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SUMMARY

The effect of acquired immunity on the duration of Plasmodium falciparum infections is unclear, although this is an

important term inmodels of malaria transmission. It is problematical to determine the duration of infections because of the

difficulty of distinguishing persisting infections from new ones, and because parasite densities are often transiently below

the limit of detection. We recently developed a dynamic model for infection incidence, clearance and detection of multiple

genotype P. falciparum infections and fitted it to a panel dataset from a longitudinal study in Northern Ghana. We now

extend this model to allow for seasonal and age variation in infection rates and also age dependence in clearance and in

detectability of infections. Thesemodels indicate that there is seasonal variation in the infection rate, and age dependence in

detectability. The best fitting models had no age dependence in infection or clearance rates, suggesting that acquired

immunity mainly affects detectability.

Key words: Plasmodium falciparum, infection rate, clearance rate, detectability, seasonal variation, acquired immunity,

model.

INTRODUCTION

The dynamics of Plasmodium falciparum malaria in-

fections in endemic areas are crucial determinants of

the effects of preventative interventions but are dif-

ficult to study because of the challenge of dis-

tinguishing persisting infections from new ones, and

because parasite densities are often transiently below

the limit of detection.

Where infectious agents are endemic, levels of

immunity generally increase with age, and it is

therefore to be expected that the duration of infec-

tions will be lower in older hosts than in younger

ones. While this pattern has been assumed in many

models of malaria transmission (Dietz, Molineaux

and Thomas, 1974; Aron, 1988), the empirical evi-

dence for it is weak (Walton, 1947; Kitua et al. 1996;

Smith et al. 1999a, b ; Smith and Vounatsou, 2003;

Sama, Killeen and Smith, 2004).

We recently reported a model (Sama et al. 2005)

to estimate infection and recovery rates (and hence

the duration of infections) from repeated obser-

vations of the presence or absence of P. falciparum

genotypes in the same group of individuals in the

Kassena-Nankana district (KND) in Northern

Ghana. In developing this approach we treated

the infection and recovery rates as constant. It was

assumed that the laboratory test used to detect the

infectious agent has imperfect detectability, but

the detectability was assumed to be constant across

the whole population. We also assumed that these

parameters are the same for all genotypes.

We now extend our previous model (Sama et al.

2005) by explicitly parameterizing the detectability

as well as the infection and recovery processes as

functions of age. We also extend our model to allow

for seasonal variation in infection rates.

MATERIALS AND METHODS

Field surveys

The KND, is a highly endemic malarious area

showing a peak in transmission during the short wet

season between May and September and corre-

sponding seasonality in prevalence and clinical inci-

dence (Binka et al. 1994; Baird et al. 2002; Koram

et al. 2003). We analysedP. falciparum genotype data

of 69 individuals (Sama et al. 2005), ranging in age

from 1 month to 84 years. Each individual con-

tributed 6 blood samples, with the first survey carried

out in July 2000 and the remaining surveys at regular

intervals of 2 months subsequently, each survey

lasting for 8 or 9 days. Samples were analysed for the
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presence or absence of P. falciparum merozoite

surface protein 2 genotypes using a PCR-RFLP

(Polymerase Chain Reaction-Restriction Fragment

Length Polymorphism) technique (Felger et al.

1999). There were a total of 70 msp2 genotypes

observed, 33 belonging to the FC27 and 37 to the

3D7 allelic family.

As an example of the structure of the dataset

analysed, consider an individual observed with 4

genotypes during the entire 6 surveys, whose data

was represented by the following 4 sequences:

(001001), (010000), (001110), (111100), correspond-

ing to the 4 genotypes observed and indicating that

the first genotype was observed during the third and

sixth survey, while the second genotype was ob-

served only during the second survey, and so on.

The complete dataset consisted of 827 observed

sequences of this nature.

Model of parasite dynamics

We previously used the immigration-death model

corresponding to that originally proposed by

Macdonald (1950) to describe n(a), the expected

number of distinct genotypes (or the expected true

multiplicity of infections) within an individual of age

a by the following equation.

dn(a)

da
=lxmn(a) (1)

where l is the infection rate, that is the rate at which

new infections are acquired, and m is the clearance

rate, that is the rate at which infections are cleared,

both assumed to be homogeneous across the popu-

lation. We now allow these parameters l, m, to vary

by age and season, t, so that equation 1 takes the

form.

dn(a, t)

da
=l(a, t)xm(a)n(a, t) (2)

The general solution of this equation is given by:

n(a, t)=e
x
R
m(a)da

K+
Z

l(a, t)e
R
m(a)da

da

� �
(3)

where K is the constant of integration obtained by

substituting the initial condition n(0, t)=0.

(a) Infection process. We evaluate 3 alternative

forms for l(a, t)

(i) l(a, t)=l, i.e. we treat the infection rate as

constant.

(ii) l(a, t)=b0e
b1a, i.e. we assume that the infection

rate is a monotonic function of age, where b0 is

the infection rate at birth while b1 is the change

in infection rate (on the logarithmic scale) for a

unit increase in age.

(iii) l(a, t)=li, i.e. seasonal variation in infection

rates. i=1, 2, …, 6 indexes the two month

period of the year at time t, corresponding to

the inter-survey interval and the parameters l1,
l2, … ,l6 account for seasonal variation in the

infection rate, with the rates treated as constant

within each inter-survey period. In this model

l(a, t) is assumed to follow a recurring annual

cycle and the same vector of parameters, li, is
applied for each year of life of the individual

preceding the observation period.

(b) Clearance process. We evaluate 2 alternative

forms for m(a)

(i) m(a)=m
(ii) m(a)=m0e

m1a

m0 is the clearance rate at birth while m1 is the change

in clearance rate (on the logarithmic scale) for a unit

increase in age.

(c) Observation process. The observed sequences

may differ from true sequences because the obser-

vation process is imperfect. We assume one of the

following forms for the detectability, s, the prob-

ability of detecting an infection in a blood sample

conditional on it being present in the host.

(i) Constant detectability, s(a)=s ;

(ii) Age-dependent detectability, logit[s(a)]=s0+
s1(axā), where ā is the mean age (20.12) and s0
and s1 are parameters to be estimated.

The prediction for the observed mean multiplicity

(or simply the expected multiplicity) is obtained by

multiplying equation 3 by s(a), that is:

�nn(a, t)=s(a)e
x
R
m(a)da

K+
Z

l(a, t)e
R
m(a)da

da

� �
(4)

The expected (net) true number of infections ac-

quired during the interval t to t+t in an individual of

initial age a is then m(a+t, t+t) where:

dm(a, t)

da
=l(a, t)xm(a)m(a, t) (5)

and the initial condition is m(a, t)=0 (Sama et al.

2005). In this paper, all units of measurement for

time and age are years and for rates are yearx1.

We assumed that re-infection with a genetically

identical parasite clone is a rare event, and thus that

observed sequences containing negative samples

between 2 positive samples (for example as in the

third sample of the sequence 010100 and as in the

third and fourth samples of the sequence 110010)

invariably result from failure to detect the infection.

We also assumed that our test had perfect specificity.

By maintaining these two assumptions, the deri-

vation of the Poisson-likelihood for the frequency of

each observed sequence is the same as previously

described (Sama et al. 2005). The solutions of

equations 2 and 5 are important components in this
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Poisson likelihood function. The models considered

here are thus fitted to the whole genotype histories

through time of the individual patients as in Sama

et al. (2005).

The models with the specifications a(i), b(i), and

c(i) above have been discussed by Sama et al. (2005).

We now consider all the remaining possible combi-

nations of (a), (b) and (c) (see Table 1). The models

are fitted using maximum likelihood, employing a

fixed order Runge Kutta method (Shampine, 1994)

for the numerical integration of equation 3 and the

quasi-Newton algorithm (Gill andMurray, 1976) for

the maximization process. Confidence intervals

were obtained by inverting the observed information

matrix (Davison, 2003). The programming was im-

plemented in Fortran 95 (Compaq Visual Fortran

Version 6.6. Compaq Computer Corporation, Houston,

Texas, 2001).

The improvement of the fit gained by considering

the likelihood of a fuller model L2 containing p+q

parameters with respect to the likelihood of a reduced

nested model L1 containing only p parameters was

compared using the likelihood ratio test. Comparison

of non-nested models was done using the Akaike

Information Criterion (AIC).

RESULTS

An exploratory analysis was done to assess the

number of new infections gained and the proportion

of existing infections that were lost. An infection

present in survey X but absent in the consecutive

survey X+1 was considered as ‘Loss’ (+,x), while

‘Gain’ (x, +) was noted when an infection was

present in survey X but absent in the previous survey

Xx1. The total number of infections gained was

calculated over all possible consecutive surveys. The

total number of infections lost at survey X+1 among

those initially infected at surveyXwas also calculated

over all possible consecutive surveys. The results

were summarized by age group and by survey in-

tervals. The number of new infections acquired

Table 1. Different models evaluated

Model
Clearance
rate, m(a)

Infection rate,
l(a, t) Detectability, s(a) AIC* p#

M1 m l s(a)=s 2709.6 3
M2 m l logit[s(a)]=s0+s1(axā) 2599.3 4
M3 m li, i=1, 2, …, 6 s(a)=s 2644.3 8
M4 m0e

m1a l s(a)=s 2620.5 4
M5 m b0e

b1a s(a)=s 2643.9 4
M6 m li, i=1, 2, …, 6 logit[s(a)]=s0+s1(axā) 2528.3 9
M7 m0e

m1a l logit[s(a)]=s0+s1(axā) 2601.0 5
M8 m b0e

b1a logit[s(a)]=s0+s1(axā) 2601.3 5
M9 m0e

m1a li, i=1, 2, …, 6 s(a)=s 2548.3 9
M10 m0e

m1a b0e
b1a s(a)=s 2621.3 5

M11 m0e
m1a li, i=1, 2, …, 6 logit[s(a)]=s0+s1(axā) 2529.5 10

M12 m0e
m1a b0e

b1a logit[s(a)]=s0+s1(axā) 2602.7 6

* Comparison of the fit of models with different parameter specifications using the Akaike Information
Criterion (AIC). A lower value of AIC indicates a better fit.
# p is the number of parameters estimated.
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Fig. 1. (A) Mean number of newly acquired infections

(Gains), and proportion of infections lost (Loss) among

those initially infected, per person-interval by age group.

(B) Mean number of newly acquired infections (Gains),

and proportion of infections lost (Loss) among those

initially infected, per person by survey interval.
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increased to the age of 5-9 years and then dropped for

older age groups. An increase in age of the proportion

of infections lost was also observed (Fig. 1A). How-

ever, when these quantities were assessed by season,

the proportion of infections lost remained fairly con-

stant throughout the year, while there was a seasonal

effect on the number of infections gained with the

maximum values observed during the first 2 surveys,

reflecting the high transmission rate during the wet

season (Fig. 1B).

We considered a total of 12 models (Table 1). M1

is the model we reported previously (Sama et al.

2005) in which it was assumed that there was no age

or seasonal variation in the parameters. Likelihood

ratio tests indicated that all four of the extended

modelsM2,M3,M4 andM5 inwhich age or seasonal

effects were added, demonstrated better fits than M1

indicating that both age and seasonal variation are

important (Fig. 2).

All models where detectability was expressed as

a function of age (M2, M6, M7, M8, M11, M12),

estimated a significant age effect, and all the estimates

of s1 from these models are similar, indicating de-

creases in the detectability with age (Table 2). The

likelihood ratio tests comparing each of these models

with the corresponding reduced models with age-

independent detectability all showed statistically

significant differences (Fig. 2).

When the infection rate, l, was assumed constant,

its value (of about 17 infections gained per annum)

was rather insensitive to the other parameters in the

model and somewhat higher than the rate of acqui-

sition of apparent new infections in the raw data

(Fig. 1). Although model M5 suggested that there

was a strong decrease of infection rate with age,

adjustment for age dependence in detectability gave

an improvement in fit, and the best model (by

Akaike’s criterion) among those where the infection

rate was allowed to vary with age was M8 (Table 1),

in which there is a slight tendency for the infection

rate to decrease with age (Table 2). This reflects a

rather strong correlation of x0.78 between the esti-

mates of the parameters l1 and s1 in model M8,

indicative of moderate colinearity.

Among models where the clearance rate varies by

age, the best fit wasM11 (Table 1), in which there is a

slight increase in clearance rate with age (Table 2).

This increase was much less than that in model M4

in which both infection rate and detectability were

assumed constant. The lower estimate of m1 in M11

reflects a rather strong positive correlation of 0.87

between the estimates of m1 and s1 in this model.

Neither the age trend in infection nor clearance

rates were statistically significant (as measured by

likelihood ratio tests comparing modelsM8 andM11

with their reduced models, Fig. 2). This is because,

when age-dependence in the detectability was

allowed for, no significant improvement in fit could

be achieved by including age effects in either l or m
(compare M2 with M7 andM8 in Fig. 2; or M6 with

M11) or in both of these parameters (compare M12

with M2, M7 or M8). Similarly, including age

M1

M2
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M5M3

M7 M9M6 M10

M11

2
1X =112·3;

P<0·0001

2
1X =67·7;
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2
1X =91·1;

P<0·0001

2
1X =24·7;

P<0·0001

2
5X =75·3;

P<0·0001

2
1X =20·6;

P<0·0001

2
1 0·60;

0·44P

χ =

=2
1X =20·9;

P<0·0001

2
1 0·79;

0·37P

χ =

=

2
1 0·28;

0·60P

χ =

=
2
1 0·003;

0·96P

χ =

=

2
1X =97·9;

P<0·0001

2
1 1·2;

0·27P

χ =

=

2
1X =117·8;

P<0·0001
2
1X =44·7;

P<0·0001

2
1X =21·5;

P<0·0001 2
5X =82·1;

P<0·0001

2
5X =81·0;

P<0·0001

2
5X =81·5;

P<0·0001

2
1 0·32;

0·57P

χ =

=

Fig. 2. Flow-chart of nested models with likelihood ratio statistics (and P-values) comparing the models.

M1pM2: M2 is nested within M1.
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Table 2. Parameter estimates from the different models in Table 1

(95% Confidence Intervals in parentheses.)

Para-
meters M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

m 2.4
(2.2, 2.6)

2.3
(1.9, 2.6)

2.6
(2.3, 3.0)

2.4
(2.0, 2.7)

2.6
(2.2, 2.9)

2.3
(2.1, 2.5)

m0 1.8
(1.5, 2.1)

2.3
(1.9, 2.8)

2.0
(1.7, 2.5)

1.9
(1.5, 2.2)

2.4
(2.0, 2.8)

2.4
(2.0, 2.9)

m1 0.020
(0.016, 0.024)

x0.003
(x0.014, 0.008)

0.020
(0.016, 0.024)

0.017
(0.011, 0.023)

0.004
(x0.005,

0.013)

x0.007
(x0.024, 0.011)

l 16.3
(14.8, 17.8)

17.5
(15.7, 19.3)

17.1
(15.4, 18.8)

17.5 (15.7, 19.2)

b0 21.1
(18.6, 23.5)

17.5
(16.2, 18.8)

18.0
(15.4, 20.5)

18.0
(15.4, 20.5)

b1 x0.015

(x0.019, x0.011)

x0.0002

(x0.007, 0.006)

x0.003

(x0.010, 0.0028)

x0.003

(x0.014, 0.008)
s 0.47

(0.42, 0.51)

0.49

(0.44, 0.54)

0.46

(0.42, 0.51)

0.46 (0.41, 0.51) 0.48

(0.43, 0.53)

0.47

(0.42, 0.52)
s0 x0.40

(x0.61, x0.20)

x0.33 (x0.53,

x0.14)

x0.44 (x0.68,

x0.20)

x0.40 (x0.58,

x0.23)

x0.29

(x0.50,
x0.08)

x0.45 (x0.69,

x0.21)

s1 x0.032

(x0.038, x0.026)

x0.035 (x0.040,

x0.029)

x0.036 (x0.049,

x0.022)

x0.032 (x0.041,

x0.023)

x0.030

(x0.042,
x0.018)

x0.036

(x0.050, x0.022)

l1 25.6
(20.7, 30.4)

31.1
(25.0, 37.2)

28.6
(23.2, 34.1)

31.2
(25.1, 37.2)

l2 24.6

(18.8, 30.5)

22.9

(16.7, 29.2)

23.5

(17.6, 29.4)

23.0

(16.7, 29.2)
l3 13.0 (7.9, 18.0) 13.8 (8.5, 19.1) 13.4 (8.3, 18.5) 13.8 (8.4, 19.1)

l4 13.0 (8.5, 17.5) 13.1 (8.4, 17.8) 13.4 (8.7, 18.0) 13.2 (8.4, 17.9)
l5 4.6 (1.2, 8.0) 5.4 (1.8, 9.0) 4.5 (0.9, 8.0) 5.3 (1.6, 8.9)

l6 13.2 (2.5, 24.0) 21.6 (7.8, 35.5) 19.2 (5.6, 33.0) 21.0 (7.2, 34.9)
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dependence in both l and m (M10) did not improve

the fit significantly compared with a model with age

dependence in only m (M4).

The overall best fittingmodel by Akaike’s criterion

is M6, which included seasonal variation in l as well

as age dependence in s. Indeed, all models with

seasonal patterns in the infection rate fitted better

than reduced models with constant l. The highest

2-month specific infection rate estimated frommodel

M6 was 31 new infections per year, during the period

June to August. The rates gradually reduce as we

move towards the dry season (the low transmission

period) and peaks again as we enter the wet season.

This pattern is the same for all the models (M3, M6,

M9, andM11) where the infection rates were allowed

to vary seasonally with similar values estimated for

each of the 6 different infection rates li in the dif-

ferent models (Table 2).

The estimates of the parameters describing the

detection process, and those measuring seasonality in

infection rates were insensitive to the other variables

in the model (Table 2).

The graphical fits are consistent with the results

of formal evaluation of the 12 models by AIC. The

frequency of the 63 observed sequences are closer to

predictions when the overall best model, M6, is used

than when M1 is used (Fig. 3). This is closely fol-

lowed by the fits from model M11 (which is not

significantly different from M6), and the fits from

M3 and M9. The largest residual using M6 corre-

sponded to sequence (010000) which occurred 147

times (expected frequency 107.8). Three other

sequences had residual frequencies >20 or <x20.

All of these four sequences represented infections

that were observed at only one survey, thus sug-

gesting that the model fits least well for infections

that persist for only a short time. When we assessed

the ratio between the observed and expected fre-

quencies, sequence (111111) which occurred 19

times, but with an expected frequency of only 0.9,

gave a very poor fit. A possible explanation for these

discrepancies is that the true distribution of the

durations of infections has a greater variance than is

assumed by the exponential model.

Though the models are fitted to the frequency of

the observed sequences and not to the observedmean

multiplicity, equations 3 and 4 nevertheless predict

the true numbers of distinct genotypes, as well as the

numbers of distinct genotypes observed in each

sample (observed mean multiplicity). There is a

tendency for the observed mean multiplicity of in-

fection to rise and then fall again as age increases.

The plots of the expected multiplicity (equation 4)

against age are indistinguishable for modelsM4,M5,

M8, and M10, while that of M6 is also similar to

M9, and these plots tend to follow the pattern in the

observed data. The plots for the expected true mul-

tiplicity (equation 3) for models M4, M5, and M10

are indistinguishable, but differ from that of M8,

while that of M6 differs from that of M9. There is a

greater tendency to follow the pattern in the observed

data with the plots of the expected true multiplicity

using models M4, M5, M9 and M10, than for M8

and M6 that were reported as the best models above

(see Fig. 4). Because of this discrepancy, we were

concerned that the conclusion obtained for the

clearance rate may be an artifact of the type of func-

tion considered for the clearance rate. We attempted

a more flexible function by assuming that

m(a)=m0e
m1a+m2a

2
, where m0>0, x1<m1, m2<1

This, however, gave no significant improvement of

fit compared with any of models M4, M7, M10, M9,

M11, and M12.

We also attempted the following 2 logistic func-

tions for the clearance rate.

m(a)=m0+(m1xm0)
1

1+( a*
a
)k
,

where m0, m1, a*>0, k<0:

m(a)=
m0m1

m0+(m1xm0)e
xda

, where m0,m1,d>0:

However, the parameters in all the models fitted by

substituting the clearance rate in models (M4, M7,

M9, M10, M11, and M12) with the above two

functional forms were not identifiable.

Similarly, we attempted the following flexible

functional form for the infection rate in models M5,

M8, M10, and M12;

l(a)=b0e
b1a+b2a

2
, where b0>0,x1<b1, b2<1

The results were also not significantly different from

the initial models.

We also attempted the following form for the in-

fection rate where it is allowed to vary both by age
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model of Sama et al. (2005)) ; # : model M6, (best fit).
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and season,

l(a)=lie
la, where x1<l<1, li>0,

i=1, 2, . . . , 6

and evaluated models M1, M2, M4, M7 with this

expression substituted for the infection rate. The

model obtained from M1 by replacing the infection

rate with the above expression gave better results

(AIC=2572.0) than M3 and M5 where the infection

rates were allowed to vary only by age or by season.

Similarly, the model obtained from M4 (AIC=
2547.4) also gave a better fit than M10 where the

infection rate was allowed to vary only by age; and

gave a similar fit to M9 where the infection rate was

allowed to vary only by season. However, the para-

meters in the models obtained from M2 and M7

(which represents the most interesting case since the

detectability is allowed to vary by age) were not

identifiable. The models obtained from M1 and M4

indicated a seasonal variation in infection rates with

a slow decrease with age and that obtained from M4

also indicated a significant increase in clearance rate

with age.

The best model by the AIC criterion remained

M6.

As in our previous work (Sama et al. 2005) our

analysis assumed that re-infection with a given

genotype is a rare event. In order to assess the impact

of this assumption, we excluded the most frequent

genotype from the dataset, and repeated the analysis

of models M1–M12. The infection and clearance

rates obtained from this modification were very

similar to those from the complete dataset, while

detectability estimates were rather lower, (e.g. re-

duced to s=0.38 in model M1). The AIC results

were similar to those in the full dataset.

DISCUSSION

An important gap in knowledge of the epidemiology

of malaria is in the effect of acquired immunity on the

duration of infection. The rate at which Plasmodium

falciparum infections are cleared is often thought to

be highly affected by acquired immunity but the

empirical evidence for this is weak. Most studies on

this are based on data obtained from light micro-

scopy, a technique which cannot distinguish between

persisting and new infections. The failure to detect

low-density infections and the inability to distinguish

the concurrent infections within a host at a given time

also potentially lead to bias in estimates of infection

and recovery rates from light microscopy data (for

instance as in the studies of Bekessy, Molineaux and

Storey, 1976; Kitua et al. 1996; Sama et al. 2004). A

single continuously infected individual, appears by

microscopy neither to contribute to the pool of new

infections nor to that of infections that have been

cleared. Durations estimated from microscopy data

will also highly depend on whether the data were

derived from repeated cross-sectional studies or from

longitudinal studies (Sama et al. 2004).

With the availability of PCR genotype specific

transition data, it is now apparent that continuously

infected individuals are experiencing repeated super-

infection and clearance of specific genotypes, and

PCR analyses can therefore give more reliable esti-

mates of infection and recovery rates. The estimate of

the overall infection rate in our study, as might have

been expected, is much higher than in studies using

microscopy data. Estimates of duration of infection

from PCR, which are for a single monoclonal infec-

tions (Smith et al. 1999b ; Smith and Vounatsou,

2003; Sama et al. 2005), tend to be shorter than those

from microscopy data (Macdonald and Göckel,

1964; Bekessy et al. 1976; Kitua et al. 1996; Sama

et al. 2004) which are for polyclonal combinations of

old and new infections.

Our previous model for P. falciparum genotype

data from a study in Northern Ghana (Sama et al.
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Fig. 4. (A) Mean multiplicity of infections at baseline.

# : observed mean multiplicity; – –: fit to the observed

mean multiplicity (ñ(a, 0)) using model M5; —:

predicted true mean multiplicity (n(a, 0)) using model

M5; - - -: predicted true mean multiplicity (n(a, 0)) using

model M8. (B) Mean multiplicity of infections at

baseline. # : observed mean multiplicity; – –: fit to the

observed mean multiplicity (ñ(a, 0)) using model M6; —:

predicted true mean multiplicity (n(a, 0)) using model

M6; - - -: predicted true mean multiplicity (n(a, 0))

using model M9.
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2005) assumed that the transition rates and the

detection process were homogeneous. The present

analysis extends this to allow different age depen-

dences in the clearance rate, infection rate, and

detectability and thus for age dependence in multi-

plicity of infection. Some of the models also allow for

seasonal variation in the infection rates. Age depen-

dence in multiplicity is generally found in highly

endemic areas (Ntoumi et al. 1995; Smith et al.

1999c) but its relationship to acquired immunity has

been unclear. No other PCR study has analysed

transition rates with a complete age representation of

the population.

We find that there is a decrease in detectability

with increasing age. Since the parasite densities de-

crease with age and it is expected that a genotype is

less likely to be detected if the density is low, the

decrease with age in detectability was anticipated.

Detectability varied from about 60% in younger in-

dividuals to 10% in adults.

Immunity is known to increase with age and it has

often been assumed that duration of infection must

decrease as immunity is acquired. Some studies have

found that infections are of very short duration in

infants (Walton, 1947; Kitua et al. 1996; Smith et al.

1999b) and one study in young children estimated

that duration increases with age (Smith et al. 2003).

In our analysis, the models that did not include age

dependence in detectability estimated significant

increases in the clearance rate with age.However, our

best fitting models allow for age dependence in de-

tectability and found no residual effect of age on

clearance rates, but we have to treat this conclusion

with caution because the parameter estimates for the

age effect on clearance are rather strongly correlated

with those for age dependence in detectability.

The estimated duration of infection was not

greatly modified by allowing for seasonal variation in

the infection process, although infections were found

to be highly seasonal. The use of 6 different par-

ameters for the infection rates allowed us to obtain

season-specific estimates for the infection rates with

the highest infection rate estimated from our best

model, M6, is 31 new infections per year, during the

period June to August which is the peak transmission

season in this area (Binka et al. 1994; Baird et al.

2002). This implies that individuals may acquire as

many as 5 new infections during this period.

In separate models (M5, M8, M10, M12) we

allowed the infection rate to vary only by age, the best

model among these was M8 that indicated a decrease

in infection rate with age, but this was not statistically

significant (see Fig. 2 for comparison ofM8 andM2).

Some studies have suggested that infection rates in

children are higher than in older people (Rogier and

Trape, 1995), as would be expected if immunity to

infection is acquired. However, the attractiveness of

the human host to mosquitoes in general increases

with host size (Port, Boreham and Bryan, 1980),

which should lead to an increase in infection rates

with age (Smith et al. 2004). The overall best model

among the 12 models we considered was M6 that

included season- but not age dependence in infection

rates.

Our results should be interpreted cautiously

because none of our models allows simultaneously

for seasonal variation in infection rates or detect-

ability, variation of infection rates with age, or vari-

ation of clearance rate with age. Further work needs

to be done to capture all these variations and this will

need a substantial amount of information, covering a

wide range of age groups, from different endemic,

geographical, and cultural settings. The present

models also ignore heterogeneity between genotypes,

which may also be important.

We assumed age to be the only factor leading to

heterogeneity in infection rates across the popu-

lation. However, on 26% of visits respondents in-

dicated that they slept under bednets. It is likely that

these nets moderated the infection rate but had little

effect on the clearance rate. Patterns of treatment for

febrile illness in the KND are complex (Owusu et al.

manuscript submitted) often involving ineffective

medications or inappropriate dosing. We did not

record treatments used by the participants during the

study or attempt to model effects of treatment but it

is clear that the use of anti-malarial treatments will

increase the clearance rate and so may have biased

downwards our estimates of duration.

A further improvement would be to directly in-

corporate information about parasite densities. The

clearest effect of acquired immunity is in reducing

themean parasite density, and thismust account for a

large element of the decrease in detectability with

age. The question of how to incorporate the extra in-

formation contributed by the parasite density while

avoiding identifiability problems deserves further

attention. There is likely to be a change in both de-

tectability and clearance rate if this information is

well accounted for.
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