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For m >0 and p € (1,(IN +2)/(IN — 2)), we show the uniqueness and a linearized
non-degeneracy of solutions for the following problem:

Au—|z|"u+uP =0, w>0inRY and lim w(z) =0.

|| —o0

1. Introduction and statement of main results

We are interested in the uniqueness and linearized non-degeneracy of solutions
satisfying

Au—|z|™u+uP =0, uw>0inRY and lim wu(x)=0. (1.1)

Throughout this paper, we assume that N > 2, m > 0and p € (1,(N+2)/(N —2))
for N > 3 and p € (1,00) for N = 2. Equation (1.1) comes from the study of
standing waves for the nonlinear Schrodinger equation

iy = —3R2AY + V(z)y — [P~ 1y in RY xR, (1.2)

where £ is the Planck constant and i is the imaginary unit. A solution ¢ (x,t) of (1.2)
is called a standing wave if

E
Y(x,t) = exp ( - iht)u(x)
for some real-valued function w. Then the function u satisfies
IRAu— (V(z) — E)u+u? =0 inRY.

We are interested in semi-classical standing waves. Thus, shifting F to 0 without
loss of generality, we consider

E2Au—~V(z)u+u? =0, u>0inRY and lim wu(x)=0 (1.3)

|z]—o00
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for sufficiently small e > 0. The case inf,cgy V(z) > 0 has been studied exten-
sively by many authors (see [2—4,10] and references therein). On the other hand,
for the case inf, cpy V(z) = 0 some solutions contrasting with those for the case
inf,cgn V() > 0 have been obtained in [1-3]. In fact, for each isolated connected
component L of {z € RN | V(z) = 0}, there exists a solution u. of (1.3) such that

lim [Juelloo = 0, lim inf e =2/~ ||y || oo > 0
e—0 e—0
and that, for each § > 0, there exist some C, ¢ > 0 satisfying

ue(z) < Cexp ( - gdist(x, L)) if dist(z, L) > 4.

In particular, if L = {zo} and V(z) = |z — x|™ for small |z — x|,

= /(0= D)(m/(m42))y_(2/(m+2) 4 g0

converges to a least energy solution of (1.1) as € — 0. Furthermore, in [1] we glue
together u. with other semi-classical standing waves of different energy scales. For
this, we assume the uniqueness and linearized non-degeneracy of solutions of (1.1).
For m = 2, the uniqueness of solutions of (1.1) was proved in [6]. In this paper,
we will prove the uniqueness and linearized non-degeneracy of solutions of (1.1) for
any m > 0.

In addition to the uniqueness of positive solutions, we are interested in a linearized
non-degeneracy of the unique positive solution. To see a linearized non-degeneracy
of the unique positive solution, we consider the uniqueness of solutions for the
following problem, which is more general than (1.1):

Au— (V(z)+da(z))u+ (1+0b(x))u? =0, u>0in RY, ‘ llim u(z) =0. (1.4)

xT|—0o0
Here, 6 > 0 and two functions a, b are radially symmetric functions with compact
supports. To see a linearized non-degeneracy of the unique positive solution, we
will require a = bug_l, where ug is a solution of (1.4) for 6 = 0. Then the ug is
also a solution of (1.4) for 6 > 0. In view of the bifurcation theory, the uniqueness
of solutions of (1.4) for 6 > 0 may imply a linearized non-degeneracy of (1.4) for
0 = 0. We will show the linearized non-degeneracy by a variational argument.
To state our main results, we define

_2N-Dp-1)
ﬁ—T €(0,2),
I— 2(N —1D){(N —2)p+ N — 4}
— (p—|—3)2 )

G(r) = V(r)rP + Lr— =P,
H(r)=r37PG (r) = Br2v(r) + r*V'(r) — L(2 = 3).

We note that L < 0 for N = 2 and L > 0 for N > 3. We make the following
conditions on V.

(V0) a and b are radially symmetric non-negative functions with compact supports
a€C? beC? and b =1 in a neighbourhood of 0.
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(V1) V(z) = V(|z]), V € C([0,00)) N C*((0,00)), liminf|,_ o V(x) > 0 and
A(—=A 4+ V(x)) > 0, where A\;(—A 4 V(x)) is the minimum value of the
spectrum of —A + V().

(V2) one of the following hold:

(i) {r>0[G(r) =0, G(r) = 0} = 0;

(i) inf,so H(r) > 0 for N = 2, and H has the unique simple zero in (0, c0)
and limsup,_,, H(r) <0 for N > 3.

(V3) V is non-decreasing and non-constant on (0, 00).

A radial solution u(x) = u(r), r = |z| of (1.4) solves

N-1

r

Upy +

ur — (V(r) + da(r))u+ (1 4+ 6b(r))uP =0, w >0 in (0,00),
u,(0) = 0, (1.5)

THEOREM 1.1. Suppose that (V0), (V1) and (V2) hold. Then, for small § > 0,
(1.5) has a unique solution.

DEFINITION 1.2. A solution w for § = 0 of (1.4) is non-degenerate in H C HV2(RY)
if ¢ = 0 is the unique solution in H of A¢ — V(z)¢ + pwP~1¢ = 0.

THEOREM 1.3. Suppose that (V1), (V2) and (V3) hold. Then, for 6 =0, (1.4) has
a unique solution which is non-degenerate in H>2(RY).

REMARK 1.4. In fact, for § = 0, we can prove the uniqueness of radial solutions
of (1.4) under (V1) and the following conditions weaker than (V2). One of the
following holds:

(i) {r>0]|G(r)=0, G(r) >0} =0;

(ii) H is non-negative for all » > 0 and H # 0 if N = 2, and the zero set of H(r)
is connected in (0, 00) and limsup,_,, H(r) < 0 for N > 3.

We will give sufficient conditions for (V2) in §4 (see propositions 4.1 and 4.2).
In particular, we have the following.

COROLLARY 1.5. Let V(x) = |z|™ — p, m > 0. Assume that A\ (—=A + |2|™) > pu.
Then, for § =0, (1.4) has a unique solution which is non-degenerate in H2(RY).

REMARK 1.6. Let A(m, N) = A1 (—A + |z|™). Then one can show that
lim A(m,N) =1
m—0

and that lim,, , A(m, N) exists and equals the square of the first zero of the Bessel
function of order 1(N — 2). It is also known that (2, N) = N.
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2. Proof of theorem 1.1

Under condition (V1), there exists a solution of (1.5) for small § > 0. To prove the
uniqueness, we follow the approach used in [7,8]. We use an argument similar to
the proof of [7, theorem 0.1] for N = 2.

Let u be a solution of (1.5). For r > 0, let

Ks(r)=1+4b(r) and Vs(r) =V (r)+ da(r).

Note that N1
W4+ S — Vy(r)u+ Ks(r)uP = 0. (2.1)

r

We define
a:%£3Q As(r) = oK/ P (), u(r) = As(rju(r).
Then v satisfies
B;(r)o" + 3 Bs(r)v’ — Gs(r)v + P =0,

where

Bs(r) = K5 /),

L  (N-L(p-1) Kr)
=B —
Gs(r) s(r) | Vs(r) + ) + (p + 3)2 rKs(r)
prd (Kpr) 1 KL)
(p+3)% K2(r)  p+3Ks(r)|

Let
1
Es(riv) = %Bé(r)(vl)Q - %Ga(T)WQ + ?Up+1~ (2.2)
b

Then it follows that

Ej(r;v) = —3G5(r)v?. (2.3)
Note that K§(r) = 0 in a neighbourhood of {0, 00}, and that Go(r) = G(r). Since

4(N -1
20+ -2 = A P
—C e (=1,0 for N =2,
p+3 ( ) o

it follows that

liHlO Gis (T),U2 _ liH%J K(S—4/(P+3)(Lr2a+ﬁ72u2 (T) + Vﬁ(r)r2a+ﬁu2 (7’))
r— r—

— N=2
=% ’ (2.4)
0, N > 3.
Hence, we see that
oo, N=2
lim FE = ’ ’ 2.5
lim Ei5(r) {0’ N3 (2.5)
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Note that
2(N-1)(p+1)
20+ 0= ———F—= < 2(N —1).
a2 (v -1)
Then, from lemma A.1, we see that
limsup E5(r) = 0. (2.6)
r—00
We now claim that if § > 0 is small,
Es(r) >0 forall r >0 and Es # 0. (2.7)

Case (i) of (V2)
By (2.2) and (2.3), it follows that

{r>0|E;(r)=0, Es(r) <0} C{r>0]|Gjs5(r)=0, Gs(r) >0} =2

Note that Gs(r) = G(r) for large r > 0. Suppose that there exists rs € Z > 0
for small 6 > 0. Then, from (V2) case (i), we see that {rs} is bounded. Then we
may assume that rs — r9 = 0 as § — 0. Then, G’(r9) = 0 and G(rg) > 0. Since
lim,_,o |G(r)| = o0, it follows that ro > 0. This is a contradiction. Thus, by (2.3),
(2.5) and (2.6), we have Es > 0 for all » > 0 if § > 0 is small as claimed.

Assume by contradiction that Es = 0 for small § > 0. Then Gy is constant. This
contradicts lim,_,o |G5(r)| = co. This proves (2.7) when (V2) case (i) holds.

Case (ii) of (V2)

Define Hg(r) = r3~ BG() Then, if Hs £ 0, E5 £ 0.

Let N = 2. Then, by (2.3), E5(r) < 0if 6 > 0 is small. Hence, it follows from (2.5)
and (2.6) that Es(r) > 0.

Let N > 3 and R € (0,00) be the unique zero of H. From the fact that
limsup,_,o H(r) < 0, we see that H (and hence G’) is negative in (0, R) and pos-
itive in (R, 00). Then, from (V0), we deduce that, for small § > 0, there exists
Rs > 0 such that lims_,qg Rs = R and Rs is a unique simple zero of Hs. Moreover,
lim sup,._, Hs(r) < 0 for small § > 0. By (2.3), Es is non-decreasing in (0, Rs) and
non-increasing in (Rs,00). Then, from (2.5) and (2.6), it follows that Es = 0 for
small 0 > 0. This proves (2.7) when case (ii) of (V2) holds.

Let us assume by contradiction that (2.1) has another positive solution @. We
may assume that 4(0) > «(0). By lemma A.3, we can choose a @ which intersects
u at most once. Then, by lemma A.2,

% (ZE;;) <0, r>0. (2.8)

Let o(r) = As(r)a(r), Es(r) = Es(r;v), Es(r) = Es(r; %) and

Fy(r) = Bx(r) - (ﬁ)QE(;(r).

<
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It then follows from (2.8) that

- (Y d (oY
ro == (5)m-{5(5) 1
oY [d (oY
__lgt ;va2<v) _ {dT<U> }E5
d (oY
== > 0. .
(B

This also implies that
oo (FOY (3O
o(r) v(0)
for all » > 0. Then it follows that

liminf F5(r) < 0. (2.10)

r—00

On the other hand, note that

~\2 ~\2
Fs(r) = A5A335{aa/ _ (“) uu’} + §A§Bg{(a’)2 - (“) (u’)2}
u u
i — (g ()
p+1 o 0 U
and that
As(r) = (14 0)Y @) Bs(r) = (14 8)~4®+348 for small r > 0,
AN — 1)
p+3
W (0) =@ (0) =0, 0<u(0)<a(0).

B+2a—1=2N—3— >N -2,

Thus, we see that F5(r) — 0 as 7 — 0. Then, from (2.9), (2.10), we see that Fs = 0.
By (2.8) and (2.9), it follows that E5 = 0, which is a contradiction. This completes
the proof of theorem 1.1.

3. Proof of theorem 1.3
We define

1/2
ol = ([, 190+ viatas)

and let X and X,aq be the completion of C§°(RY) and {¢ € C§°(RY)|¢(x) = ¢(|z|)}
with respect to || - ||, respectively. We note that

182> M(—A+V(z) [ ¢*da
]RN

and X C HY2(RY).
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By the condition (V3), any solution of (1.4) with § = 0 is radially symmet-
ric (see [5,9]). Thus, it follows from theorem 1.1 that (1.4) with 6 = 0 has a
unique solution. Let w be the unique solution of (1.5) with § = 0. Multiplying
—(rN"tw,) . + 7N W (r)w = NV ~lwP by w and integrating over (0,7) yields

=) +

0

T T

((w')*(s) + V(s)w?(s))sV tds = /0 w1 (s)sN 1 ds.

Then we see that w € X,,q by lemma A.1. We shall prove that w is non-degenerate
in HY2(RY). Assume by contradiction that there exists 1 € HL2(RY) \ {0} such
that

AY = V(@) +pwP~lp =0, ¢ #£0.

Then, by lemma A.5, ¥(z) = ¥(]z|); hence, by lemma A.1, 1) € X;aq. It is obvious
that w # ¢. Let T' = span({w, ¢) be a two-dimensional subspace of X,,q. We take
R > 0 to be sufficiently large such that

aw+ By =0¢€ Bg(0), a,feR = a=p=0.

Choose b € C§°([0,00);[0,1]) such that b(r) = 1 for r € [0, R], b(r) = 0 for r €
[R+1,00) and let

Ks(r)=146b(r), Vs(r)=V(r)+da(r) =V (r) + db(r)wP " (r), r=>0,
0

with small § > 0. Then, we see that w is also a solution of (1.5) for all § > 0. We
define an energy functional I'; on X;,q as follows:

Iyw) = 5 /RN |Vul2+<V<x>+6a<x>>u2dx—Z% [+ db(a)r d

Then, the unique solution w of (1.5) corresponds to a critical point of the functional
Is. It is standard to see that for small § > 0, there exists a minimizer of I's over a
Nehari manifold M. Here M is defined by

M= {u € Xpaa \ {0} ’ /RN IVul? + (V(z) + da(z))u? — (1 + 5b(z))uP+! dz = 0}.

The minimizer is a solution of (1.5). Thus, by theorem 1.1, the minimizer should
be the solution w. Note that

_ 1 2 2. 1 pt+1
Is(u) = Q/RN |Vu|* + V(z)u*dx pi—I—l/]szu dz

1
+0 ta(z)u® — ——b(z)uPT! da

= I'(u) + 3G (),
and that, for any ¢ € X;aq,

I ()lp) = I (W) 9) +5 [ ala)e? = pb(ayur ' do

= (). ) +8(1 - ) / a(z)¢?dr.
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Thus, we see that, for any ¢ € T\ {0}, we have I'{(w)(g, ¢) < 0. This contradicts
our assertion that w is a minimizer of I's over the Nehari manifold M.
This completes the proof of theorem 1.3.

4. Proof of corollary 1.5

It is obvious that the function V(x) = |2|™ — p with m > 0, Ay (=A + |z|™) >
satisfies (V1) and (V3). Thus, it suffices to show that V satisfies (V2).

CaAseE 1 (N =2). Since V is non-decreasing, the following proposition implies that
V(z) = |z|™ — u, m > 0, satisfies case (i) of (V2).

PROPOSITION 4.1. Let N = 2. Assume that V € C([0,00)) N C1((0,00)) is non-
decreasing. Then V satisfies case (i) of (V2).
Proof. If G'(r,) = 0 for some r, > 0, then
V(1 L(B—-2
Vi = V) LB-2)
B rip
Noting that V’'(r) > 0 for all » > 0 and L < 0, we have

G(r.) = Tf{ _ Vi) L6 2)} + Lrf2

B r23
9, ,572 . f+1 "(r,
_ 2Lr ; V' (ry) <0

It follows that

{r>0]G'(r)=0, G(r) >0} =0,
namely, case (i) of (V2) holds. O
CASE 2 (N > 3). The following proposition implies that case (ii) of (V2) holds for
V(z) = |z|™ — p, m > 0.

PROPOSITION 4.2. Let N > 3. Assume that V € C([0,00)) N C?((0,00)), and that
V and rV'(r) are non-decreasing and lim,_,o, V(r) = co. Then V satisfies case (ii)

of (V2).

Proof. Since lim,_,orV’(r) € [0,00) and L > 0, lim,_,o H(r) = —L(2 — ) < 0. By
the assumptions, a function

H{(r) L(2-p)
5 = BV (r)+rV'(r) — —
is strictly increasing. Note that lim, ., H(r)/r? = oo and lim,_,o H(r)/r? = —oo0.

Thus, H has a unique zero. Note that

d (H(r)

dr\ 2
Since 3, V', (rV’)’ > 0 and 2L(2 — 8)/r® > 0 for r > 0, it follows that
d (H(r)

dr\ r2

) = V() + VY () + 222D

)>O for all » > 0.
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Then, for a unique zero ro > 0 of H,
o 72H(T0) + ToH/(T’Q) o H’(To)

0= §<H()> . (ro)? " 0

Thus, we see that H'(r¢) > 0. Hence, case (ii) of (V2) holds. O
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Appendix A.
LEMMA A.1. Let u be a solution of

N -1

Upp + u —Vr)u+ K(r)u? =0, u(r)>0inre (0,00), lim u(r)=0,

T—>00

where V € C((0,00)), liminf, .., V(r) = c € (0,00] and K € C((0,00)), 0 < K <
c1 < 0o. Then, for any v € (0,+/c), there exists a constant C > 0 such that

u(r) < Cexp(—r), r>=1.
Moreover, for sufficiently large v > 0, u,.(r) <0 and

. N—1 I TI N—-1 _
Jim () = i r TV (ur) = 0.

Proof. The decay property u(r) < Cexp(—~yr) comes from standard comparison
principles. Since lim, o u(r) = 0 and u(r) > 0 for » > 0, there exists ro such that
V(r)u(r) — K(r)(u(r))? > 0 for r > ry. Note that

(" ) = VTV (r)u(r) — K () (u(r))?).

Then, integrating the above equation over [r, R], we see that
R
RY N (B) =¥ ) = [V YV (suls) - K w(s)) s, (A1)

Suppose that for some r1 > rg, u,(r1) = 0. Since lim, o, u(r) = 0 and u(r) > 0 for
r > 0, there exists ro > r1 such that u,(r2) < 0. Then, from (A1), we see that

0> (r2)M tup(r2) = (r))V () = /TQ sV (V(s)uls) — K(s)(u(s))?) ds > 0;

this is a contradiction. Thus, we see that u,.(r) < 0 for r > rg. Then, since
(rN=Yu,), = rNH WV (r)u(r) — K(r)(u(r))P) > 0 for 7 > rg, it follows that

lim 7V, (r) =m

T—00
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N-1 1

exists and m < 0. Suppose that m < 0. Then, r u,(r) < gm for sufficiently
large r > 0. This contradicts the exponential decay of w; it thus follows that m = 0.
Then, it follows from (A1) that

—rNly, = /OO sNTHV (s)u(s) — K(s)(u(s))P)ds < oc.

This implies that liminf, . ¥~V (r)u(r) = 0, which completes the proof. O

LEMMA A.2. Let uy,us be two distinct solutions of

N -1
e+ X Vs K =0, >0 in (0.00),
u,(0) =0, Tli)nolo u(r) =0,

where V€ C([0,00)), liminf, oo V(r) > 0, f € CR4,Ry), f(s)/s is monotoni-
cally increasing, limgs_o f(s)/s =0 and K € C((0,0)), 0 < ¢; < K < ¢ < 00.

(i) 1f

0 <wu(r) < wus(r), 0<r<o,
up(r) > ua(r) >0, o <r< oo,

for some o > 0, then

for all r > 0.

(i) If

for some o > 0, then

for allr € (0,0).
Proof. This is an extension of [7, lemma 1.2].

d fur) (TN’luLT)uQ — (erluz’r)ul
dr\us ) rN=1y3 ’

Let g = g(r) be the numerator of the right-hand side of the above equation. Then

lim,_, g(r) = 0 = g(0) by lemma A.1. Using
gr(r) = (N " tunp)pue — PV g )
= NV (r)uy = K (r) f(ur))uz — (V(r)uz — K(r) f(uz))ur}
_ ..N-1 f(u2) _ f(u1)
=r" T K(r)uius (uz T )
we easily see the consequences in both cases (i) and (ii). O
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LEMMA A.3. Let uy, us be two distinct solutions of

N -1

ur — V(r)u+ K(r)u?

u,(0)

i ulr)

where V € C([0,0)), liminf, o, V(r) >0 and K € C([0,00)),0<¢; K K < 2 <
0o. Assume that uy(0) < ug(0). Then there exists a solution ug of (A 2) such that

0, u>0in(0,00),
0, (A2)
0

Uy +

)

u3(0) = u2(0),
#{r>0]ui(r) =us(r)} < 1.

Proof. This is an extension of [7, proposition 1.1].
Let u(r; ), @ > 0 be the solution of an initial-value problem

N -1

Upy + up = V(r)u+ K(r)u? =0inr € (0,00), u(0) =, u,(0)=0.
Let n(a) = #{r > 0 | u1(r) = u(r; @)} for a > u2(0). We have only to consider the
case n(uz(0)) > 2. Then, for a > u2(0) sufficiently close to u2(0), n(a) > 2. Let

a, = sup{a > uz(0) | n(@) > 2 for all & € (uz(0),a)}.

For o € (u2(0), i), let 01 (a) < o3() be the first and second intersection points of
uy and u(-, ). We claim that u(-, &) > 01in (0, 02(a)) for @ € (u2(0), o). Moreover,
we claim that a, < oo.

The first claim is proved by the uniqueness of the initial-value problem of ODE.
The second claim is proved by the first claim and a rescaling argument. Indeed,
assume by contradiction that «, = oo. Then, for all large o, 0 < u; < u(-; @) in
[0,01()), 0 < u(-;0) < uy in (01(@),02()) and u(o2(a); &) = ui(o2(a)). On the
other hand, v(r;a) = a~tu(r/aP=D/2; a) solves

N -1 1 r r
P _ ;
Upp + " U — — 1V< o 1)/2)U+K( @ 1)/2>v =0 inr e (0,00),

v(0) =1, ©,(0) = 0.

As o — o0, v(r; ) converges in CL _([0,00)) to the solution w of

N-1
Wy + ——w, + K(0)wP =0 in r € (0, 00),
T
w(0) =1, w,-(0)=0.

Tt follows that if « is large, there exists some r € (o1 (), o2 () such that u(r;a) =
0. This is a contradiction and shows that a, < co.
Now we observe that one of the following holds:

i) limg nq, 01(@) = limy 7q, 02(a) = o0, or
e /‘

(ii) limg rq, 01(a) < 00, limg rq, 02(a) = co.
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Moreover, n(a.) = 0 in case (i), n(ax) = 1 in case (ii). Finally, from lemma A.2,
we see that u(-, @) is a solution of (A 2). O

LEMMA A4 (Kabeya and Tanaka [7, lemma 2.3]). Let w be a solution of

N -1
Upp + u —V(r)u+u?P =0, u>0, re(0,00),
u,(0) =0, Thj& u(r) =0,

where V € C([0,00)), liminf, ,o V(r) > 0 and V(r1) < V(re) for r1 < ro. Then
w'(r) <0 forr > 0.

Proof. This comes from the standard moving-plane method (see [5]). O

LEMMA A.5. Assume V(z) = V(|z]), V(r) € C*((0,00)) N C(]0,00)), and V' >0,
V' #0. Let w be a solution of (1.5) and let 1) € H* satisfy

Avp =V (r)ap 4+ pwP~tep = 0.
Then (x) = ¥(|z|).

Proof. Suppose that v is not radially symmetric. Then, we may assume that

w($17$27~-~7$N) #¢(—$17$27~-~,$N)~
Define
d(x1,29,...,xN) = U(x1,29,...,2N) — Y(—21,22,...,TN).
Let 2 be a connected component of {z = (z1,22,...,zn) | &(x) > 0,21 > 0}

and 2. = {x € 2 | ¢(z) > €}. By Sard’s theorem, there exists €, > 0 with
lim;;, 00 € = 0 such that {e,, }5°_; are regular values of ¢. Note that

Ap—V(r)é+ pwP~lp =0

and 0 0 0 0
w w w \%
A— —V(r)— S A
8])1 V(T) 8])1 +pw 8331 8a:1w

Multiplying both sides of (A 3) by ¢ and integrating by parts on {2, , we see that

[Ty G 3 T L
8., (91'181/ a0, ov 81’1 o 2, 8x1 ’

where v is an outward unit vector normal to {2 ,. Note that

O 0 gy > 0.
81'1

(A3)

Taking m — oo, we deduce that 02 = {(z1,22,...,2n) | 1 = 0}. This again

implies that
aVv
/ —w¢p = 0.
{alz1>0} 071
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This is a contradiction since

a—V:VTﬂzo for z1 > 0.
0x1 r
This completes the proof. O
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