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A mathematical approximation in the physical

sciences

JOHN D. MAHONY

Introduction
The business of making mathematical approximations in the physical

sciences has a long and noble history. For example, in the earliest days of
pyramid construction in ancient Egypt it was necessary to approximate
lengths required in construction, especially when they involved irrational
numbers. Similarly, surveyors in early Greece seeking to lay out profiles of
right-angle triangles or circles on the ground invariably ended up making
approximations regarding measurements of required lengths, as indeed is the
case today. Practitioners have always faced the problem of having to decide
when parameters in theory have been met satisfactorily in the practice of
measurement. Further, before the advent of hand-held calculators, students
in schools in the UK would have been very familiar with the approximation
22/7 for the transcendental number , obtained perhaps by comparing (as
this author did) the measured circumferences of many laboriously drawn
circles of different sizes with their diameters. Despite the advent of
sophisticated calculating devices and facilities, such as computers and
spreadsheets, the practice of making approximations is still much in
evidence in theoretical work in fields associated with physical phenomena.
Such approximations often result in formulae that are easy to use and
remember, and moreover can produce theoretical results that support
directly, or otherwise, results from measurements. In this respect, the
practical mathematician does not have to seek results to many decimal
places when measurement facilities allow for accuracy to only a few. The
purpose of this Article is to illustrate this point by discussing an example
drawn from the realms of antenna theory, relating to the performance of a
dipole antenna. It is not the purpose here to delve into the derivation of
dipole theory, but to extract the relevant information and show how useful
mathematical approximations can be employed to simplify a relationship
between parameters of interest to an antenna engineer. To this end, it will
first be necessary to introduce some antenna concepts that might be new to
the reader.

π

Some antenna concepts
In this discussion an antenna is assumed to be located at the origin of a

rectangular cartesian coordinate system XYZ. The usual polar angles
related to this coordinate system are understood in what follows. It is also
understood that a far field ansatz applies, that is to say, the values of all
quantities are those that pertain in the far field of the antenna so that the
antenna, despite its obvious physical dimensions, can be viewed as a point
source located at an origin. The polar angle  is measured from the positive

(θ, φ)

θ

https://doi.org/10.1017/mag.2022.62 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/mag.2022.62&domain=pdf
https://doi.org/10.1017/mag.2022.62


A MATHEMATICAL APPROXIMATION IN THE PHYSICAL SCIENCES 221

-axis; the azimuth angle  is measured counter-clockwise from the positive
-axis.

z φ
x

(I) Radiation intensity: This is the power per unit solid angle (watts/unit
solid angle) radiated by the antenna. Denote it by . The
element of solid angle is .

U (θ, φ)
dω = sin θ dθ dφ

(II) Radiation pattern: This is a spatial distribution of the antenna's
power that is radiated to the far field. It is a measurable quantity that
typically varies with angular direction and is one that, for a given
antenna, can be described by a mathematical function involving the
polar angles. Typically an antenna is designed to radiate maximum
power in a specified direction, i.e. the ‘main beam’ direction, with
lesser, unwanted amounts unavoidably radiated in other directions as
‘side lobes’. It is customary to normalise power in all directions to
that of the maximum. Hence the normalised power ratio in the
maximum direction is unity.

(III) Total radiated power: This is obtained by integrating the radiation
intensity over the entire solid angle of . Accordingly, the total
power radiated by the antenna,  say, is then given by 

4π
P

P = ∫ U  dω = ∫ ∫
φ = 2π,θ = π

φ = 0,θ = 0
U sin θ dθ dφ.

If  is both independent of  and symmetric about , it
follows that the total radiated power
(power dimensions are in watts).

U φ θ = π / 2
P = 4π / (∫π/2

0 U sin θ dθ)
(IV) Directivity: This is the ratio of the maximum radiation intensity to the

radiation intensity averaged over all directions. The maximum
radiation intensity occurs at the peak of the radiating antenna's main
beam, i.e. in the target direction, say. Denote this ratio by . The
radiation intensity averaged over all directions is equal to the total
power radiated by the antenna divided by . Then the directivity

. If now  is normalised by its maximum value to
, where , it follows from (III) above that the

directivity can be expressed in the form .
Since the directivity is a power ratio it is expressed commonly in
terms of decibels, as  dB. More information about
directivity etc. is contained in the Appendix.

D

4π
D = 4πU max / P U
U N U N = U / U max

D = 1 / (∫π/2
0 U N sin θ dθ)

10 Log10 (D)

(V) Half power beam-width: This is the angle between two directions in a
plane containing the beam maximum, where the radiation intensity is
one half of its maximum value. It is an important concept in target
resolution. For example, the capability to distinguish between two
sources is generally related to the antenna's half power beam-width.
Moreover, if an antenna is transmitting to receivers (also antennas)
that are outside this angle of interest then those receivers will secure
a relatively weaker signal compared with one received by any such
antenna within the half power beam-width angle.
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Both directivity and half power beam-width are yardsticks used to describe
and quantify performance aspects of an antenna. Engineers are usually very
interested to see an easy and direct connection between the two because it
can simplify the understanding of what could be an otherwise complex
relationship.

Having established a framework, attention will now be turned to the
exact mathematics related to the dipole, after which an approximate
formulation will be considered. In the process of developing an approximate
description, the dependency of directivity on half power beam width angle
will become apparent.

Exact results
The requisite results from the theory relating to a dipole antenna will

simply be cited in what follows. A method of obtaining the results, which
involves an appreciation of the vector potential for an electric source current
solution to Maxwell's equations is described in [1]. It is assumed in this
reference that the current distribution across the dipole is sinusoidal, but this
information is for completeness only and should not bother the reader. A
schematic representation for such a dipole, coaxially fed, is as shown in
Figure 1. With reference to this figure, the operating wavelength is denoted
by  and each arm of the dipole is of length , giving an overall length of

. Energy is supplied to the dipole via a coaxial line connected to some
energy source. One arm of the dipole is formed by extending the
innerconductor (wire) of the coaxial cable and bending it upwards through a

λ L / 2
L

Energy

Coaxial cable
L /2

L /2

- axisz

- axisy

FIGURE 1: A schematic representation of a coaxially fed dipole of length  located
in a cartesian reference frame

L
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right angle, as shown in the figure. The other arm of the dipole is formed by
soldering an identical wire to the outer conductor of the coaxial cable and
bending it similarly downwards, as shown. Both arms are aligned to lie
along the -axis. When the source is activated, the dipole radiates energy.
This method of constructing a dipole is not unique, but it does require
additional physical modifications to ensure effective radiation.

z

A formula for the radiation intensity of the dipole can be found in [1].
When normalised to its maximum value, i.e. when , it takes the formθ = π/2

U N = (cos (α cos θ) − cos α
(1 − cos α) sin θ )2

,  0 ≤ φ ≤ 2π (1)

where  (  denotes the operating wavelength). The quantity  is
circularly symmetric about the -axis, that is to say it is the same for any
specified -value. This expression can be plotted on a polar diagram, for
example when  using the equations  and

. The pattern in any other -plane cut will be identical. The
result for the case, say, of the half wavelength dipole (that is when

) is shown in Figure 2 below; the radius vector from the origin to
any point on the curve is the value for  at that point.

α = πL / λ λ U N
z

φ
φ = 90° y = U N sin θ

z = U N cos θ φ

α = π / 2
U N

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
y

z

θ

FIGURE 2: A polar plot (far field radiation pattern) of the normalised radiation
intensity for a half wavelength dipole -axis horizontal, -axis vertical, -axis

towards the reader
y z x

A distant observer in the far field can treat the dipole as a point source
with the above radiation pattern characteristics. This aspect is elaborated
further in the appendix. It can be seen from the figure that the maximum
value for  is unity (because it is normalised) and it occurs when

. The minimum value is zero and occurs when . Thus, in
three dimensions, the radiation pattern is much like that of a doughnut with
no appreciable hole. Radiation patterns of this type are said to be
omnidirectional and a more precise definition of this description can be
found by googling the word ‘omnidirectional’. It is possible to consider

U N
θ = π / 2 θ = 0
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dipoles of different lengths by varying the value of the input parameter  in
the above. Typically, values chosen for the dipole length here will not
exceed one wavelength, so that only cases for  will be addressed. The
interested reader might care to obtain plots for such values and see just how
the radiation pattern varies. Values for  imply a dipole length greater
than unity. In such cases, the radiation patterns show the presence of minor
lobes that increase in size with increasing dipole lengths. The interested
reader might care also to appreciate this by obtaining plots, in the manner
that led to Figure 2, when .

α

α ≤ π

α > π

α > π
As mentioned earlier, the quantities of interest to the antenna engineer

are the half power beam-width angle and the directivity. We will treat them
separately below.

Half power beam-width
It is necessary to determine first the -value at which the normalised

radiation intensity assumes the value . Then, with reference to Figure 2, the
angular spread between the -values where this occurs is . This is
the half power beam width (hpbw) angle, which we denote by , and it is
also a quantity of interest in other antenna types such as arrays and
reflectors, but such configurations are beyond the scope of this Article. This
angle is also shown in the figure, sandwiched between the two radius
vectors (each of length ) in the lobe on the right-hand side of the figure.
There will of course be a similar angle on the left-hand side of the figure,
but it is not shown. Mathematically speaking, the requisite value for the
angle  is determined from the equation , i.e.

θ
1
2

θ (π − 2θ)
θhpbw

1
2

θ U N = 1
2

(cos (α cos θ) − cos α
(1 − cos α) sin θ )2

=
1
2

. (2)

The interested reader might care to verify that in the case of the half
wavelength dipole,  and the half power beam-width value
is . It is a relatively straightforward matter to solve (2) for a
variety of dipoles of different lengths (i.e. for different values of the
parameter , here not exceeding ). A Newton-Raphson method is
particularly well suited to this exercise and typical results from it, including
that for the half wavelength dipole, are shown in Table 1 below.

θ = 50.961141°
θhpbw = 78.078°

α π
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L / λ α θ° θ°hpbw

0.0625 0.196350 45.092083 89.815834

0.125 0.392699 45.368839 89.262323

0.25 0.785398 46.482264 87.035472

0.375 1.178097 48.351153 83.297693

0.5 1.570796 50.961141 78.077719

0.625 1.963495 54.232372 71.535256

0.75 2.356194 57.996368 64.007263

0.875 2.748894 62.022252 55.955495

1 3.141593 66.082468 47.835064

TABLE 1: Half power beam-width angles for dipoles of different lengths

Directivity
The equation for the directivity is given in (IV) above, in the form

D = 1 / (∫ π/2

0
U N sin θ dθ) , (3)

where  is given by (1). Methods have been employed to reduce the
integration in (3) to a series of manageable closed form steps plus an
integral that must be evaluated either numerically or in look-up tables [1].
Alternatively, it can be evaluated directly using a numerical integration
procedure such as, say, Simpson's rule. In such fashions it is possible to
obtain the following exact directivity results for a variety of dipole lengths,
as per Table 2 below.

U N

L / λ D eqn (3) D (dB)

0.0625 1.501931 1.766501

0.125 1.507772 1.783357

0.25 1.531845 1.852148

0.375 1.574661 1.971871

0.5 1.640922 2.150880

0.625 1.738782 2.402452

0.75 1.882074 2.746368

0.875 2.094060 3.209891

1 2.410998 3.821968

TABLE 2: Exact directivities for dipoles of different lengths
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The above two tables contain data showing how the directivity and the
half power beam-width angles vary with different dipole lengths and one
could construct a plot to display the relationship. However, it is not
immediately apparent that there is a simple, explicit relationship between the
directivity and the dipole's half power beamwidth angle. Fortunately, by
employing suitable approximations, it is possible to extract one, as described
below.

Approximate results
An approximation to the above expression for the normalised radiation

intensity  (see (1)) can be considered in the formU N

U N ≅ sinμ (θ) ,  0 ≤ φ ≤ 2π (4)
where the value chosen for the parameter  is such as to provide hopefully a
good approximation to the function  described by (1) yielding, also
hopefully, a close match to the radiation pattern of Figure 1 and a
subsequent simplification in the steps required to evaluate the directivity
integral of (3). To this end, the approach is first to force agreement between
equations (4) and (1) at the half power beam width angle value for the
dipole, of whatever length being discussed here. At such a point,

μ
U N

μ =
ln (0.5)

ln (cos (θhpbw / 2)). (5)

Then, in the case of the dipole lengths shown in Table 1 it is possible to
construct the following table showing values for the parameter  that ensure
a half power beam width angle match between the exact and approximate
radiation intensity patterns.

μ

L / λ μ eqn (5)

0.0625 2.009303

0.125 2.037605

0.25 2.156910

0.375 2.378844

0.5 2.743218

0.625 3.316473

0.75 4.204522

0.875 5.577167

1 7.720289

TABLE 3: Values for the parameter  that ensure a match for half power beam-width
angles listed in Table 1.

μ
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As an illustration, in the case of the half wavelength dipole it is again a
simple matter to plot the approximate radiation intensity pattern due to (4)
and compare it with that of Figure 1. This is shown in Figure 3.
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FIGURE 3: A comparison of polar plots for  in the case of the half wavelength dipoleU N

exact – solid curve as in Figure 1
approximate – dashed curve when μ = 2.743218

It may be appreciated from Figure 3 that the approximation with the
proposed value for the parameter  is not unreasonable, because with the
naked eye it is difficult to discern the difference the exact and approximate
curves. A value of  was chosen in [1] to approximate the half
wavelength dipole radiation pattern of (4) and the reader might care to
produce the ensuing radiation pattern to appreciate the difference between it
and the one proposed here.

μ

μ = 3

A similar story of encouraging plot comparisons between exact and
approximate pattern representations emerges in each case of the other dipole
lengths and associated -values cited in Table 3. It is left as an exercise for
the reader to secure the associated plots to appreciate this.

μ

Having approximated a given radiation pattern using an appropriate
value for  from (5), it remains to address the integration for the directivity,
which now is given approximately by the equation

μ

D ≈
1

∫π/2
0 sinμ + 1 θ dθ

. (6)

Despite appearances, the integral in the denominator can be fruitfully
approximated. An approximation to it based on an asymptotic development
was given first in [3] (with misprints), and later in [4]. Specifically, it was
shown that such an integral could be approximated by 

π
2z + 1 + 0.25z−1

,

where . If terms of  are neglected in this approximation,
the leading terms in the asymptotic expansion can be retained to yield the

z = μ + 1 O (z−1)
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simpler approximation . Such expansions can be convergent or
divergent, but the leading terms nonetheless can be of interest to the
practitioner, producing results that can accord with measurement. Here,
retaining the simpler terms gives

π (2μ + 3)

D ≈
2μ + 3

π
which, for  given by (5), may be rewritten in the formμ

D ≈
1
π

2 ln (0.5)
ln (cos (1

2θhpbw)) + 3. (7)

This is an explicit relationship between the directivity and the half power
beam-width angle, albeit an approximate one.

It is appropriate now to compare values for the directivity from (7) with
the exact values shown in Table 2, the associated half power beam-width
angles being those displayed in Table 1. The comparison can be drawn from
the results shown in Table 4 below.

L / λ (dB)eqn(7)D (dB)δ

0.0625 1.745505 0.021

0.125 1.762947 0.020

0.25 1.834972 0.017

0.375 1.962912 0.009

0.5 2.157877 -0.007

0.625 2.433046 -0.031

0.75 2.800497 -0.054

0.875 3.268698 -0.059

1 3.843123 -0.021

TABLE 4: The approximate directivities from (7) and the differences between them
and the exact values shown in Table 2

The differences in the Table are not large and should be weighed against the
accuracies of associated gain (directivity less system losses) measurements
on many field-test sites. Typically, at best these could be of the order of
between about, say, 0.05 dB and 0.1 dB. On some sites it could be worse,
depending on the sophistication of the measurement set up.

It is possible to carry the approximation a step further by employing in
(7) the expansion for the “ln cos” function given in [2]. In a somewhat
tedious but straightforward manner it can be shown, using a small argument
approximation, that this reduces the equation to the following simpler,
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approximate form

D ≈
2 (4 ln 2) / π

θhpbw
{1 + Aθ2

hpbw + O (θ4
hpbw)} (8)

A =
1
16 ( 3

2 ln 2
−

1
3) = 0.114419327.where

In (8), the half power beam-width angle is assumed to be in radians, but
it is customary to appreciate the angle in degrees because that is what is seen
in radiation pattern plots on a field site. Thus, if the half power beam-width
angle in degrees is denoted by say, , it will suffice to replace  in the
above by , so that the equation above can be approximated in the
form

ω θhpbw

ωπ / 180

D ≈
107.651582

ω
{1 + (κ × 10−5) ω2} (9)

κ = 3.485412.where

Not surprisingly, results from (9) are not as accurate as those in Table 4.
This is evidenced below in Table 5.

L / λ (dB)eqn(9)D (dB)δ

0.0625 1.862723 -0.096

0.125 1.877843 -0.094

0.25 1.940801 -0.089

0.375 2.054515 -0.083

0.5 2.231662 -0.081

0.625 2.487778 -0.085

0.75 2.837594 -0.091

0.875 3.291597 -0.082

1 3.855985 -0.034

TABLE 5: The approximate directivities from (9) and the differences between them
and the exact values shown in Table 2

Such differences notwithstanding, it is possible to improve this
agreement by adjusting heuristically the value for  in (9). The interested
reader might care to do this by varying interactively on a spreadsheet the
output from (9) as  undergoes small changes. In this manner, the author
found that it was possible to reduce the -dB error when compared with
exact results to less than about 0.03 dB everywhere, with a value of

. Alternatively, it is conceivable that a best fit curve of the form of
(9) with higher order terms could produce more accurate results. Other
authors have also considered the problem of finding an explicit but

κ

κ
δ

κ ≈ 3.04
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approximate relationship between the directivity and the half power beam
width angle in omnidirectional antennas and the results of some of their
efforts can be found in [1, Chapter 2].

Conclusion
An example drawn from the realms of physics (antenna theory) has

been used to demonstrate how approximations can be employed in a theory
to produce expressions that facilitate an ease in calculation and
comprehension related to physical quantities that are of interest to a
practitioner and can be related to measurable quantities. Despite the reliance
nowadays on immediately available software packages to obtain exact
results from theoretical formulations (that may themselves have limitations
regarding the accurate representation of physical phenomena) the use of
approximations should not be discouraged because they can allow for an
immediate appreciation and interpretation of physical processes. Moreover,
they can yield fruitful, back-of-an-envelope results, results that can be more
or less in accordance with what might be expected either from measurement
or theory. Whilst the theory associated with antennas of this type will lie
beyond what is usually encountered at undergraduate levels, the associated
mathematics and its manipulations are most certainly not. The above has
involved only integrations (numerical and approximate) and other simple
approximations, and all of the ensuing processes have involved functions no
more difficult to comprehend than the commonly understood terms of
simple trigonometry.

Appendix
Further radiation pattern concepts

Detailed information concerning the theory and results pertaining to a
radiating dipole supporting a sinusoidal current distribution on its arms can
be found in [1], and in other related texts. It can be found also on websites
by googling the appropriate words. A typical schematic representation for
such a dipole was shown in Figure 1. Establishing parameters of interest
from theory is beyond the scope of this note, and the reader must accept that
they are as described here and in the literature. Broadly speaking, if the
dipole is being used to transmit a radio frequency (rf) signal, a current is
induced in the arms of the dipole when the input power source is activated.
This current radiates an electromagnetic field according to a set of
principles, Maxwell’s equations. Typically, these equations can be met by
students at an advanced undergraduate level and at a postgraduate level
when set within the framework of antenna theory. The concept of the
radiation pattern due to a dipole can be appreciated from the schematic of
Figure 4. The dipole is located physically at the centre of the figure and the
radiation pattern due to it (see Figure 1) is shown also superimposed. This is
a plane figure that, in the case of the dipole, is typical of all other -plane
cuts. In addition, an observation point on the arc of a large circle of radius

φ
R

https://doi.org/10.1017/mag.2022.62 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2022.62


A MATHEMATICAL APPROXIMATION IN THE PHYSICAL SCIENCES 231

(the far field of the antenna) is shown with a radius vector connecting it to
the central point.

FIGURE 4: Dipole pattern and far field observer at distance  from the origin
(axes as described in Figure 1 of the main text)

r

When the dipole is radiating, the observer on this far field circle can
point a receiving device (typically a horn) at it to record a received power
level (a signal strength) that is proportional to the length of the heavy black
line. This signal strength can be compared (via a ratio) with that obtained
when the observer is on the horizontal axis (the -axis in this instance), that
is at the point of maximum signal strength. This point is also referred to as
the ‘beam peak’. In principle, the observer can move around the circle and
thus log, at different angles, a complete record of received power levels
referenced to this maximum. This log of records is the radiation pattern
which, for this antenna type, is the same in all -plane cuts. However, the
reality on an antenna field site is that the observer's position is occupied by a
stationary transmitter pointing at the dipole, which in turn rotates on a
turntable about its -axis to receive the transmitted energy, according to its
radiation pattern (this is a reciprocity principle which allows in principle for
the far field observer and the antenna under test to be interchanged). 

y

φ

z

The concept of directivity is important in antenna theory. It is a
directional performance indicator that shows just how well energy is
radiated by the antenna in a direction of maximum signal strength (the peak
of the beam), compared with the total amount of energy that it radiates. It is
computed or calculated from the antenna's radiation pattern, which is
measurable and predictable. It is closely related to the concept of antenna
gain,  say, via an overall multiplicative efficiency factor, which should
ideally be small. The efficiency factor due to system losses is deducted from
the directivity figure to produce a value for the antenna gain. It is a quantity
which is close in value to the directivity, but it is beyond the scope of this

G
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exercise to address it more fully. Suffice it to say, it is one that can be
measured on a field site, for example by comparing the antenna's maximum
power received from a distant radiating source with that similarly received
by a gain standard, which typically is a rectangular horn whose radiation
characteristics in respect of directivity and gain are well known. For
instance, if  and  respectively denote the gains of the test antenna and
the standard, and if  and  similarly denote their powers received in the
test configuration then the gain of the antenna under test is determined from
the formula . On field sites where gain is measured, it is
generally done to no more than two decimal places on a dB scale. Thus the
determination of directivity to no more than the same number of decimal
places on such a scale is not necessary. Knowing that the antenna gain is
close to the directivity, it is possible to anticipate roughly a value for it by
first determining the half power beam width from a radiation pattern
measurement. Then the approximate relationship of the type proposed here
between this and the directivity allows for an immediate feel for the antenna
gain to see if a likely performance is on track. If it is not, there is a cause for
concern. Such checks and balances are an essential part of any design,
manufacturing and test process.

GT GS
PT PS

GT / GS = PT / PS
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