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Abstract

Stimulated Brillouin backscattering of an intense hollow Gaussian laser beam (HGLB) from collisionless plasma has been
investigated under relativistic–ponderomotive regime. The main feature of considered hollow Gaussian laser beam is
having the same power at different beam orders with null intensity at the center. Backscattered radiation is generated
due to nonlinear interaction between main beam (pump beam) with pre-excited ion acoustic wave (IAW). Modified
coupled equations has been set up for the beam width parameters of the main beam, ion-acoustic wave, back-scattered
wave, and back reflectivity of stimulated Brillouin scattering (SBS) with the help of the Wentzel–Kramers–Brillouin
approximation, fluid equations and paraxial theory approach. These coupled equations are solved analytically and
numerically to study the laser intensity in the plasma, the variation of amplitude of the excited IAW and back
reflectivity of SBS. The back reflectivity of SBS is found to be highly sensitive to the order of the HGLB, intensity of
main laser beam, and plasma density for typical laser and plasma parameters. The focusing of main laser beam (hollow
Gaussian) and IAW significantly affected the back reflectivity of SBS. The results show that the self-focusing and back
reflectivity is enhanced for higher order modes of HGLB.

Keywords: Hollow Gaussian laser beam; Ion acoustic wave; Relativistic–ponderomotive nonlinearity; Self-focusing;
Stimulated Brillouin backscattering

1. INTRODUCTION

Stimulated Brillouin back scattering (SBBS) of intense laser
radiation in plasma is one of the most important parametric
process, which describes the decay of the incident high
power laser radiation into the scattered electromagnetic
wave and an ion acoustic wave (IAW) (Kruer, 1988; Lindl
et al., 2004). This instability is responsible for depleting
and redirecting the energy flux of an incident laser wave
(pump). SBBS have a great importance for inertial confine-
ment fusion experiments (Kruer, 1995; Macgowan et al.,
1996), because it occurs up to the critical density layer of
the plasma (in the presence of ion density fluctuations) and
degrades the efficiency of laser absorption in the target by re-
flecting a fraction of the incident energy flux. This instability
also produces energetic electrons, which can preheat the

target and destroys the high degree of symmetry necessary
for efficient compression of the capsule (Lindl, 1995).
Under fusion-relevant conditions, the energy loss by the
backward SBS reflectivity (ratio of the backscattered
energy on the laser beam energy) has been found to be of
the order of 30%, which eventually reducing the radiation
temperature in indirect drive hohlraum target (Fernández
et al., 2006; Kline et al., 2006). Therefore, the suppression
of SBS is of crucial importance in laser-driven inertial con-
finement fusion.

Stimulated Brillouin back scattering in laser–plasma inter-
action has been extensively studied in the past four decades
when it first came to the fore in the context of fast electron
generation and target preheat in laser confinement fusion.
The back reflectivity of SBS is significantly affected by self-
focusing (filamentation instability) of intense laser radiation
and IAW in plasma (Amin et al., 1993; Eliseev et al., 1995;
Giulietti et al., 1999; Masson-Laborde et al., 2014; Purohit &
Rawat, 2015). The filamentation of laser beam increases the
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local laser intensity (high-intensity filaments) and induces
the SBBS in the plasma. Giulietti et al. (1999) have studied
SBBS from underdense expanding plasma in a regime of
strong filamentation and measured an extremely low back-
scattering reflectivity (of the order of 10−4). Sharma et al.
(2009) investigated the effect of laser beam filamentation
on the localization of IAW and on stimulated Brillouin scat-
tering (SBS) process and observed that the intensity of IAW
reduced due to enhanced Landau damping of IAW; therefore
the back reflectivity of the SBS process is suppressed by a
factor of approximately 10%. The influence of spatial and
temporal laser beam smoothing on SBS in the presence of
the filamentation instability have been investigated by
Berger et al. (1995). The effect of diffraction on SBS from
a single laser hot spot have been studied by Eliseev et al.
(1996) and found that the SBS reflectivity from a single
laser hot spot is much lower than that predicted by a
simple three wave coupling model because of the diffraction
of the scattered light from the spatially localized IAW. The
growth of SBS process in plasma in various conditions
such as laser smoothing and focusing, varying laser intensi-
ties, and plasma densities have been experimentally investi-
gated (Fuchs et al., 2000). The dependence of the SBS
reflectivity on both the focusing aperture and the incident
laser intensity (Baton et al., 1998) has been experimentally
investigated in plasma. Sodha et al. (1979) have studies the-
oretically SBS of a high-power Gaussian laser beam from a
hot collisionless plasma and have shown that back reflectiv-
ity of SBS enhanced due to self-focusing of laser beam. An
experimental and theoretical study of SBS using a laser pump
with a duration of 8–10 ps in a laser-produced plasma has
been presented by Baldis et al. (1993) and shown that the re-
flectivity is somewhat lesser than the theoretical prediction.
Masson-Laborde et al. (2014) have observed the reduction
in SBS reflectivity in laser–plasma experiments carried out
by self-focusing for a single laser speckle interacting with
an expanding plasma. Niknam et al. (2013) have investigated
self-focusing and stimulated Brillouin back-scattering of a
long intense laser pulse in a finite-temperature relativistic
plasma considering the effects of relativistic mass and pon-
deromotive nonlinearities. Singh and Walia (2012) have
studied the effect of self-focusing of elliptical laser beam
on the Brillouin scattering process in the collisionless plasma
and shows that the focusing of main beam and IAWenhanced
the SBS back reflectivity. Recently, Purohit & Rawat (2015)
investigated the excitation of IAW and SBBS of a ring
rippled laser beam in collisionless plasma at relativistic
powers, when both relativistic and ponderomotive nonlinear-
ities are operative and observed that the back reflectivity of
SBS is enhanced due to the strong coupling between ring-
rippled laser beam and the excited IAW. Apart of these stud-
ies, Vyas et al. (2014) have reported the interplay between
stimulated Raman scattering (SRS) and SBS along with the
combined effect of relativistic and ponderomotive nonlinear-
ities at relativistic laser powers within the paraxial ray ap-
proximation and found that the back reflectivity of both

SRS and SBS enhanced. The other important studies of
SBS process in laser–plasma interaction are found in the lit-
erature (Baton et al., 1994; Asshar-Rad et al., 1996; Labaune
et al., 1997, 2007; Mahmoud et al., 1999; Mahmoud &
Sharma, 2001; Singh & Walia, 2013).
It has been realized from the above studies of SBS that

there is a poor agreement between theoretical and experimen-
tal results. This mismatch between the results may be due the
idealized theoretical assumptions made in the theory, that is,
the transverse intensity profiles of the beam have either uni-
form orGaussian profilewith TEM00mode, but in experiment
the pump beam can be superposition of the higher-order
modes. Therefore, the theoretical analysis of higher-order
mode of the waves is necessary for better insight of the SBS
process. The back reflectivities of scattering instabilities
(SRS and SBS) depend on the intensity profile of laser
beam. Most of the earlier investigations have been made on
SBBS process by using diversified laser beam profiles, like
Gaussian, super Gaussian, ring rippled, and elliptical profiles
in the presence of ponderomotive or relativistic nonlinearities.
In particular, the hollow Gaussian intensity profile of a laser
beam (Cai et al., 2003; Misra & Mishra, 2009; Sodha et al.,
2009; Sharma et al., 2013) is a subject of considerable interest
due to its high utility in various fields (Yin et al., 1998; Xu
et al., 2002; York et al., 2008), because it can be used as an
effective tool to guide, focus, and trap neutral atoms. The
hollow intensity profile of Gaussian laser beam can be consid-
ered as an optical beam having null intensity at center with the
same power at different beam orders, which can be produced
by numerous experimental techniques (Herman & Wiggins,
1991; Wang & Littman, 1993; Lee et al., 1994). When an in-
tense laser beam propagates through the collisionless plasma,
both relativistic and ponderomotive nonlinearities are simulta-
neously takes place. These nonlinearities depend on the time
scale of laser pulse (Brandi et al., 1993a, b) and modify the
plasma refractive index by different mechanisms, which
lead to the filamentation of the laser beam. Relativistic nonlin-
earity is set up due to relativistic increment in the electron
mass, which increases the refractive index by decreasing the
plasma frequency at higher-intensity region, which leads to
relativistic self-focusing, while ponderomotive nonlinearity
is set up due to the relativistic–ponderomotive force, which
expels the electrons from the higher-intensity region and de-
creases the electron density; hence, the refractive index be-
comes higher at the higher-intensity region and hence
enhances the self-focusing caused by the relativistic mecha-
nism. A review of available literature highlights that the scat-
tering instabilities (SRS and SBS) have not been investigated
significantly under the relativistic–ponderomotive regime by
hollow Gaussian laser beam in the plasma; except that the
recent studies of stimulated Brillouin and Raman backscatter-
ing of filamented hollow Gaussian laser beam (HGLBs) in
plasma (Singh & Sharma, 2013a, b).
In the present investigation, the authors have studied the

evolution of HGLB collisionless plasma with relativistic
and ponderomotive nonlinearities and its effect on the
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excitation of IAW and back reflectivity of SBS for different
orders of self-focused HGLB. The paraxial ray approximation
(Akhmanov et al., 1968; Sodha et al., 1976) is used to describe
the focal region of the laser beam where all the relevant param-
eters correspond to a narrow range around themaximum irradi-
ance of the HGLB. The organization of this paper is as follows:
Section 2 presents the analytical model for the propagation

of HGLB in the plasma with relativistic and ponderomotive
nonlinearities, generation of IAW, and for stimulated Bril-
louin backscattering (SBBS). Section 3 presents the numeri-
cal results and the effect of various laser–plasma parameters
on the propagation of HGLB in the plasma, generation of
IAW, and back reflectivity of SBS. The main conclusions
are summarized in Section 4.

2. ANALYTICAL FORMULATION

2.1. Propagation of HGLB in collisionless plasma

Consider the propagation of a linearly polarized hollow
Gaussian beam (HGB) with its electric vector polarized
along the y-axis propagating in a homogeneous plasma
along the z-axis. The electric field vector E for such a
beam may be expressed in a cylindrical coordinate system
with azimuthal symmetry as (Sodha et al., 2009)

E = ĵE0(r, z) exp(iω0t), (1)

where

(E0)z=0 = E00
r2

2r20

( )n

exp − r2

2r20

( )
. (2)

In the above expression E0 refers to the initial amplitude of
the HGB, r0 is the initial beam width of the beam, n is the
order of the HGB and a positive integer, characterizing the
shape of the HGB and position of its maximum irradiance,
ω0 is the wave frequency, ĵ is the unit vector along the
y-axis, and E00 is the maximum amplitude of the HGB ob-
tained at r = rmax = r0

���
2n

√
. Equation (2) represents a funda-

mental Gaussian beam at n= 0.
In the present study, we consider a plasma characterized by

relativistic and ponderomotive nonlinearities. The relativis-
tic–ponderomotive force is given by Borisov et al. (1992)
and Brandi et al. (1993a, b)

FP = −m0c
2∇(γ− 1), (3)

where γ is the relativistic factor and is given by

γ = 1+ e2

m2
0ω

2
0c

2
E0 · E∗

0

( )1/2

. (4)

The modified electron density due to relativistic–ponderomo-
tive force is given by Brandi et al. (1993a, b)

ne = n0 + c2n0
ω2
p0

∇2γ− (∇γ)2
γ

( )
, (5)

where n0 is the background electron density of the plasma in
the absence of laser beam, and

ne
n0

= 1+ c2

ω2
p0

{
a

r20 f
4
0 2

2nγ
(η+

���
2n

√
)4n exp[−(η+

���
2n

√
)2]

×
[

8n2

(η+ ���
2n

√ )2 + 2(η+
���
2n

√
)2 − 8n− 2

]

− a2

r20 f
6
0 2

2nγ3
(η+

���
2n

√
)8n exp[−2(η+

���
2n

√
)2]

×
4n2

(η+ ���
2n

√ )2 + (η+
���
2n

√
)2 − 4n

[ ]}
. (6)

The propagation of the HGLB in a collisionless plasma is
governed by the wave equation

∇2E0 + ω2
0

c2
ε0(r, z)E0 = 0, (7)

where ε0 is the dielectric function of the plasma given by

ε0 = 1− ω2
p0

ω2
0

(8)

with ωp0 (=4πn0e
2/m0)

1/2 is the plasma frequency and other
symbols have their usual meaning, that is, e is the charge of
an electron, m0 is its rest mass, n0 is the density of plasma
electrons in the absence of laser beam, and c is the speed
of light in free space.

Now transforming the (r, z) coordinate in to (η, z) coordi-
nate by the relation

η = r

r0 f0

( )
−

���
2n

√( )
, (9)

where f0 is the dimensionless beam width of the beam and
r = r0 f0

���
2n

√
is the position of the maximum irradiance for

the propagating beam.
The effective dielectric function of the plasma in the pres-

ence of relativistic–ponderomotive nonlinearity may be
given by

ε(r, z) = 1− ω2
p0

ω2
0

ne
n0γ

[ ]
. (10)

The dielectric function ε(η, z) around the maximum (η= 0)
of the HGB (under the paraxial like approximation) can be
expressed as

ε(η, z) = ε0(z) − η2ε2(z), (11)

where ε0(z) and ε2(z) are the coefficients associated with η0

and η2 in the expansion of ε(η, z) around η= 0
The dielectric functions ε0(z) and ε2(z) are obtained by ex-

panding the dielectric function ε(η, z) in the paraxial regime
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around the position of maximum intensity as

ε0(z) = ε(η, z)η=0

= 1− ω2
p0

ω2
0

1

(1+ g0)1/2
( )

+ 1

ρ20 f 20

2g0
(1+ g0)

( )

and

ε2(z) = − ∂ε(η, z)
∂η2

( )
η=0

= ω2
p0

ω2
0

1

(1+ g0)3/2
( )

g0 − 1

ρ20 f 20

4g20
(1+ g0)2

( )
,

where g0 = (a/f 20 )n2n exp(−2n) and a (=αE00
2 ) is the initial

intensity of laser beam.
The solution of Eq. (7) can be written as

E0(r, z) = ĵA(r, z) exp −i

∫
k0(z)dz

( )
, (12)

where A(r, z) is a complex amplitude of the wave and k0(z) =
(ω0/c)

�����
ε0(z)

√
.

Substituting E0 (r, z) from Eq. (12) into (7) and neglecting
the term (∂2A/∂z2), one can obtain

2ik
∂A
∂z

+ iA
∂k
∂z

= ∂2A
∂r2

+ 1
r

∂A
∂r

( )
+ ω2

c2
(ε− ε0)A. (13)

The complex amplitude A(r, z) may be defined as

A(r, z) = A0(r, z) exp −ik(z) S(r, z)( ), (14)

where S(r, z) is the eikonal associated with the HGB and both
A0 and S are real parameters. Substituting A(r, z) from Eq.
(14) into (13) and separating the real and imaginary parts,
one can obtain

2S
k

∂k
∂z

+ 2
∂S
∂z

+ ∂S
∂r

( )2

= 1
k2A0

∂2A0

∂r2
+ 1

r

∂A0

∂r

( )
+ ω2

k2c2
(ε− ε0),

(15a)

∂A2
0

∂z
+ A2

0
∂2S
∂r2

+ 1
r

∂S
∂r

( )
+ ∂A2

0

∂r
∂S
∂r

+ A2
0

k

∂k
∂z

= 0. (15b)

With the help of Eq. (9), (15a) and (15b) in terms of variables
(η, z) can be expressed as

2S
k0

∂k0
∂z

+ 2
∂S
∂z

+ 1

r20 f
2
0

∂S
∂η

( )2

= 1

k20r
2
0 f

2
0 A0

∂2A0

∂η2
+ 1

( ���
2n

√ + η)
∂A0

∂η

( )
+ ω2

0

k20c
2
(ε− ε0),

(16a)

∂A2
0

∂η
+ A2

0

r20 f
2
0

∂2S
∂η2

+ 1

( ���
2n

√ + η)
∂S
∂η

( )
+ 1

r20 f
2
0

∂A2
0

∂η
∂S
∂η

+ A2
0

k0

∂k0
∂z

= 0.

(16b)

For the paraxial ray approximation, that is, for η≪√2n, the
amplitude A0 is defined as (Akhmanov et al., 1968)

A2
0 =

E2
0

22nf 20
(

���
2n

√
+ η)4n exp[−(

���
2n

√
+ η)2] (17a)

and the eikonal of the pump beam is given by

S(η, z) = ( ���
2n

√ + n)2
2

r20 f0
df

dz
+ φ(z), (17b)

where φ(z) is a function of z and f0 (z) is the beam width pa-
rameter for the HGB. Substituting Eqs. (17) into 16(a) and
using the boundary conditions f0|z=0= 1 and df0/dz|z=0= 0,
one obtains

ε0 f0
d2f0
dξ2

= 4

f 20
− ρ20ε2

( )
, (18)

where ξ = (c/r20ω) z is the dimensionless distance of propaga-
tion and ρ0= (r0ω/c) is the dimensionless initial beam width.
Equation (18) describes the beamwidth of HGLBwith the dis-
tance of propagation in a collisionless plasma, when both rel-
ativistic and ponderomotive nonlinearities are simultaneously
operative.

2.2. Excitation of ion acoustic wave

The low-frequency IAW is excited due to nonlinear coupling
between hollow Gaussian beam and plasma in the presence
of relativistic and ponderomotive nonlinearities. This cou-
pling arises on account of the relativistic change in the elec-
tron mass and the modification of the background electron
density due to ponderomotive nonlinearity. The amplitude
of IAW, which depends upon the background electron densi-
ty, gets strongly coupled to the laser beam. To analyze this
excitation process of IAW in the presence of ponderomoti-
ve–relativistic nonlinearity and filamented laser beam, we
use the following set of fluid equations:

(i) Continuity equation:

∂Ni

∂t
+∇(N · Vi) = 0. (19)

(ii) Momentum equation:

m
∂Vi

∂t
+(Vi ·∇)Vi

[ ]
= eEi + e

c
(Vi ×Bi)− 2ΓimiVi− γi∇P

N
.

(20)
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The Landau damping coefficient for IAW is given by
Krall & Trivelpiece (1973)

2Γi = k

(1+ k2λ2d)
πkBTe
8mi

( )1/2

×
m

mi

( )1/2

+ Te
Ti

( )3/2

exp − Te
Ti(1+ k2λ2d

{ }[ ]
,

where λd= (kBT0/4πn0e
2)1/2 is the Debye length and

k is thewavevectorof theacousticwave.Te andTi are the
electron and ion temperatures, Ei and Bi are associated
with the electric and magnetic field vectors, and Vi is
the ion fluid density. The electric field Ei is associated
with the IAW and satisfies the Poisson’s equation.

(iii) Poisson’s equation:

∇.Ei = −4π(nes − nis), (21)

where nes and nis correspond to perturbations in the
electron and ion densities, and are related to each
other by following equation:

nes = nis 1+ k2λ2d
ne
n0γ

( )[ ]−1

. (22)

From Eqs. (19)–(21), one obtains the general equation
governing the ion density variation in the IAW as

∂2nis
∂t2

+ 2Γi
∂nis
∂t

− γiυ
2
th∇

2nis + ω2
pi

ne
n0γ

k2λ2d
1+ k2λ2d

nis = 0, (23)

where υth =
���������
kBTi/mi

√
is the ion thermal velocity. Using the

Wentzel–Kramers–Brillouin and paraxial ray approximations
(Akhmanov et al., 1968; Sodha et al., 1976), the solution of
Eq. (23) can be expressed as

nis(r, z) = ni(r, z) exp[i(ωit − ki(z+ Si(r, z))], (24)

where ni is the slowly varying real function of r and z, Si is the
eikonal for the IAW, ωi and ki are the frequency and propaga-
tion constant for IAW. Substituting for nis from Eq. (24) into
(23) and separating real and imaginary parts, one obtains

2
∂S
∂z

+ ∂S
∂r

( )2

= 1

k2i ni

∂2ni
∂r2

+ 1
r

∂ni
∂r

( )
+ ω2

i

k2i υ
2
th

− 1+ ω2
i

k2i γiυ
2
th

ne
n0γ

k2i λ
2
d

1+ k2i λ
2
d

[ ]
,

(25)

∂n2i
∂z2

+ ∂S
∂r

∂n2i
∂r2

+ n2i
∂2S
∂r2

+ 1
r

∂S
∂r

( )
+ 2Γiωi

kiγiυ
2
th

n2i = 0. (26)

Using Eq. (9), the solution of Eqs. (25) and (26) can be writ-
ten as (Singh & Sharma, 2013a, b)

n2i =
n2i0
22nf 2i

η+
���
2n

√( )4n r0 f0
aifi

( )4n

exp − η+
���
2n

√( )2
−2kd(z)

( )
(27)

and the eikonal of the IAW is

Si = η+
���
2n

√( )2r20 f 20
2fi

∂fi
∂z

+ φ(z), (28)

where kd = 2Γiωi/kiγiυ
2
th is the damping factor, fi and ai are

the dimensionless beam width parameter and radius of
IAW, respectively. The dimensionless beam width parameter
fi can be obtained by using the boundary condition fi= 1 at
z= 0 and dfi/dz|z=0= 0.

∂2fi
∂ξ2

= fiρ20
f 20

( )
1

k2i r
2
0 f

2
0

r0 f0
ai fi

( )4

− ω2
piλ

2
d

γiυ
2
th(1+ k2i λ

2
d)

[

×
g

(1+ g)3/2 −
c2

ω2
p0r

2
0 f

2
0

4g2

(1+ g)2
( )( )]

.

(29)

Equations (27) and (29) describe the intensity profile of
IAW and dimensionless beam width parameter ( fi) of IAW
respectively along with the distance of propagation in the col-
lisionless plasma.

2.3. Stimulated Brillouin scattering

The interaction of intense HGLB (having frequency ω0 and
wave number k0) with low-frequency IAW (having frequency
ωi and wave number ki) generates stimulated Brillouin scat-
tered wave of frequency ωs and wave number ks. The high-
frequency electric field ET can be written as a sum of the
electric field E of the incident beam and Es of the scattered
wave

ET = Eeiω0 t + ESe
iωS t, (30)

where ω0 and ωs are the frequency of incident laser beam and
scattered wave, respectively. The electric field (ET) satisfies
the wave equation

∇2ET −∇(∇ET) = 1
c2

∂2ET

∂t2
+ 4π

c2
∂JT
∂t

. (31)

where JT is the total current density vector in the presence of
the high-frequency electric field ET. Equating the terms at
scattered frequency ES, we obtain the wave equation for scat-
tered field that is,

∇2ES + ω2
S

c2
1− ne

n0

ω2
p

γω2
S

[ ]
ES = 1

2
ω2
P

c2
ωS

ω0

n∗

n0
E. (32)

The solution of Eq. (33) can be written as

ES = ES0(r, z)eikS0Z + ES1(r, z)e−ikS1Z, (33)

where

k2S0 =
ω2
S

c2
1− ω2

p0

ω2
S

( )
= ω2

S

c2
εS0,
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and kS1 and ωS satisfy the phase-matching condition, that is,

kS1 = k0 − ki, ωS = ω0 − ωi. (34)

In Eq. (33), ES1 and ES0 are the slowly varying function of r
& z and kS0 & kS1 are the propagation constant of scattered
wave. From Eqs. (33) and (34), one can get

− k2S0ES0 + 2ikS0
∂ES0

∂z
+ ∂2

∂r2
+ 1

r

∂
∂r

( )
ES0 + ω2

S

c2
εS(r, z)ES0 = 0,

(35)

− k2S1ES1 − 2ikS1
∂ES1

∂z
+ ∂2

∂r2
+ 1

r

∂
∂r

( )
ES1 + ω2

S

c2
εS(r, z)

ES1 = 1
2

ω2
p0

c2
ωS

ω0

n∗

n0
E0e

−ik0S0 ,

(36)

where

εS(r, z) = εS0 +
ω2
p0

ω2
S

1− ne
n0γ

( )
.

The solution of Eq. (36) may be written as

ES0 = ES00(r, z)eik0SC , (37)

where ES00 is the real function of r and z, SC is the eikonal for
the scattered wave. Substituting Eq. (37) into (35) and sepa-
rating the real and imaginary parts one can obtain

2
∂Sc
∂z

+ ∂Sc
∂r

( )2

= 1

k2S0ES00

∂2ES00

∂r2
+ 1

r

∂ES00

∂r

( )
+ ω2

p

εS0ω2
S

1− ne
n0γ

( )
,

(38)

∂E2
S00

∂z
+ ∂Sc

∂r
∂E2

S00

∂r
+ E2

S00
∂2Sc
∂r2

+ 1
r

∂Sc
∂r

( )
= 0. (39)

Transforming (r, z) coordinate in to (η, z) coordinate using
Eq. (9), the solution of Eqs. (38) and (39) can be written as
(Singh & Sharma, 2013a, b)

E2
S00 =

B2
s

22nf 2S

���
2n

√
+ η

( )4n r0 f0
bfs

( )4n

exp − r20 f
2
0

b2f 2s

���
2n

√
+ η

( )2{ }

and

Sc =
���
2n

√ + η
( )2

2
r20 f

2
0

fs

∂fs
∂z

+ fS(z), (40)

where b is the initial beam width of the scattered wave, fs is
the dimensionless beam width parameter of the scattered
beam, and Bs is the amplitude of the scattered beam, whose
value is to be determined later by applying boundary
condition.
Substituting Eq. (40) into (38) and equating the coefficient

of η2 both sides and using the boundary conditions fS= 1 and

dfS/dz= 0, we get the equation of the spot size of scattered
wave

d2f S

dξ2
= ρ20

f 20
fs

( )
1

k2s0

r0 f0
bfs

( )4

− ω2
s

k2s0c
2
εs2

[ ]
, (41)

where εS2 is the nonlinear dielectric constant of the scattered
beam. In the presence of relativistic and ponderomotive
nonlinearities, the εS (η, z) may be expressed as

εS(η, z) = εs(0) − η2εs2, (42)

where

ε0(z) = 1− ω2
p0

ω2
0

Ω2
0

1+ g0
( )1/2 + 2g0

ρ20 1+ g0
( )

f 20
,

εs2 = − ω2
p0

ω2
0

g0

2 1+ g0
( )3/2 − 1

ρ20 f
2
0

4g20
1+ g0
( )2

[ ]
.

The expression for Bs may be obtained by applying suitable
boundary condition, that is,

ES = ES0(r, z)eikS0z + ES1(r, z)e−ikS1z = 0, (43)

at z= zC (zC is the point at which the amplitude of the scat-
tered wave is zero). Therefore, at z= zC, one can obtain

Bs = 1
2n+1

ω2
p

c2

( )
ni0
n0

( )
ωs

ω0

( )
fS(zc)

fi(zc)f0(zc)

r

ai fi zc( )
( )2n r
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r
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r
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ei(kS1zc+kS0zc)

(44)

with the condition

1

b2f 2S (zc)
= 1

r20 f 20 (zc)
+ 1

a2i f 2i (zc)
,

where f0(zC), fi(zC), and fs(zC) are the values of dimensionless
beam width parameters of pump laser beam (HGB), ion-
acoustic beam, and scattered beam at z= zC. The back reflec-
tivity is defined as the ratio of the scattered wave intensity to
the input pump wave intensity and is given by

R = ES

E

∣∣∣∣
∣∣∣∣2,

ES| |2= ES0| |2+ ES1| |2+ES0E
∗
S0
ei(kS0+kS1)z + ES1E

∗
S1e

−i(kS0+kS1)z,

R = 1
24n+2
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p
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ωS
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×
(η+ ���

2n
√ )8n

k2S1 − k2S0 − ω2
p0(ne/n0γ)

[ ]2 × I1 + I2 − I3[ ],
(45)

R. Gauniyal et al.86

https://doi.org/10.1017/S0263034616000835 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034616000835


where
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× cos(kS1 + kS0)(z− zc).

3. NUMERICAL RESULTS AND DISCUSSION

In order to have a numerical evaluation of the focusing of in-
tense HGLB in plasma with relativistic–ponderomotive non-
linearity, effect of self-focused HGB on the excitation of
IAWand back reflectivity of SBS, the numerical computation
of Eqs. (17a), (18), (27), and (46) has been performed, re-
spectively. These coupled equations have been solved for
an initially plain wave front and obtained results with typical
laser and plasma parameters; The vacuum wavelength of the
laser beam (λ)= 1064 nm, the initial radius of the laser beam
(r0)= 20 μm, initial radius of the IAW (ai)= 10 μm, υth=
0.1c, different laser–plasma intensities (a= 1, 1.4, and
1.8), different orders of the HGB (n= 1, 2, and 3), and at dif-
ferent plasma densities (ωp0/ω0= 0.28, 0.30, and 0.38).
The following boundary conditions are used:

f0 z=0 = fi
∣∣ ∣∣

z=0 = fs|z=0 = 1 and

df0
dz

∣∣∣∣
z=0

= dfi
dz

∣∣∣∣
z=0

= dfs
dz

∣∣∣∣
z=0

= 0.

Equation (18) represents the focusing/defocusing of HGLB
along the distance of propagation in the plasma, while Eq.
(17a) describes the intensity profile of the HGB in the
plasma along the radial direction when relativistic and pon-
deromotive nonlinearities are operative. When the HGB
propagates through a collisionless plasma, then the density
of the plasma varies due to the ponderomotive force, there-
fore the refractive index of the plasma increases at the posi-
tion of the maximum irradiance. In Eq. (18), the first term
leads to the diffractional divergence of the beam, while the
second term (nonlinear term) on the right-hand side of the
equation is responsible for self-focusing of the beam,
which arises due to the relativistic–ponderomotive

nonlinearity. The beam will be focused in the plasma only
when the magnitude of the nonlinear term exceeds the di-
verging term. The paraxial ray approximation is valid when
a< 1; however, in the case of HGB this theory may be
valid up to the extent where beam shows strong self-focusing
at different order of n. Here paraxial ray approximation is
known as modified paraxial-like approach (Sodha et al.,
2009) where r = rmax = r0

���
2n

√
is the position of the maxi-

mum irradiance for the propagating beam.
The numerical calculations have been performed for dif-

ferent laser and plasma parameters. Figure 1a–1c show the
beam width of HGB ( f0) with distance of propagation with
varying the order of HGB (n), intensity of HGB (a), and
plasma density (ωp0/ω0), respectively. From Fig. 1a, it is ob-
vious that strong self-focusing occurs for higher order of the
hollow Gaussian beam (n). When n increases, self-focusing
length decreases and filamentation gets enhanced due to
combined effect of ponderomotive and relativistic nonlinear-
ities. This is because of the fact that ponderomotive nonline-
arity enhances the self-focusing caused by relativistic
nonlinearity. It is evident from Figure 1b that self-focusing
of HGB in the plasma is enhanced with increase in the inten-
sity of laser beam intensity. This is due to the fact that the
nonlinear refractive terms in Eq. (18) are very sensitive to
the intensity of laser beam. Therefore, as the intensity of
the laser beam is increased, refractive terms become relative-
ly stronger than diffractive terms. In addition, at high intensi-
ties of incident laser beam, more electrons contribute to
self-focusing. From Figure 1c, it is found that with the in-
crease in the value of relative plasma density beam width pa-
rameter decreases and hence self-focusing of the beam is
faster. These results reflect that the propagation of HGB in col-
lissionless plasma strongly depends on n, a, and ωp0/ω0. It is
clear from Eq. (17a), the intensity profile of HGB depends on
the focusing nature of HGB in plasma. Figure 2a–2c illustrate
the intensity distribution of the HGLB with distance of prop-
agation with varying the order of HGB (n), intensity of HGB
(a) and plasma density (ωp0/ω0) respectively at the maximum
irradiance position, that is, at η= 0, when relativistic and pon-
deromotive nonlinearities are operative. Due to strong self-
focusing of HGB in plasma, the intensity of the HGLB also
increases with increasing the parameters n, a, and ωp0/ω0.
Such highly self-focused beam used for the excitation of IAW.

The IAW in plasma is excited due to nonlinear coupling
with highly self-focused HGLB in the presence of relativistic
and ponderomotive nonlinearities. The density profile of
plasma is modified due to the ponderomotive force and rela-
tivistic effect and governed by Eq. (27). Equation (27) de-
scribes the focusing of IAW in the plasma. It is clear from
Eq. (27), the intensity of IAW in plasma depends on the fo-
cusing of main HGB and IAW. We have solved Eq. (27) nu-
merically with the help of Eq. (29) to obtain the amplitude of
the density perturbation (intensity) of IAW at finite z. The re-
sults are displayed in Figure 2a–2c at the maximum irradi-
ance position, that is, at η= 0 and the same set of
parameters used in Figure 1. It is evident from the figures
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Fig. 2. Variation of laser beam intensity (HGB) in plasma with normalized
distance of propagation (ξ) when relativistic and ponderomotive nonlineari-
ties are operative. (a) For various orders of HGB with a= 1.4, and ωp0=
0.30; (b) for different laser intensities of HGB with n= 2 and ωp0= 0.30;
and (c) for different plasma densities with a= 1.4 and n= 2.

Fig. 1. Variation of beam width parameter ( f0) of HGLB with normalized
propagation distance (ξ) (a) for various orders of HGB with a= 1.4, and
ωp0= 0.30; (b) for different laser intensities of HGB with n= 2 and
ωp0= 0.30; and (c) for different plasma densities with a= 1.4 and n= 2,
when both relativistic and ponderomotive nonlinearities are taken into
account.
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Fig. 3. Variation of IAW intensity with normalized distance of propagation
(ξ): (a) for various orders of HGB with a= 1.4 and ωp0= 0.30, (b) for dif-
ferent laser intensities of HGB with n= 2 and ωp0= 0.30, and (c) for differ-
ent plasma densities with a= 1.4 and n= 2, when both relativistic and
ponderomotive nonlinearities are taken into account.

Fig. 4. Variation of back reflectivity (R) with normalized propagation dis-
tance (ξ) when relativistic and ponderomotive nonlinearities are operative.
(a) For various orders of HGB with a= 1.4 and ωp0= 0.30, (b) for different
laser intensities of HGB with n= 2 and ωp0= 0.30, and (c) for different
plasma densities with a= 1.4 and n= 2.
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that the normalized intensity of IAW increases with increas-
ing the order of HGB, incident laser intensity and plasma
density, respectively. This is obviously due to strong self-
focusing of HGLB and IAW.
In order to observe the effect of the interaction of self-

focused HGLB with the low-frequency IAW in plasma on
the back reflectivity of SBS process, numerical computation
of Eqs. (41) and (45) has been performed for the same set
of parameters used in the study of HGB and IAW. Equations
(41) and (45) respectively describe the expression for the beam
width parameter of the scattered beam and the back reflectivity
(R) of SBS against the normalized distance of propagation. It
is apparent from Eq. (45) that the reflectivity is dependent on
the intensity of IAW, damping factor and beam width param-
eter ( fs) of the scattered beam. Figure 4a–4c represents the
variation in the back reflectivity of SBS with the normalized
distance of propagation. The intensity of IAW further
depend on the intensity of main HGB, which get enhanced
due to the filamentation process and hence the back reflectivity
of SBS get enhanced with increasing n, a, and ωp0/ω0. Apart
from this, back reflectivity of SBS process (in the presence of
relativistic and ponderomotive nonlinearities) is inversely pro-
portional to the beam width parameters of main HGB, IAW,
and scattered beam; therefore, self-focusing of these beam en-
hances the back reflectivity of SBS at higher values of laser
and plasma parameters used in the calculation.

4. CONCLUSIONS

In conclusion, we have studied the propagation of an intense
HGLB in the collisionless plasma with relativistic and pon-
deromotive nonlinearities and its effect on the excitation of
IAW and back reflectivity of the SBS process under the para-
xial ray approximation. Effects of laser and plasma parame-
ters such as orders of HGB, intensity of incident radiation
and plasma density on the focusing of HGB, intensity of
HGB and IAW as well as back reflectivity of SBS in
plasma is examined. It is found that due to combined effect
of relativistic and ponderomotive nonlinearities the focusing
of the HGB and the intensity of HGB in a collisionless
plasma is significantly enhanced for higher-order modes of
the HGB. Due to strong self-focusing of HGB in the
plasma, the intensity of IAW is also enhance for higher-order
modes of the HGB, which significantly affected the back re-
flectivity of SBS. The back reflectivity increases at the fo-
cused positions for higher-order modes of HGBs because
the focusing of HGB and IAW increase for higher-order
modes. It is also evident from the results that the intensity
of IAW and back reflectivity of SBS enhance with increasing
the value of incident laser intensity. Furthermore, focusing of
HGB, intensity of IAW and back reflectivity of SBS are in-
creased by increasing the plasma density. The results show
that the order of the HGLB plays very important role in the
study of laser–plasma interaction. This study is useful to un-
derstand the dynamics of SBS process in laser-induced
fusion where higher modes are present in the laser beam.
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