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SUMMARY
This survey paper is focused on the navigation of mobile
robots. The most important associated problems and the
solutions given by different researchers are discussed.
Several aspects are not yet satisfactorily resolved and some
promising research approaches are addressed.
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1. INTRODUCTION
A basic capability of mobile robotics is navigation.1 In the
most ambitious expression of this capability, a mobile robot
must be able to pass the following test:

The robot is placed in an environment that is unknown,
large, complex and dynamic. After a time needed by the
robot to explore the environment, the robot must be able to
go to any selected place, trying to minimize a cost function
(e.g. time, energy, etc).

We will call this test the Maximum Navigation Test
(MNT). The robot must solve several problems to success-
fully perform the MNT. First, the robot must be able to move
fast enough, under control and safely, avoiding static and
moving obstacles (Motion Control problem). While moving,
the robot must be able to collect knowledge of the
environment (World Modeling problem) and be aware of its
location (Localization problem). To move optimally in  a
large area, some planning is also necessary (Planning
problem). These problems are not independent (e.g. world
models are necessary to produce plans or to localize the
robot), and they must be considered only as sub-problems of
a more general one. The general problem is not just the sum
of the sub-problems. It is also necessary, using a holistic
point of view, to determine and manage the different sub-
modules that appear in the solution of the sub-problems and
the interactions between them (Architecture problem). In
Sections 2 to 5, a brief state-of-the-art of the basic problems
previously related can be found, highlighting some unre-
solved questions and new research areas.

After three decades of research in mobile robotics, the
MNT can still be considered as unresolved, although many
advances have been made. Due to the difficulty of working
simultaneously on all the previous sub-problems, most of
the hitherto research has been focused on trying to solve
only some of them. Another common approach has been to
simplify the requirements of the MNT, mainly those that
concern the environment. For instance, it is frequently
supposed that some knowledge of the environment is a

priori known (e.g. landmarks for relocalization), or that
tests are performed in a narrow, static or very structured
area. As a consequence of an incorrect way of approaching
the navigation problem in the mid 80s, the results obtained
were very disappointing. Then, some researchers not only
proposed a shift in the way of solving the problem (e.g. by
eliminating symbolic models of the environment), but they
also proposed a change in the problem to be solved. This
historic evolution will be further analyzed in Section 2.

To perform the MNT, not only excellent algorithms are
necessary. A real robot is quite different from a computer
simulation. A real robot also needs sensory systems,
locomotion systems, energy supply, computing devices, etc.
Although they are not of this paper’s scope, it is essential to
always keep in mind their importance and the way they
influence and constrain the design of the robot’s navigation
modules.

2. ARCHITECTURE
Early architectures were based on the Sense-Model-Plan-
Act approach. Sensed information of the environment was
incorporated into maps, which were used to plan trajectories
to be followed by the robot. The results obtained with this
approach were very disappointing. The reasons are easy to
understand. Sensors only provide partial information of the
real world, with errors in the measurements. This incom-
plete and corrupted information was then used to build maps
where the complexity of the environment was further
reduced to simplify the modeling process (e.g. the real 3D
word modeled as 2D polygons). In addition, models only
represented static environments (e.g. without people moving
near the robot). The conclusion is a general rule of
modeling: models (i.e. maps and the localization of the
robot in the maps) are only approximations of the real
world. In the early architectures, motion decisions were
based only on the information of the maps. Results were
foreseeable: models were inaccurate, hence motion deci-
sions were also inaccurate. Robots using this architecture
would move very slowly to avoid collisions. They had to
stop frequently when an obstacle was detected in a
previously planned path in order to replan a new one.

Different researchers noticed that the source of the
robots’ malfunction was related to the inaccuracy of the
maps and, to solve it, they suggested a radical solution: not
to use world models. Instead of maps, they proposed to use
direct information from sensors. Brooks’ works are the best-
known departure from early architectures.2,3 A general
principle of the new systems was: “The world is its own best
model”. Motion in these systems was the consequence of a
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reaction to the data from sensors, instead of a planned
action. The result was a radical shift from plan-based
actions to sensor-based actions. Different control systems
produced different behaviours of the robot. Simple behav-
iours could be fused to produce complex behaviours. With
the new methodology, robots began to move fast and safely
in complex environments, even with mobile obstacles.
These manifest results produced an immediate shift of many
researchers to the new architectures. It is interesting to
notice that reactive approaches were new, even revolu-
tionary, in mobile robotics or AI. But they were the result of
adapting very well known techniques in other areas such as
control theory.

Renouncing the use of maps, pure reactive systems were
also giving up performing navigation as defined in the MNT.
Global goals (e.g. moving to a distant place) could not be
optimally reached without global information (e.g. maps for
navigation). The shift was too radical. Early mobile robots
only used maps and pure reactive robots exclusively used
sensory instantaneous information. Each approach had both
benefits and disadvantages, but none was able to solve the
navigation problem.

It was not necessary to wait too long before some
researchers began to search for a compromise between both
extremes in defining hybrid architectures. They tried to use
the best of maps and instantaneous sensory data, without
renouncing any of them. Planners were in charge of long-
term decisions and reactive behaviours were used for
motion execution. But the coexistence of planners and
reactive behaviours is not easy. Classic planners produce
rigid orders, while the response of reactive executors is
unpredictable. A classic dilemma is authority vs. freedom. A
solution found by most researchers is to produce sketchy
plans, allowing a reactive executor enough freedom to
control the robot at run-time. An intermediate module is
also frequently introduced between the planner and the
executor. Three level architectures, with a deliberative level,
an intermediate level and a reactive level are the most
common hybrid architectures. The intermediate level is
usually a discrete-event controller.4 Examples of hybrid
architectures are ATLANTIS,5 3T6 and the architecture
proposed in reference 1.

2.1 Some open problems and new research areas
Architectures for learning. Most mobile robots are based
on pre-programmed procedures. This approach does not
make easy the scaling of the robot capabilities. Small
changes in the tasks demanded from the robot, in the
environment or in the sensory or locomotion systems,
usually require complex re-engineering work. One of the
solutions found in Nature is the incremental evolution of
capabilities by learning. Up to now, learning in mobile
robotics has usually been focused only on specific domains
(e.g. behaviour fusion,7 walking,8 etc.). The challenge is to
find an architecture that allows a robot to increment
substantially all its capabilities, without making necessary
code modifications by a programmer.

Emotions. There is evidence that humans use emotions
to make long-term decisions,9 and emotions are essentially
reactive, i.e. reactions can be used not only to produce fast

sensory-motor skills, but also to make fast high-level
decisions. This is a new research field and a new way of
integrating reaction and deliberation.

Scalable architectures. It is not the objective of this
paper to discuss what the meaning of autonomy and
intelligence is, but what is clear is that these attributes might
be enhanced in future robots. Furthermore, navigation
should be a mandatory skill of an intelligent autonomous
mobile robot, but that is not all. A useful mobile robot must
also have task-oriented capabilities (e.g. manipulation,
cleaning, etc.). New architectures must be scalable and
compatible with an increment of the mobile robot capabil-
ities.

3. MOTION CONTROL
Reactive behaviours are a de facto standard for motion
control of mobile robots (for those interested in a complete
study of behaviour-based robotics, see reference [10]).
Behaviours are usually developed incrementally. There is a
set of controllers, each of which is defined for a basic
behaviour (e.g. path following, obstacle avoidance, contour
following, etc.). The design and implementation of the
controllers are made with any methodology of the many
available in control theory, from classic PIDs to non-linear
controllers. Basic behaviours are fused to produce emergent
behaviours. The fusion can be made in two ways: by
combining behaviour and by sequencing behaviour. In the
first case, the outputs of the emergent behaviour are a
combination of the outputs of the basic behaviours, which
are activated simultaneously. It is very common to obtain
the outputs of the emergent behaviour by adding, with
different weights, the outputs of the basic behaviours.11 In
the second case the basic behaviours are activated in
sequence.

The fusion of behaviours must be dynamically adapted to
the internal and external states of the robot. If the emergent
behaviour is the result of adding outputs of the basic
behaviours, an adaptation can be made by dynamically
adjusting their weights. An example of this fusion method-
ology is AFREB.12 In case of sequencing behaviours, events
are necessary to trigger the activation and deactivation of
the basic behaviours; in both cases, adaptation is based on
perception processes. These perception processes are as
important as the basic behaviours to develop emergent
behaviours. To refer to both elements in a homogeneous
way, some authors prefer the denomination skill, and hence
skills are classified as perception skills and action skills.13

In three layer architectures, reactive basic controllers (i.e.
the lower layer) are co-ordinated and supervised by an
intermediate layer. Usually, basic skills are fused by using
the sequencing method, and the intermediate level is in
charge of controlling the sequencing process. In this case,
the intermediate layer acts as a discrete event controller.
Firby has proposed the use of reactive actions packages,
RAPs, for sequencing of the modular motion skills.14 RAPs
are emergent behaviours obtained by sequencing primitive
skills. The RAP system takes sketchy plans and breaks them
down into steps that can be accomplished by activating a set
of skills. This system has been used in several architectures,
such as 3T and first versions of ATLANTIS. Gat, later,
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developed a new language, ESL,4 that has been incorporated
into ATLANTIS. Other examples of conditional sequencing
systems are PRS15 and REX/GAPPS.16 Instead of defining
specific languages, some researchers have used traditional
methods of modeling discrete event systems, such as Petri
nets.17

Pure reactive controllers produce motion commands
using instantaneous information from sensors without
foreseeing future actions. Future actions are usually only
foreseen in planners working on maps. But the relationships
sensors/reaction and maps/planning are not mandatory. Why
not make short-term plans using direct sensor information?
Sensor-based planners are an alternative option to design
behaviour. Sensor information reflects the current state of
the environment into the robot’s planning process as a
realistic way of considering autonomous robots operating in
a dynamic and complex environment. Among these works,
we can find roadmap methods like Canny and Lin’s
Opportunistic Path Planner,18 adapted by Rimon19 for
sensor-based planning use.

3.1 Some open problems and new research areas
Perception skills. Up to now, there have been great efforts
to develop action skills, but as indicated before, perception
skills are equally important to develop complex emergent
behaviours, e.g. sequencing systems need discrete events
produced by perception skills. Human beings frequently use
their skill in recognizing objects to produce these events.
Unfortunately, in this area robot skills are very far removed
from human skills. The skill in recognizing objects is
fundamental to solve the MNT, not only for motion control,
but also for world modeling and localization, using
topological maps. Advances in this research area, which is
not specific to mobile robotics, will allow one to sig-
nificantly increase the capabilities of mobile robots.

Learning. The automatic generation of skills is an area
that has not been explored enough. Research should be
focused not only on basic behaviours, but also on the
process of developing complex emergent behaviours by
learning. The concepts of basic and emergent behaviours (or
skills) are relative, because emergent behaviours can be
fused recursively with other behaviours to produce new
generations of emergent behaviours. It is necessary to
develop architectures which are able to cope with this
recursive evolution process.

Motion dynamics. The design of the motion control
systems of many mobile robots is based only on kinematics
models. To increase the speed and power efficiency of
mobile robots, it is also necessary to take into account
dynamic effects.

4. LOCALIZATION AND ENVIRONMENT
MODELING
When a mobile robot moves through the environment and
observes it, there are some aspects that introduce difficulties
to model the environment or to localize the robot precisely:
(1) The introduction of a certain degree of uncertainty by
the displacement, especially if this displacement is esti-
mated from odometry; (2) The existence of different local

maps observed from different locations, and (3) The
existence of unexpected obstacles and hidden objects.

Due to the necessity of modeling the environment and
localizing the robot starting from the data coming from
different information sources and different instant times, a
method capable of integrating all this information is
required. This method is usually called sensor fusion. The
sensor fusion process tries to use all this information in
order to improve problems like: the reduction of uncertainty
in parameter values about the displacement and the
geometrical primitives, the smoothness of the parameter
estimates, the reduction of the dependence about non-valid
hypothesis or a priori considerations. Different sensor
fusion methods are used, among them the Bayes rule,
Kalman filters and more recently the Hidden Markov
models.

The uncertainty introduced by the robot displacement and
the uncertainty in the environment detection are tightly
coupled. In fact, environment modeling and localization can
be considered as dual problems, because in order to localize
a mobile robot many localization systems require a world
model to match observed environment characteristic with
the modeled ones, and also because, in order to build a
world model, most systems require a precise localization of
the robot. The methods used for sensor fusion in both
problems are on many occasions similar. This duality is so
important that if there exists a precise localization system, it
is possible to reasonably model the environment and if there
exists a good environment model, we can localize the robot
precisely. Today, even for 2D indoor environments, it is a
difficult task to build an environment model and to localize
the robot simultaneously.

4.1 Environment modeling
Many different environment representations can be used
according to the type of task to perform, the kind of
environment and the type of sensor used. The most
significant types of representations are: cell decomposition
models, geometrical models and topological models.

The representation of an environment can be structured in
different levels. A frequent structure considers three levels:
A first level of modeling, that can be called instantaneous
model or snapshot, which is constructed from a data
acquisition and can be, on occasions, the data provided
directly by the sensors; a second level of modeling can be
called local model which contains different information
about the same area of the environment detected during
mobile robot operation; and a third level of modeling called
global model which contains information about the whole
operation environment.

Different kinds of model may be used at different levels
of modeling, and occasionally, different kind of models
coexists at a same level. Depending on the architecture used
in the robot, different numbers of representation levels are
required.

Cell decomposition modeling. The main idea of this
kind of method consists of representing the environment by
means of a decomposition in cells. This technique is not
able to represent an object to be modeled exactly, but
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despite that fact, it is strongly recommended and, even
though the object itself can be difficult to represent, the cell
decomposition of any object is a very simple representation.
The most frequent approaches use cubic cells for 3D
environment models and square cells in 2D models.

The maximum resolution obtained depends on the
selected size of the cell and can be different at different
functional levels. This group of techniques does not require
a priori maps about the environment, because the modeling
is very simple.

Depending on the information associated with each cell,
we can find different kinds of maps: occupancy probability
maps,20 accumulation maps21 and elevation maps.22,23

The most usual way of representing the uncertainty in a
cell decomposition modeling is to associate a probability to
the cell which indicates the uncertainty about the cell
occupation. This modeling technique typically uses Bayes’
rule to update the occupancy probability of the cell.

Geometrical models. There are different possibilities to
geometrically represent objects in the environment, but in
mobile robotics the most frequent are image models where
the geometry is formulated as an array of simple compo-
nents without any functional description. These models let
us have rich statistical information about the uncertainty of
the geometric characteristics. One way of modeling a
geometric object with a level of uncertainty consists of
describing its characteristics, position and occasionally
relationships by means of a vector function, which describes
a particular kind of geometric object, a parameter vector
which specifies a particular instance of the class of
geometric objects modeled, and a probability distribution
characterized by a probability density function which
describes the probability of observing a particular instance
of a geometric object given a certain robot localization
(typically a Gaussian distribution).

To build a geometrical representation of the environment,
the mobile robot has to extract geometrical information
about the environment. This geometrical information can be
extracted directly from sensor information or from other
kinds of representations, like cell decomposition maps.

A large number of researchers have used this approach
based on different sensors like ultrasound,24–26 laser scan-
ners27 and artificial vision.28

The fusion process is based on the use of the Extended
Kalman Filter to integrate all this information.

Topological models. These models try to model rela-
tionships between different types of entities. Depending on
the type and significance of the model entities, the
topological model is named differently and can be struc-
tured at different levels.

The main advantage of the topological approach is the
qualitative aspects used to describe the environment instead
of metric aspects, which are closer to human behaviour than
another type of environment modeling. Besides, topological
models can be easily structured in a hierarchical model even
with metric-based models.29,30

In a topological representation, the environment is
described by a connected graph where the adjacency
property, the order property, or other relationships are
modeled.

There are different possible strategies to build a topologi-
cal model of the environment:

(i) One possibility is to build a geometrical model and to
extract from it the topological properties required to
build the topological model.27,31

(ii) A second possibility is to build the topological map
directly from the observed qualitative properties of the
environment.30,32

These models are easy to manipulate, and there exist
powerful and efficient graph methods to solve an important
number of problems; it is possible to work at different
resolution levels, the integration of the local topological
models into a global topological model is simple and does
not require any special integration methods due to the
uncertain nature of most relationships. Topological models
are also compatible with other techniques of environment
modeling. The main difficulty in this technique deals with
the extraction of topological features from the environment
information.

4.2 Localization
When we try to answer the question: “Where is the robot?”,
it is possible to give different answers. A first one can be (x,
y, u), called geometric localization. This way of expressing
the localization of the vehicle does not depend on any
characteristic of the environment, and gives us precise
geometric information (with some additional parameters to
express the uncertainty). This form of localization can be
used in all kinds of environments but this is not the way a
human operates.

Another possibility is to express the localization of the
robot by means of relationships with the environment, for
instance: the robot is in room A, in front of the door. This
kind of localization is called topological. This method is
closer to the way humans operate, but it requires a kind of
environment with rich topological information in order to
reach a reasonable level of precision. For instance, it is not
suitable in a desert or on the sea.

Humans probably use a combination of both methods,
having some knowledge of the relationship with the
environment and also having rough estimations of the
displacements in order to know their location at a given
moment, e.g. the robot is in room A, close to the door.

There are different solutions to the localization problem
that can be roughly grouped in three classes: dead reckoning
systems, integrated localization systems and perception-
based localization systems. Due to the lack of a single and
general good method, mobile robots usually combine
methods, one or more from each kind.

Dead reckoning systems are incremental positioning
methods which do not require external sensor information to
estimate the position and the orientation, and are always
capable of providing an estimation of the increment in the
robot position. These methods require periodical updating
to correct the error accumulated in the robot’s position.
Among them, we can distinguish two groups: odometry and
inertial navigation systems.

Integrated localization systems are absolute positioning
methods which require external absolute references in order
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to estimate the position and the orientation. This technique
estimates the absolute position and orientation of the robot
by measuring the direction of incidence or the distances to
several signals transmitted or reflected by artificial beacons.
The locations of the beacons in the environment have to be
known a priori. These methods have been used for ship
navigation for many years as a very reliable localization
method. Today, the Global Positioning System (GPS) is
becoming very usual in outdoor vehicles, while laser-based
systems are preferred in indoor applications. The only
problem of these methods is that beacons have to be built
and installed on the appropriate sites of the environment
where the robot can perceive them.

Perception-based localization systems. These systems
operate at two levels. At the first level, the perception
system detects a feature in the environment and estimates
the relative position of this feature with respect to the
robot.

The second level is different depending on the kind of
localization being used. In case we try to localize the robot
geometrically, the detected characteristics are matched with
those stored in a model of the environment, and by using a
sensor fusion method, a geometrical location is estimated.
Many researchers have been working on this system.26,33–36

A different possibility consists of directly extracting
topological relationships from the perceived features to
localize the robot topologically. The detection of distinctive
landmarks located in the environment can be easy in case of
artificial landmarks (designed and located especially for this
purpose) and not so easy in case of natural landmarks
(selected from the most distinctive characteristics of the
environment). Artificial landmark detection methods are
well developed and have proved to be reliable, but natural
landmark detection methods are not yet sufficiently devel-
oped. A difficult point is to develop a system capable of
detecting different natural landmarks in different environ-
ments. Ambient conditions can make the detection of the
landmarks difficult, other objects with similar conditions
can be mistaken for a proper landmark or feature, or on
occasions may not be recognized. Koenig37 and Kaelbling38

have developed topological localization systems which
operate in sample environment forms of T and L-shaped
junctions and corridors. Other researchers, like Thrun,39 use
systems with a combination of geometrical and topological
properties to localize the vehicle.

4.3. Open problems and new research areas
3D environment models and outdoor models. 3D models
are required in open field operation environments to move
the robot safely. This kind of environment requires more
sophisticated models in order to determine the crossability
characteristics of the environment. The segmentation in
different areas, according to some crossability criteria, is a
difficult task and an active research area. Outdoor urban
environments where lights, signals and roads are present,
introduce additional difficulties and are also unresolved
problems in modeling.

Dynamic objects. In order to cope with real situations,
dynamic objects should be detected, modeled and avoided

in order to have reliable displacements. Despite the work
done on this topic, the problem is still unresolved.

Initial point determination. Kalman filter-based tech-
niques have proved to be robust and accurate for local
position tracking of the robot’s position, which means that
once a robot has been localized on the map, it is possible to
keep track of that position over time. Another different
question is the global position estimation problem, that can
be defined as the ability to estimate the initial robot position
in an a priori known or previously learned map.

Feature and landmark extraction. Perception-based
localization methods using vision are very active research
areas, especially in topics related with the identification of
objects and the pose estimation of the identified objects.

Topological modeling and localization. Most of the
traditional localization methods try to determine geometri-
cally the position and the orientation of the robot. Recent
approaches look for methods to build topological models
once features and landmarks are detected and for the later
topological estimation of the robot’s situation.

5. PLANNING
The planning problem is to determine a collision-free
motion plan to reach a goal position from an initial position.
This problem is, in most systems, simplified by considering
uniquely the planning of the mobile robot movements, and
by assuming that the mobile robot is a rigid solid and it is
the only moving object within the environment (perfectly
known). Dynamics and interaction problems are ignored in
many systems. With all these assumptions, the movement
problem is reduced to a geometrical path planning prob-
lem.

This is the most classic approach used in path planning
problems, and it is still the most widely used. But there are
some important assumptions which make frequent replan-
ning necessary. One of them is the assumption of a known
and precisely located environment, and another one is the
assumption of a precise knowledge of the robot location.

The first assumption, about the precise knowledge of the
obstacle’s positions in the workspace, implies that, on many
occasions, the planned path is not feasible because the
obstacles are not located at expected locations or there are
unmodeled obstacles. The second assumption, about the
precise knowledge of the robot location, implies that a
possible path to go from an initial location to a goal location
avoiding obstacles is not feasible from a localization point
of view because of the absence of information to locate the
robot precisely.

In spite of the variety of methods, it is possible to group
them into a few classes if we look at the approach to the
problem. A first group of methods tries to determine a path
between the initial configuration until the final configuration
(path planning methods). It is possible to distinguish the
following classes: roadmap methods, cell decomposition
methods and reaction simulation methods.

5.1 Roadmap methods
The main idea of this method consists of capturing the
connectivity of the free space into a network of unidimen-
sional curves called roadmap, R. Once the roadmap is built,
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it is used as a set of standardized paths, and the path
planning is reduced to finding a path between an initial and
a final point on the roadmap. Different methods have been
proposed. In mobile robotics, two are frequently used:
visibility graphs40,41 and Voronoi diagrams.42

The visibility graph is constructed considering as nodes
the initial configuration, the goal configuration and all the
vertices of configuration space obstacles, and edges of the
visibility graph, the straight line segments that connect two
nodes without penetrating inside the configuration space
obstacles. To find a path on the visibility graph between the
initial and final configurations, different techniques can be
used. A classic method is the A* algorithm and others can be
used to obtain the shortest path in the graph.

The retraction method approach consists of defining a
continuous mapping of the robot’s free space onto a one-
dimensional network of curves R lying in the free space.
This mapping has to conserve the connectivity of the robot’s
free space in the roadmap R obtained through the retraction.
This property reduced the motion planning problem in a free
space to a motion planning into R. The method developed
by O’Dúnlaip and Yap43 retracts the free space onto the
generalized Voronoi diagram. The Voronoi diagram is then
the set of points with a minimal distance to two or more
objects. This diagram has the interesting property of
maximizing the separation between the robot path and the
obstacles.

5.2 Cell decomposition methods
In this group of techniques, the robot’s free space is
decomposed into non-overlapping regions called cells.
There are two types of cell decomposition methods: exact
and approximate. The exact cell decomposition decomposes
the free space into cells whose union is the free space. Two
of these methods are: the trapezoidal decomposition and the
generalized Delaunay triangulation. In approximate cell
decomposition methods,41,44 the free space is decomposed
into cells having predefined shapes and the union of the
cells is a subset of the entire free space.

Once the free space is decomposed, a connectivity graph
is constructed based on the adjacency between cells where
nodes represent the cells and edges correspond to adjacent
cells. Motion planning is performed by searching a path on
this connectivity graph.

There exist two good reasons which support the cell
standardization: one is the simplification of the decomposi-
tion algorithm and the other is the possibility to obtain
directly from sensor environment models with this kind of
regular decomposition (probability maps, accumulation
maps).

These approximate methods are easier to implement than
exact methods and have been widely used.

5.3 Reaction simulation methods
The previous methods intend to capture the global con-
nectivity of the robot’s free space into a graph in order to
search a path on this graph. In the reaction simulation
methods, the most suitable motion address is determined by
simulating the response of the robot to the compound
influence of the obstacles located in the environment, the

current position of the robot and the goal destination. The
path generation is obtained by giving an increment along
this direction and by repeating the process. The influence of
the environment on the robot can be modeled in different
ways like: potential fields or other behaviour responses.

In the potential field approach,45,46 the robot is modeled as
a particle acting under the influence of a potential function
U whose local variations show the structure of the free
space, encoding information about the position of the
obstacles in the surrounding environment and the goal
location. Typically, these potential functions have two
components: an attractive potential guiding the robot
towards the goal configuration and a repulsive potential
steering the robot away from obstacles. Path planning is
done iteratively. In each iteration, the force induced by the
global potential function, $F(q)=2 $=(q), at this point is
considered as the most suitable motion address and the path
generation is obtained by giving an increment along this
address and by repeating the process.

Other behaviour response approaches generate a linear
and angular speed at each point (or some kind of force) as
a combination of the response outputs of different behav-
iours to the obstacles, the robot position and the goal
destination (the behaviours responses can be defined by
means of potential fields, PID algorithms, heuristic rules,
among others). The path is obtained by simulating the
advance of the robot to obtain a new position and by
repeating the process. The most important characteristic of
these approaches is the efficiency of the algorithm which
facilitates their real time operation.

The second group of methods tries to obtain a behaviour
plan that can lead the robot from the initial position to the
final one. Among them we find the behaviour planning
methods.

5.4 Behaviour planning methods
These methods do not define a movement path as a
sequence of configurations. Instead, the plan is determined
as a sequence of behaviours. Behaviours are related with
sensorial information, such as following a wall, following a
road, moving to the door; or related with geometric
positions, like moving to x, y (Bouilly47). Behaviours are
activated and deactivated by using events. Typically, events
are related to time, perception or position of the robot.
Different researchers have worked with this approach.48,50 In
most cases, plans are based on plan units (e.g. RAPs14 or
ACTS49). Plan units are manually pre-programmed and each
one serves to obtain a specific goal.

5.5 Open problems and new research areas
Perception planning. To overcome the uncertainty in robot
position, some new approaches tend to determine motion
plans which include the relocalization requirements of the
robot together with the path plan.51 Another important
question seldom treated deals with determining what motion
plan has to be followed in case the robot gets lost (or the
uncertainty becomes too big).

Behaviour planning. Further research must be devoted
to develop planners that work directly with a library of skills
(motor and perception skills), instead of working with pre-
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programmed plan units. The library of skills should be
dynamic and must allow the incorporation of new learned
skills.

Planning for world modeling. Important too, and still
open is the problem of determining a plan for the robot in
order to build a model of the environment which permits a
safe motion planning and a good localization of the robot
into the operations area.

6. CONCLUSIONS
Even if the mobile robotics has experimented a substantial
number of theoretical and practical advances during the last
decades, the Maximum Navigation Test (MNT) remains
unsolved. New research lines are very promising in order to
resolve the different open problems which are not satisfacto-
rily solved with current techniques.

Hybrid architectures appear to be the most robust and
flexible solution to provide a suitable degree of deliberation
and reactivity in a mobile robot.

During the last few years a great number of advances
have been made to develop reactive behaviour-based
systems for motion control. In spite of that, big efforts
should be carried out to develop perception skills and also to
generate automatically skills through learning.

Topological localization and world modeling are effective
solutions to cope with uncertainties in position and
information about the environment but a substantial effort to
improve perception capabilities to recognize environment
objects is necessary.

Planning activities tend to be less dependent from an a
priori knowledge of the environment, to be more capable of
dealing with inaccuracies in sensor and world models, and
also to integrate an increasing number of perception
activities into the planning process.
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