Proof. The decay property u(r) � C exp(−γr) comes from standard comparison
principles. Since limr→∞ u(r) = 0 and u(r) > 0 for r > 0, there exists r0 such that
V (r)u(r) − K(r)(u(r))p > 0 for r > r0. Note that

(rN−1ur)r = rN−1(V (r)u(r) − K(r)(u(r))p).

Then, integrating the above equation over [r, R], we see that

RN−1ur(R) − rN−1ur(r) =
∫ R

r

sN−1(V (s)u(s) − K(s)(u(s))p) ds. (A 1)

Suppose that for some r1 > r0, ur(r1) � 0. Since limr→∞ u(r) = 0 and u(r) > 0 for
r > 0, there exists r2 > r1 such that ur(r2) � 0. Then, from (A 1), we see that

0 � (r2)N−1ur(r2) − (r1)N−1ur(r1) =
∫ r2

r1

sN−1(V (s)u(s) − K(s)(u(s))p) ds > 0;

this is a contradiction. Thus, we see that ur(r) < 0 for r > r0. Then, since
(rN−1ur)r = rN−1(V (r)u(r) − K(r)(u(r))p) > 0 for r > r0, it follows that

lim
r→∞

rN−1ur(r) ≡ m
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exists and m � 0. Suppose that m < 0. Then, rN−1ur(r) < 1
2m for sufficiently

large r > 0. This contradicts the exponential decay of u; it thus follows that m = 0.
Then, it follows from (A 1) that

−rN−1ur =
∫ ∞

r

sN−1(V (s)u(s) − K(s)(u(s))p) ds < ∞.

This implies that lim infr→∞ rN−1V (r)u(r) = 0, which completes the proof.

Lemma A.2. Let u1, u2 be two distinct solutions of

urr +
N − 1

r
ur − V (r)u + K(r)f(u) = 0, u > 0 in (0,∞),

ur(0) = 0, lim
r→∞

u(r) = 0,

where V ∈ C([0,∞)), lim infr→∞ V (r) > 0, f ∈ C(R+, R+), f(s)/s is monotoni-
cally increasing, lims→0 f(s)/s = 0 and K ∈ C((0,∞)), 0 < c1 � K � c2 < ∞.

(i) If

0 < u1(r) < u2(r), 0 � r < σ,

u1(r) > u2(r) > 0, σ < r < ∞,

for some σ > 0, then
d
dr

(
u1

u2

)
> 0

for all r > 0.

(ii) If
u1(r) < u2(r), 0 � r < σ,

for some σ > 0, then
d
dr

(
u1

u2

)
> 0

for all r ∈ (0, σ).

Proof. This is an extension of [7, lemma 1.2].

d
dr

(
u1

u2

)
=

(rN−1u1,r)u2 − (rN−1u2,r)u1

rN−1u2
2

.

Let g = g(r) be the numerator of the right-hand side of the above equation. Then
limr→∞ g(r) = 0 = g(0) by lemma A.1. Using

gr(r) = (rN−1u1,r)ru2 − (rN−1u2,r)ru1

= rN−1{(V (r)u1 − K(r)f(u1))u2 − (V (r)u2 − K(r)f(u2))u1}

= rN−1K(r)u1u2

(
f(u2)

u2
− f(u1)

u1

)
,

we easily see the consequences in both cases (i) and (ii).

https://doi.org/10.1017/S0308210507000236 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210507000236


Uniqueness of standing waves for nonlinear Schrödinger equations 985

Lemma A.3. Let u1, u2 be two distinct solutions of

urr +
N − 1

r
ur − V (r)u + K(r)up = 0, u > 0 in (0,∞),

ur(0) = 0,

lim
r→∞

u(r) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 2)

where V ∈ C([0,∞)), lim infr→∞ V (r) > 0 and K ∈ C([0,∞)), 0 < c1 � K � c2 <
∞. Assume that u1(0) < u2(0). Then there exists a solution u3 of (A 2) such that

u3(0) � u2(0),
#{r > 0 | u1(r) = u3(r)} � 1.

Proof. This is an extension of [7, proposition 1.1].
Let u(r; α), α > 0 be the solution of an initial-value problem

urr +
N − 1

r
ur − V (r)u + K(r)up = 0 in r ∈ (0,∞), u(0) = α, ur(0) = 0.

Let n(α) = #{r > 0 | u1(r) = u(r; α)} for α � u2(0). We have only to consider the
case n(u2(0)) � 2. Then, for α > u2(0) sufficiently close to u2(0), n(α) � 2. Let

α∗ = sup{α > u2(0) | n(α̃) � 2 for all α̃ ∈ (u2(0), α)}.

For α ∈ (u2(0), α∗), let σ1(α) < σ2(α) be the first and second intersection points of
u1 and u(· , α). We claim that u(· , α) > 0 in (0, σ2(α)) for α ∈ (u2(0), α∗). Moreover,
we claim that α∗ < ∞.

The first claim is proved by the uniqueness of the initial-value problem of ODE.
The second claim is proved by the first claim and a rescaling argument. Indeed,
assume by contradiction that α∗ = ∞. Then, for all large α, 0 < u1 < u(· ; α) in
[0, σ1(α)), 0 < u(· ; α) < u1 in (σ1(α), σ2(α)) and u(σ2(α); α) = u1(σ2(α)). On the
other hand, v(r; α) = α−1u(r/α(p−1)/2; α) solves

vrr +
N − 1

r
vr − 1

αp−1 V

(
r

α(p−1)/2

)
v + K

(
r

α(p−1)/2

)
vp = 0 in r ∈ (0,∞),

v(0) = 1, vr(0) = 0.

As α → ∞, v(r; α) converges in C1
loc([0,∞)) to the solution w of

wrr +
N − 1

r
wr + K(0)wp = 0 in r ∈ (0,∞),

w(0) = 1, wr(0) = 0.

It follows that if α is large, there exists some r ∈ (σ1(α), σ2(α)) such that u(r; α) =
0. This is a contradiction and shows that α∗ < ∞.

Now we observe that one of the following holds:

(i) limα↗α∗ σ1(α) = limα↗α∗ σ2(α) = ∞, or

(ii) limα↗α∗ σ1(α) < ∞, limα↗α∗ σ2(α) = ∞.
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Moreover, n(α∗) = 0 in case (i), n(α∗) = 1 in case (ii). Finally, from lemma A.2,
we see that u(· , α∗) is a solution of (A 2).

Lemma A.4 (Kabeya and Tanaka [7, lemma 2.3]). Let w be a solution of

urr +
N − 1

r
ur − V (r)u + up = 0, u > 0, r ∈ (0,∞),

ur(0) = 0, lim
r→∞

u(r) = 0,

where V ∈ C([0,∞)), lim infr→∞ V (r) > 0 and V (r1) � V (r2) for r1 � r2. Then
w′(r) < 0 for r > 0.

Proof. This comes from the standard moving-plane method (see [5]).

Lemma A.5. Assume V (x) = V (|x|), V (r) ∈ C1((0,∞)) ∩ C([0,∞)), and V ′ � 0,
V ′ �≡ 0. Let w be a solution of (1.5) and let ψ ∈ H1 satisfy

∆ψ − V (r)ψ + pwp−1ψ = 0.

Then ψ(x) = ψ(|x|).

Proof. Suppose that ψ is not radially symmetric. Then, we may assume that

ψ(x1, x2, . . . , xN ) �= ψ(−x1, x2, . . . , xN ).

Define
φ(x1, x2, . . . , xN ) = ψ(x1, x2, . . . , xN ) − ψ(−x1, x2, . . . , xN ).

Let Ω be a connected component of {x = (x1, x2, . . . , xN ) | φ(x) > 0, x1 > 0}
and Ωε ≡ {x ∈ Ω | φ(x) > ε}. By Sard’s theorem, there exists εm > 0 with
limm→∞ εm = 0 such that {εm}∞

m=1 are regular values of φ. Note that

∆φ − V (r)φ + pwp−1φ = 0

and

∆
∂w

∂x1
− V (r)

∂w

∂x1
+ pwp−1 ∂w

∂x1
=

∂V

∂x1
w. (A 3)

Multiplying both sides of (A 3) by φ and integrating by parts on Ωεm , we see that∫
∂Ωεm

∂2w

∂x1∂ν
φ −

∫
∂Ωεm

∂φ

∂ν

∂w

∂x1
=

∫
Ωεm

∂V

∂x1
wφ,

where ν is an outward unit vector normal to ∂Ωεm . Note that

∂w

∂x1
< 0 for x1 > 0.

Taking m → ∞, we deduce that ∂Ω = {(x1, x2, . . . , xN ) | x1 = 0}. This again
implies that ∫

{x|x1>0}

∂V

∂x1
wφ = 0.
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This is a contradiction since

∂V

∂x1
= Vr

x1

r
� 0 for x1 > 0.

This completes the proof.
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