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Abstract

This paper presents a logic language for expressing NP search and optimization problems.

Specifically, first a language obtained by extending (positive) DATALOG with intuitive and

efficient constructs (namely, stratified negation, constraints, and exclusive disjunction) is

introduced. Next, a further restricted language only using a restricted form of disjunction to

define (nondeterministically) subsets (or partitions) of relations is investigated. This language,

called NPDatalog, captures the power of DATALOG¬ in expressing search and optimization

problems. A system prototype implementingNPDatalog is presented. The system translates

NPDatalog queries into Optimization Programming Language (OPL) programs which are

executed by the ILOG OPL Development Studio. Our proposal combines easy formulation

of problems, expressed by means of a declarative logic language, with the efficiency of the

ILOG System. Several experiments show the effectiveness of this approach.

KEYWORDS: logic languages, stable model semantics, constraint programming, expressivity

and complexity of declarative query languages

1 Introduction

It is well known thatNP search problems can be formulated by means of DATALOG¬

(Datalog with unstratified negation) queries under nondeterministic stable model

semantics so that each stable model corresponds to a possible solution (Marek and

Truszczynski 1991; Saccà 1997). NP optimization problems can be formulated by

adding a max (or min) construct to select the stable model (thus, the solution),

which maximizes (resp., minimizes) the result of a polynomial function applied to

the answer relation. For instance, consider the Vertex Cover problem of the following

example.

Example 1

Given an undirected graph G = 〈N,E〉, a subset V of the vertexes N is a vertex cover

of G if every edge of G has at least one end in V . The problem can be formulated
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in terms of the query 〈P1, v(X)〉, where P1 is the following DATALOG¬ program:

v(X)← node(X), ¬nv(X).
nv(X)← node(X), ¬v(X).
c← edge(X, Y),¬v(X),¬v(Y), ¬c.

and the predicates node and edge define, respectively, the vertexes and the edges

of the graph by means of a suitable number of facts. The first two rules define

a partition of the relation node (v being the vertex cover), whereas the last one

enforces every stable model to correspond to some vertex cover as it is satisfied only

if the conjunction edge(X, Y),¬v(X),¬v(Y) is false (otherwise the program does not

have stable models).

The min vertex cover problem can be expressed by selecting a stable model which

minimizes the number of elements in v; this is expressed by means of the query

〈P1, min|v(X)|〉. �

The problem in using DATALOG¬ to express search and optimization problems is

that the use of unrestricted negation is often neither simple nor intuitive and besides

it does not allow the expressive power and complexity of queries to be limited. For

instance, in the example above, the use of explicit constraints instead of standard

rules would permit the distinction between rules used to infer true atoms and rules

used to check properties to be satisfied.

In this paper, in order to enable a simpler and more intuitive formulation for

search and optimization problems and an efficient computation of queries, DATALOG-

like languages extending positive DATALOG with intuitive and efficient constructs are

considered. The first language we present, denoted by DATALOG¬s,⊕,⇐, extends the

simple and intuitive structure of DATALOG¬s (DATALOG with stratified negation Ullman

1988) with two other types of “controlled” negation: rules with exclusive disjunctive

heads and constraint rules. The same expressive power as DATALOG¬ is achieved by

such a language. Next, we propose a further restricted language, calledNPDatalog,
where head disjunction is only used to define (nondeterministically) partitions of

relations. This language allows us to express, in a simple and intuitive way, both

NP search and optimization problems. As an example, let us consider again the

Vertex Cover problem.

Example 2

The search query of the previous example can be expressed as 〈P2, v(X)〉 with P2

defined as follows:

v(X)⊕ nv(X)← node(X).

⇐ edge(X, Y),¬v(X),¬v(Y).

where ⊕ denotes exclusive disjunction, i.e., if the body of the rule is true, then

exactly one atom in the head is true. The rule with empty head defines a constraint,

i.e., a rule which is satisfied only if the body is false. The first rule guesses a

partition of node whereas the second one is a constraint stating that two connected
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nodes cannot be both outside the cover, which is defined by the nodes belonging

to v. �

Contribution

The main contribution of this paper is the proposal of a simple and intuitive language

where the use of stable model semantics allows us to refrain from uncontrolled

forms of unstratified negation1 and avoid both undefinedness and unnecessary

computational complexity.

More precisely, the paper presents the language NPDatalog, which extends

DATALOG¬s with constraints and head disjunction, where the latter is used only to

define (nondeterministically) partitions of “deterministic” relations. This language

allows bothNP search and optimization problems to be expressed in a simple and

intuitive way.

The simplicity of theNPDatalog language enables queries to be easily translated

into other formalisms such as constraint programing languages, which are well-

suited to compute programs defining NP problems. This paper also shows

how NPDatalog queries can be translated into OPL (Optimization Programming

Language) (Van Hentenryck 1988; Van Hentenryck et al. 1999) programs.

Several examples of queries expressingNP problems suggest that logic formalisms

allow an easy formulation of queries. On the other hand, constraint programming

systems permit an efficient execution. Therefore, NPDatalog can also be used to

define a logic interface for constraint programming solvers. We have implemented

a system prototype which translates NPDatalog queries into OPL programs,

which are then executed by means of the ILOG OPL Development Studio2. The

effectiveness of our approach is demonstrated by several experiments comparing

NPDatalog with other systems.

With respect to other logic languages previously proposed (Greco et al. 1995;

Eiter et al. 1997; Cadoli et al. 2000; Simons et al. 2002; Cadoli and Schaerf 2005),

the novelty of the paper is that it considers an answer set programming language

able to express the complete set ofNP decision, search and optimization problems,

by using a restricted form of unstratified negation.

Organization. The paper is organized as follows. Section 2 introduces syntax and

semantics of DATALOG¬ and its ability to express NP search and optimization

queries under nondeterministic stable model semantics. Section 3 introduces the

DATALOG¬s,⊕,⇐ language, and shows its ability to expressNP search and optimization

problems. Section 4 presents theNPDatalog language, obtained introducing simple

restrictions to DATALOG¬s,⊕,⇐ and shows that NPDatalog has the same expressive

power as DATALOG¬s,⊕,⇐ and DATALOG¬. Section 5 illustrates howNPDatalog queries

can be translated into OPL programs and presents several experiments showing the

effectiveness of the proposed approach. Section 6 discusses several related languages

and systems recently proposed in the literature. Finally, conclusions are drawn in

Section 7.

1 The constructs here considered, essentially, force the use of a restricted form of unstratified negation.
2 ILOG OPL Studio. URL: http://www.ilog.com/products/oplstudio/
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2 DATALOG¬

It is assumed that the reader is familiar with the basic terminology and notation of

relational databases and database queries (Abiteboul et al. 1995; Ullman 1988).

Syntax. A DATALOG¬ rule r is of the form A ← B1, . . . , Bm,¬Bm+1, . . . ,¬Bn, where

A is an atom (head of the rule) and B1, . . . , Bm,¬Bm+1, . . . ,¬Bn (with n � 0) is a

conjunction of literals (body of the rule). A fact is a ground rule with empty body.

Generally, predicate symbols are partitioned into two different classes: EDB (or

extensional database predicates), i.e., defined by the ground facts of a database, and

IDB (or intensional database predicates), i.e., defined by the rules of the program.

The definition of a predicate p consists of all the rules (or facts) having p in the

head.

A database D consists of all the facts defining EDB predicates, whereas a DATALOG¬

program P consists of the rules defining IDB predicates. It is assumed that programs

are safe (Ullman 1988), i.e., variables appearing in the head or in negative body

literals are range restricted as they appear in some positive body literal, and that

possible constants in P are taken from the database domain. For each rule, variables

appearing in the head are said to be universally quantified, whereas the remaining

variables are said to be existentially quantified.

The class of all DATALOG¬ programs is simply called DATALOG¬; the subclass of all

positive (resp. stratified) programs is called DATALOG (resp. DATALOG¬s ) (Abiteboul

et al. 1995). Observe that DATALOG ⊆ DATALOG¬s ⊆ DATALOG¬ (the class of Datalog

queries with possibly unstratified negation).

Semantics. The semantics of a positive program P is given by the unique minimal

model MM(P). The semantics of programs with negation P is given by the set of

its stable models SM(P). An interpretation M is a stable model (or answer set) of

P if M is the unique minimal model of the positive program PM , where PM denotes

the positive logic program obtained from ground(P) by removing (i) all rules r such

that there is a negative literal ¬A in the body of r and A is in M, and (ii) all the

negative literals from the remaining rules (Gelfond and Lifschitz 1988). It is well

known that a program may have n stable models with n � 0. Stratified programs

have a unique stable model which coincides with the perfect model, obtained by

partitioning the program into an ordered number of suitable subprograms (called

“strata”) and computing the fixpoints of every stratum in their order (Ullman 1988).

Given a set of ground atoms S and an atom g(t), S[g] (resp. S[g(t)]) denotes the set

of g-tuples (resp. tuples matching g(t)) in S .

DATALOG¬ Search and Optimization Queries. Search and optimization problems can

be expressed using different logic formalisms such as Datalog with unstratified

negation.

Definition 1

A DATALOG¬ search query is a pair Q = 〈P, g(t)〉, where P is a DATALOG¬ program

and g(t) is an atom s.t. g is an IDB predicate of P. The answer to Q over a database

D is Q(D) = {M[g(t)]|M ∈ SM(P∪D)}. The answer to the DATALOG¬ optimization

query opt(Q) = 〈P, opt|g(t)|〉, where opt is either max or min, over a database D,
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consists of the answers in Q(D) with the maximum or minimum (resp., if opt = max

or min) cardinality and is denoted by opt(Q)(D). �

Observe that, for the sake of simplicity, optimization queries computing the

maximum or minimum cardinality of the output relation are considered, although

any polynomial function might be used. Therefore, the answer here considered is a

set of sets of atoms. Possible and certain answers can be obtained by considering

the union or the intersection of the sets, respectively. Instead of considering possible

and certain reasoning, we introduce nondeterministic answers as follows.

Definition 2

A (nondeterministic) answer to a DATALOG¬ search query Q applied to a database

D is Q(D) = S where S is a relation selected nondeterministically from Q(D).

A (nondeterministic) answer to a DATALOG¬ optimization query opt(Q) over a

database D is opt(Q)(D) = S where S is a relation selected nondeterministically from

opt(Q)(D). �

It is worth noting that, like for search queries, also for optimization queries

the relation with optimal cardinality rather than just the cardinality is returned.

Thus, given a search query Q = 〈P, g(t)〉 and a database D, the output relation

Q(D) consists of all tuples g(u) matching g(t) and belonging to a stable model

M of P ∪ D, selected nondeterministically. For a given optimization query OQ =

〈P, min|g(t)|〉 (resp. 〈P, max|g(t)|〉), the output relation OQ(D) consists of the set of

tuples g(u) matching g(t) and belonging to a stable model M of P ∪ D, selected

nondeterministically among those which minimize (resp. maximize) the cardinality of

the output relation. From now on, we concentrate our attention on nondeterministic

queries. An example of a nondeterministic DATALOG¬ search query is shown in

Example 1; the optimization problem is expressed by rewriting the query goal as

〈P1, min|v(X)|〉 whose meaning is to further restrict the set of stable models to those

for which v has minimum cardinality.

In Saccà (1997) and Greco and Saccà (2002) it has been shown that DATALOG¬

search and optimization queries under (nondeterministic) stable model semantics

express the class of NP search and optimization problems (denoted, respectively,

by QNPMV and OPT QNPMV).

3 DATALOG¬s,⊕,⇐

The problem in using DATALOG¬ to express search and optimization problems is that

the use of unrestricted negation is often neither simple nor intuitive and, besides,

it does not allow expressive power (and complexity) to be controlled and in some

cases might also lead writing queries having no stable models. In order to avoid

these problems, we present a language, called DATALOG¬s,⊕,⇐, where unstratified

negation is embedded into built-in constructs, so that the user is forced to write

programs using restricted forms of negation without loss of expressive power.

Specifically, DATALOG¬s,⊕,⇐ extends DATALOG¬s with two simple built-in constructs:

head (exclusive) disjunction and constraints, denoted by ⊕ and ⇐, respectively.
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Syntax. In the following rules, Body(X) and Body(X,Y, L) are conjunctions of literals,

whereas X and Y are vectors of range restricted variables.

An (exclusive) disjunctive rule is of the form:

p1(X1)⊕ · · · ⊕ pk(Xk)← Body(X), (1)

where Xi ⊆ X for all i ∈ [1..k]. The intuitive meaning of such a rule is that if Body(X)

is true, then exactly one head atom pi(Xi) must be true.

A special form of disjunctive rule, called generalized disjunctive rule, of the form:

⊕L p(X, L)← Body(X,Y, L) (2)

is also allowed. In this rule the number of head disjunctive atoms is not fixed, but

depends on the database instance and on the current computation (stable model).

The intuitive meaning of this rule is that the relation defined by πXBody(X,Y, L) (the

projection of the relation Body(X,Y, L) on the attributes defined by X) is partitioned

into a number of subsets equal to the cardinality of the relation πLBody(X,Y, L)

(the number of distinct values for the variable L). Some examples of generalized

disjunctive rules will be presented in the next section.

A constraint (rule) is of the form:

⇐ Body(X). (3)

A ground constraint rule is satisfied w.r.t. an interpretation I if the body of the rule

is false in I . We shall often write constraints using rules of the form A1 ∨ . . .∨Ak ⇐
B1, . . . , Bm (or B1, . . . , Bm ⇒ A1 ∨ . . . ∨ Ak) to denote a constraint of the form

⇐ B1, . . . , Bm,¬A1, . . . ,¬Ak (i.e., negative literals are moved from the body to the

head). For instance, the constraint ⇐ edge(X, Y),¬v(X),¬v(Y) of Example 2 can be

rewritten as v(X)∨v(Y)⇐ edge(X, Y) or as edge(X, Y)⇒ v(X)∨v(Y). Here the symbol

∨ denotes inclusive disjunction and is different from ⊕, as the latter denotes exclusive

disjunction. It should be recalled that inclusive disjunction allows more than one

atom to be true while exclusive disjunction allows only one atom to be true.

Definition 3

A DATALOG¬s,⊕,⇐ search query is a pair Q = 〈P, g(t)〉, where P is a DATALOG¬s,⊕,⇐

program and g(t) is an IDB atom. A DATALOG¬s,⊕,⇐ optimization query is a pair 〈P,
opt|g(t)|〉, where opt is either max or min. �

The query 〈P2, v(X)〉 of Example 2 is a DATALOG¬s,⊕,⇐ search query, whereas the

query 〈P2, min|v(X)|〉 is a DATALOG¬s,⊕,⇐ optimization query.

Semantics. The declarative semantics of a DATALOG¬s,⊕,⇐ query is given in terms of

an “equivalent” DATALOG¬ query and stable model semantics. Specifically, given a

DATALOG¬s,⊕,⇐ program P, st(P) denotes the standard DATALOG¬ program derived

from P as follows:

(1) Every standard rule in P belongs to st(P),
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(2) Every disjunctive rule r ∈ P of the form (1) is translated into k rules of the

form:

pj(Xj)← Body(X),¬p1(X1), . . . ,¬pj-1(Xj-1),¬pj+1(Xj+1), . . . ,¬pk(Xk)

with j ∈ [1..k], plus ((k − 1)× k)/2 constraints of the form:

⇐ Body(X), pi(Xi), pj(Xj)

with i, j ∈ [1..k] and i < j. It is worth noting that the constraints are necessary

only if pj is defined by some other rule.

(3) Every generalized disjunctive rule of the form (2) is translated into the two

rules:

p(X, L) ← Body(X,Y, L), ¬diff p(X, L),

diff p(X, L)← Body(X,Y, L), p(X, L′), L′ �= L,

where diff p is a new predicate symbol and L′ is a new variable, plus the

constraint:

⇐ Body(X,Y, L), p(X, L1), p(X, L2), L1 �= L2.

Here diff p is used to avoid inferring two ground atoms p(x, l1) and p(x, l2)

with l1 �= l2. Observe that even in this case the constraint has to be introduced

if p is defined by some other rule.

(4) Every constraint rule of the form (3) is translated into a rule of the form:

c← Body(X),¬c,

where c is a new predicate symbol not appearing elsewhere.

For any DATALOG¬s,⊕,⇐ search query Q = 〈P, g(t)〉 (resp. optimization query

OQ = 〈P, opt|g(t)|〉), st(Q) = 〈st(P), g(t)〉 (resp. st(OQ) = 〈st(P), opt|g(t)|〉) denotes

the corresponding DATALOG¬ (resp. optimization) query.

Definition 4

Given a DATALOG¬s,⊕,⇐ query Q and a database D, the (nondeterministic) answer

to the query Q over D is obtained by applying the DATALOG¬ query st(Q) to D, i.e.,

Q(D) = st(Q)(D). �

It is worth noting that DATALOG¬s,⊕,⇐ has the same expressive power of DATALOG¬,

that is both NP search and optimization problems can be expressed by means

of DATALOG¬s,⊕,⇐ queries under stable model semantics (Zumpano et al. 2004).

The further restricted languages DATALOG¬s,⊕ (Datalog with stratified negation and

exclusive disjunction) and DATALOG⊕,⇐ (Datalog with exclusive disjunction and

constraints) have the same expressive power. A similar result has been presented

in (East and Truszczynski 2006), where it has been shown that positive Datalog

with constraints and head (inclusive) disjunction, called PS logic, has the same

expressive power as DATALOG¬. Clearly, DATALOG⊕,⇐ is captured by PS logic, since

exclusive disjunction can be emulated by using inclusive disjunction and constraints.

It is interesting to observe that analogous results could be obtained for others ASP

languages. For instance, (positive) Datalog with cardinality constrains, as proposed

in Smodels, captures the expressive power of DATALOG¬ since exclusive disjunction
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and denial constraints can be emulated by means of cardinality constraints (Niemela

et al. 1999).

4 NPDatalog

We now present a simplified version of DATALOG¬s,⊕,⇐ introducing further restrictions

on disjunctive rules. The basic idea consists in restricting DATALOG¬s,⊕,⇐ to obtain,

without loss of expressive power, a language which can be executed more efficiently

or easily translated in other formalisms.

In the following rules, Body(X,Y) denotes a conjunction of literals where X and

Y are vectors of range restricted variables.

A partition rule is a disjunctive rule of the form:

p1(X)⊕ · · · ⊕ pk(X)← Body(X,Y) (4)

or of the form

p0(X, c1)⊕ · · · ⊕ p0(X, ck)← Body(X,Y), (5)

where p0, p1, . . . , pk are distinct IDB predicates not defined elsewhere in the program

and c1, . . . , ck are distinct constants. The intuitive meaning of these rules is

that the projection of the relation defined by Body(X,Y) on X is partitioned

nondeterministically into k relations or k distinct sets of the same relation. Clearly,

every rule of form (5) can be rewritten into a rule of form (4) and vice versa.

A generalized partition rule is a (generalized) disjunctive rule of the form:

⊕L p(X, L)← Body(X,Y), d(L), (6)

where p is an IDB predicate not defined elsewhere and d is a database domain

predicate specifying the domain of the variable L. The intuitive meaning of such a

rule is that the projection of the relation defined by Body(X,Y) on X is partitioned

into a number of subsets equal to the cardinality of the relation d.

In the following, the existence of subset rules is also assumed, i.e., rules of the form

s(X) ⊆ Body(X,Y), (7)

where s is an IDB predicate not defined elsewhere in the program. Observe that

a subset rule of the form above corresponds to the generalized partition rule with

d = {0, 1}. On the other hand, every generalized partition rule can be rewritten into

a subset rule and constraints.

In the previous rules, Body(X,Y) is a conjunction of literals not depending on

predicates defined by partition or subset rules. We recall that the subset rules used

here are based on the proposal in Greco and Saccà (1997). A similar type of subset

rules has also been proposed by Gelfond (2002) where the language ASET-Prolog

(an extension of A-Prolog with sets) is presented.

Definition 5

An NPDatalog program consists of three distinct sets of rules:

(1) partition and subset rules defining guess (IDB) predicates,
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(2) standard stratified datalog rules defining standard (IDB) predicates, and

(3) constraints rules.

where every guess predicate is defined by a unique subset or partition rule. �

According to the definition above, the set of IDB predicates of an NPDatalog
program can be partitioned into two distinct subsets (namely, guess and standard)

depending on the rules used to define them. Clearly, predicates defined by partition

or subset rules are not recursive as the body of these rules cannot contain guess

predicates or predicates depending on guess predicates.

Example 1

Vertex cover (version 3). TheNPDatalog program:

v(X) ⊆ node(X).

edge(X, Y)⇒ v(X) ∨ v(Y).

is derived from the one presented in Example 2 by replacing the disjunctive rule

defining v with a subset rule. �

It is important to note that here a simpler form of DATALOG¬s,⊕,⇐ queries is

considered. Therefore, NPDatalog ⊆ DATALOG¬s,⊕,⇐ and every NPDatalog query

can be rewritten into an equivalent DATALOG¬ query.

Definition 6

An NPDatalog search query is a pair Q = 〈P, g(t)〉, where P is an NPDatalog
program and g(t) is an IDB atom denoting the output relation. An NPDatalog
optimization query is a pair 〈P, opt|g(t)|〉, where opt ∈ {max,min}. �

Observe that, for the sake of simplicity, our attention is restricted to optimization

queries computing the maximum or minimum cardinality of the output relation,

although any polynomial function might be used. Moreover, as stated by the

following theorem, NPDatalog captures the complexity classes of NP search

and optimization problems.

Theorem 1

(1) search(NPDatalog) = QNPMV, and

(2) opt(NPDatalog) = OPT QNPMV.

Proof. Membership is trivial as NPDatalog ⊆ DATALOG¬s,⊕,⇐.

To prove hardness the well-known Fagin’s result is used (Fagin 1974; see also

Johnson 1990; Papadimitriou 1994): it states that every NP recognizable database

collection is defined by an existential second-order formula ∃RΦ, where R is a list of

new predicate symbols and Φ is a first-order formula involving predicate symbols in

a database schema DS and in R. As shown in (Kolaitis and Papadimitriou 1991),

this formula is equivalent to one of the form (second-order Skolem normal form)

(∃S)(∀X)(∃Y)(θ1(X,Y) ∨ . . . ∨ θk(X,Y)),

where S is a superlist of R, θ1, . . . , θk are conjunctions of literals involving

variables in X and Y, and predicate symbols in S and DB. Consider the
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program P:

sj(Wj)⊕ ŝj(Wj) ← (∀sj ∈ S),

q(X) ← θi(X,Y ) (1 � i � k),

g ← ¬q(X).

The first group of rules selects a set of constants from the database domain, for each

predicate symbol sj . The second group of rules implements the above second-order

formula. The third rule checks if there is some X for which the formula is not

satisfied. Therefore, the formula is satisfied if, and only if, there is a stable model M

such that ¬g ∈M. �

Thus, NPDatalog has the same expressive power as both DATALOG¬s,⊕,⇐ and

DATALOG¬. The idea underlying NPDatalog is that NP search and optimization

problems can be expressed using partition (or subset) rules to guess partitions or

subsets of sets, whereas constraints are used to verify properties to be satisfied

by guessed sets or sets computed by means of stratified rules. It is important to

observe that the proof of Theorem 1 follows a schema which has been used in other

proofs concerning the expressive power of Datalag with negation under stable model

semantics (Schlipf 1995; Saccà 1997; Baral 2003). Indeed, in such proofs (see, for

instance, the proof of Theorem 6.3.1 in Baral 2003) negation is only used to express

exclusive disjunction and constraints.

Although the aim of this work is not the definition of techniques for the efficient

computation of queries, we would point out that NPDatalog programs can be

computed following the classical stratified fixpoint algorithm enriched with a guess

and check technique.

The advantage of expressing search and optimization problems by using rules with

built-in predicates rather than standard DATALOG¬ rules is that the use of built-in

atoms preserves simplicity and intuition in expressing problems and allows queries

to be easily optimized and translated into other target languages for which efficient

executors exist. A further advantage is that the use of built-in predicates in expressing

optimization queries permits us to easily identify problems for which “approximate”

answers can be found in polynomial time. For instance, maximization problems

defined by constraint free NPDatalog queries where negation is only applied to

guess atoms or atoms not depending on guess atoms (called deterministic) are

constant approximable (Greco and Saccà 1997). Indeed, these problems belong

to the class of constant approximable optimization problems MAX Σ1
3 (Kolaitis

and Thakur 1995) and, therefore, NPDatalog could also be used to define the

class of approximable optimization problems, but this is outside the scope of this

paper.

NPDatalog allows us to also use a finite subset of the integer domain and the

standard built-in arithmetic operators. More specifically, reasoning and computing

over a finite set of integer ranges is possible with the unary predicate integer, which

3 This class was firstly introduced in (Papadimitriou and Yannakakis 1991) as MAX NP.
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consists of the facts integer(x), with MinInt � x � MaxInt, and the standard

arithmetic operators defined over the integer domain.

The following example shows how the arithmetics operators could be used to

compute prime numbers

composite(X)← integer(Y), integer(Z), X = Y ∗ Z.
prime(X)← integer(X), not composite(X).

Thus, the language allows arithmetic expressions which involve variables taking

integer values to appear as operands of comparison operators (see Example 9).

4.1 Examples

Some examples are now presented showing how classic search and optimization

problems can be defined inNPDatalog.

Example 4

Max satisfiability. Two unary relations c and a are given in such a way that a fact

c(x) denotes that x is a clause and a fact a(v) asserts that v is a variable occurring

in some clause. We also have two binary relations p and n such that the facts p(x, v)

and n(x, v) state that a variable v occurs in the clause x positively or negatively,

respectively. A boolean formula, in conjunctive normal form, can be represented by

means of the relations c, a, p, and n.

The maximum number of clauses simultaneously satisfiable under some truth

assignment can be expressed by the query 〈Psat, max|f(X)|〉 where Psat is the

following program:

s(X) ⊆ a(X).

f(X) ← p(X, V), s(V).

f(X) ← n(X, V), ¬s(V). �

Observe that the max satisfiability problem is constant approximable as no

constraints are used and negation is applied to guess atoms only.

In the following examples, a database graph G = 〈N,E〉 defined by means of the

unary relation node and the binary relation edge is assumed.

Example 5

k-Coloring. Consider the well-known problem of k-colorability consisting in finding

a k-coloring, i.e., an assignment of one of k possible colors to each node of a graph G

such that no two adjacent nodes have the same color. The problem can be expressed

by means of the NPDatalog query 〈Pk-col, col(X, C)〉 where Pk-col consists of the

following rules:

⊕C col(X, C)← node(X), color(C).

⇐ edge(X, Y), col(X, C), col(Y, C).

and the base relation color contains exactly k colors. The first rule guesses an

assignment of colors to the nodes of the graph, while the constraint verifies that two

joined vertices do not have the same color. �
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Example 6

Min Coloring. The query modeling the Min Coloring problem is obtained from the

k-coloring example by adding a rule storing the used colors as follows:

⊕C col(X, C)← node(X), color(C).

⇐ edge(X, Y), col(X, C), col(Y, C).

used color(C)← col(X, C).

and replacing the query goal with min|used color(C)|. �

Example 7

Min Dominating Set. Given a graph G = 〈N,E〉, a subset of the vertex set V ⊆ N

is a dominating set if for all u ∈ N − V there is a v ∈ V such that (u, v) ∈ E. The

NPDatalog query 〈Pds, v(X)〉 expresses the problem of finding a dominating set,

where Pds is the following program:

v(X) ⊆ node(X).

connected(X)← edge(X, Y), v(Y).

node(X) ∧ ¬v(X)⇒ connected(X).

The constraint states that every node not belonging to the dominating set, namely

the relation v, must be connected to some node in v. A dominating set is said to

be minimum if its cardinality is minimum. Therefore, the optimization problem is

expressed by replacing the query goal v(X) with min|v(X)|. �

Note that if anNP minimization query has an empty answer there is no solution

for the associated search problem.

Example 8

Min Edge Dominating Set. Given a graph G = 〈N,E〉, a subset of the edge set A ⊆ E

is an edge dominating set if for all e1 ∈ E−A there is an e2 ∈ A such that e1 and e2

are adjacent. The min edge dominating set problem is defined by the NPDatalog
query 〈Peds, min|e(X, Y)|〉 where Peds consists of the following rules:

e(X, Y) ⊆ edge(X, Y).

v(X)← e(X, Y).

v(Y)← e(X, Y).

edge(X, Y)⇒ v(X) ∨ v(Y). �

Example 9

N-Queens. This problem consists in placing N queens on an N × N chessboard in

such a way that no two queens are in the same row, column, or diagonal. It can be

expressed by the NPDatalog query 〈Pqueen, queen(R, C)〉 where Pqueen consists of

the following rules:

⊕C queen(R, C)← num(R), num(C).

⇐ queen(R1, C), queen(R2, C), R1 �= R2.

⇐ queen(R1, C1), queen(R2, C2), R1 �= R2, R1 + C1 = R2 + C2.

⇐ queen(R1, C1), queen(R2, C2), R1 �= R2, R1 − C1 = R2 − C2.
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The database contains facts of the form num(1) . . . num(N) for the N-queens problem.

The partition rule assigns to each row exactly one queen. The first constraint states

that no two different queens are in the same column. The last two constraints state

that no two different queens are on the same diagonal. �

Example 10

Latin Squares. This problem consists in filling an N × N table with N different

symbols in such a way that each symbol occurs exactly once in each row and

exactly once in each column. Tables are partially filled. The NPDatalog query

〈Pls, square(R, C, V)〉 expresses the problem, where Pls consists of the following

rules:

⊕V square(R, C, V)← num(R), num(C), num(V)

⇐ square(R, C1, V), square(R, C2, V), C1 �= C2
⇐ square(R1, C, V), square(R2, C, V), R1 �= R2
square(R, C, V)⇐ preassigned(R, C, V).

The database contains facts of the form num(1) . . . num(N) for an N × N table and

facts of the form preassigned(R, C, V) whose meaning is that the entry 〈R, C〉 of the

table contains the symbol V (here the symbols used are the numbers from 1 to N).

The partition rule assigns exactly one symbol to each entry of the table. The first

(resp. second) constraint states that a symbol cannot occur more than once in the

same row (resp. column). The last constraint states that preassigned symbols must

be respected. �

5 Translating NP Datalog queries into OPL programs

Several languages have been designed and implemented for hard search and

optimization problems. These include logic languages based on stable models (e.g.,

DeRes, DLV 4, ASSAT 5, Smodels6, Cmodels, Clasp7) (Cholewinski et al. 1996; Simons

et al. 2002; Lin and Zhao 2004; Lierler 2005a, 2005b; Leone et al. 2006; Gebser

et al. 2007), constraint logic programming systems (e.g., SICStus Prolog8, ECLiPSe,

XSB9, Mozart) (Rao et al. 1997; Van Roy 1999; Wallace and Schimpf 1999) and

constraint programming languages (e.g., ILOG OPL, Lingo) (Van Hentenryck 1988;

Finkel et al. 2004). The advantage of using logic languages based on stable model

semantics with respect to constraint programming is their ability to express complex

NP problems in a declarative way. On the other hand, constraint programming

languages are very efficient in solving optimization problems.

As NPDatalog is a language to express NP problems, the implementation

of the language can be performed by translating queries into target languages

specialized in combinatorial optimization problems, such as constraint programming

languages. The implementation of NPDatalog is carried out by means of a

4 DLV Web Site. URL: http://www.dbai.tuwien.ac.at/proj/dlv/
5 ASSAT Web Site. URL: http://assat.cs.ust.hk/
6 Smodels Web Site. URL: http://www.tcs.hut.fi/Software/smodels/
7 Clasp Web Site. URL: http://www.cs.uni-potsdam.de/clasp/
8 SICStus Prolog Web Site. URL: http://www.sics.se/isl/sicstuswww/site/index.html
9 XSB Web Site. URL: http://xsb.sourceforge.net/
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system prototype translating NPDatalog queries into OPL programs. OPL is

a constraint programming language well suited for solving both search and

optimization problems. OPL programs are computed by means of the ILOG OPL

Development Studio. This section shows how NPDatalog queries are translated

into OPL programs.

NPDatalog programs have an associated database schema specifying the used

database domains and for each base predicate the domain associated with each

attribute. For instance, the database schema associated with the min coloring query

of Example 6 is

DOMAINS : node; color.

PREDICATES : edge(node, node).

Starting from the database schema, the compiler also deduces the schema of

every derived predicate and introduces new domains, obtained from the database

domains. For instance, for the program of Example 6 the schemas associated

with the predicates col and used color are, respectively, col(node, color) and

used color(color). Considering the program of Example 6 and assuming to also

have the following rules:

p(X)← node(X).

p(X)← color(X).

q(X)← node(X), color(X).

the schemas associated with p and q are p(Dp) and q(Dq), where Dp is the union

of the domains node and color, whereas Dq is the intersection of the domains

node and color. Database domain instances are defined by means of unary ground

facts. Integer domains are declared differently. For instance, the database schema

associated with the N-queens program of Example 9 is as follows:

INT-DOMAINS : num .

Moreover, whenever the integer predicate is used in a program, the range of

considered integers has to be specified in the schema, as shown in the following

example:

MinInt = 0.

MaxInt = 10.

A predicate p is said to be constrained if (i) p depends on a guess predicate, and

(ii) there is a constraint or an optimized query goal containing p or containing a

predicate q which depends on p. Moreover, a constrained predicate is said to be

recursion-dependent if it is recursive or depends on a constrained recursive predicate.

Every NPDatalog program P consists of a set PS of standard rules, a set

PG of rules defining guess predicates and a set PC of constraints. A program

P = PS ∪PG ∪PC can be also partitioned into four sets:

(1) P1 = P1
S consisting of the set of rules defining standard predicates not

depending on guess predicates;

(2) P2 = PG ∪P2
S ∪P2

C consisting of (i) the set of rules defining guess predicates

(PG), (ii) the set of standard rules defining constrained predicates which are
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not recursion-dependent (P2
S ), and (iii) the set of constraints P2

C containing

only base predicates and predicates defined in PG ∪P1
S ∪P2

S ;

(3) P3 = P3
S ∪ P3

C consisting of the set of standard rules defining constrained,

recursion-dependent predicates (P3
S ) and the set of constraints P3

C containing

predicates defined in P3
S ;

(4) P4 = P4
S consisting of the set of rules defining standard predicates which

depend on guess predicates and are not constrained.

The evaluation of anNPDatalog program P over a database DB is carried out

by performing the following steps:

(1) First, the (unique) stable model of 〈P1
S , DB〉 (say it DB∪M1) is computed.

(2) Next, a stable model of 〈P2
S ∪ PG, DB ∪M1〉 satisfying the constraints P2

C

(say it DB∪M1 ∪M2) is computed.

(3) Afterward, if a model DB ∪M1 ∪M2 exists, the (unique) stable model of

〈P3
S , DB∪M1 ∪M2〉 (say it DB∪M1 ∪M2 ∪M3) is computed. If this model

satisfies the constraintsP3
C , then the next step is executed, otherwise the second

step is executed again, that is, another stable model of 〈P2
S ∪ PG, DB ∪M1〉

satisfying the constraints P2
C is computed.

(5) Finally, if a model DB ∪M1 ∪M2 ∪M3 satisfying the constraints P3
C exists,

the (unique) stable model of 〈P4
S , DB∪M1 ∪M2 ∪M3〉 is evaluated.

It is worth noting that, if there is no constrained recursive predicate, the component

P3 is empty and then an NPDatalog program can be evaluated by performing

only steps 1, 2, and 4 (i.e., the iteration introduced in step 3 is not needed).

The partition of programs into four components suggests that subprograms P1
S ,

P3
S , and P4

S can be evaluated by means of the standard fixpoint algorithm. In the

following, stratified subprograms, such as P1
S , P3

S , and P4
S , are called deterministic

as they have a unique stable model, whereas subprograms which may have zero or

more stable models are called nondeterministic. Thus, given a database DB and an

NPDatalog query Q = 〈P ,G〉, we have to generate an OPL program equivalent to

the application of the query Q to the database DB.

We first show how the database is translated and next consider the translation of

queries.

Database translation. An integer domain relation is translated into a set of integers,

whereas a noninteger domain relation is translated into a set of strings. The

translation of a base relation with arity n > 0 consists of two steps: (i) declaring

a new tuple type with n fields (whose type is either string or integer, according

to the schema), (ii) declaring a set of tuples of this type. For instance, the

translation of the database containing the facts node(a), node(b), node(c), node(d),

edge(a, b), edge(a, c), edge(b, c), and edge(c, d), consists of the following OPL

declarations:

{string} node = {a, b, c, d};
tuple edge type {string a1; string a2; };
{edge type} edge = {〈a, b〉, 〈a, c〉, 〈b, c〉, 〈c, d〉}.
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The database num(1), num(2), num(3) for the N-Queens problem of Example 9 is

translated as follows:

{int} num = {1, 2, 3}.

When an integer range is specified in the schema, the following set is added to

the OPL database:

{int} integer = asSet(MinInt .. MaxInt),

where MinInt and MaxInt are the values specified in the schema.

Query translation. The translation of anNPDatalog query Q = 〈P, G〉 is carried out

by translating the deterministic subprograms into ILOG OPL Script programs by

means of a function Fixp and the nondeterministic subprograms into OPL programs

by means of a function WP or a slightly different function WQ if the predicate in

the query goal is defined in P2. More specifically, Fixp(P) generates an OPL script

program which emulates the fixpoint computation of P, whereas WP(P) (resp.

WQ(Q)) translates the NPDatalog program P (resp. query Q) into an equivalent

OPL program.

It is worth noting that

(1) If the query goal is not defined over component P4, this component does not

need to be evaluated and, therefore, it is not translated into an OPL Script

program.

(2) If the query goal is defined in component P1, we have to check that the

components P2 and P3 admit stable models.

(3) If the query goal G is defined in component P2, we have to compute the query

〈P2, G〉 over the stable model (which includes the database) obtained from the

computation of component P1 and check that component P3 admits stable

models.

(4) Similarly, if the query goal G is defined in component P3, we have to compute

the query 〈P3, G〉 over a stable model of P1 ∪P2 ∪ DB.

(5) If the query goal G is defined in component P4, first we compute a stable

model M for components P1, P2 and P3 and next compute the fixpoint of

component P4 over M.

First, we informally present how a deterministic component (P1
S , P3

S , and P4
S in

our partition) is translated into an ILOG OPL Script program, and next we show

how the remaining rules are translated into an OPL program.

Translation of deterministic components. The translation of a stratified program PS

produces an ILOG OPL Script program which emulates the application of the naive

fixpoint algorithm to the rules in PS .

The following example shows how a set of stratified rules is translated into an

ILOG OPL Script program.
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Example 11

Transitive closure. Consider the following NPDatalog program Ptc computing the

transitive closure of a graph:

tc(X, Y)← edge(X, Y).

tc(X, Y)← edge(X, Z), tc(Z, Y).

The corresponding OPL Script program Fixp(Ptc) is as follows:

// tc declaration

int tc [node][node];

execute{
// exit rule

for (var x in edge) {
tc [x.a1][x.a2] = 1;

}
// recursive rule

var modified = true;

while (modified) {
modified = false;

for (var e in edge)

for (var y in node)

if (tc [e.a2][y] == 1 & tc [e.a1][y] == 0) {
tc [e.a1][y] = 1;

modified = true;

}
}

}
�

In the program above we have three sets of statements declaring variables and

computing exit and recursive rules. Specifically:

(1) A two-dimensional integer array tc is declared.

(2) The first forall block evaluates the exit rule defining tc by inserting each edge

into the transitive closure.

(3) The recursive rule is evaluated by means of the classical naive fixpoint

algorithm (Ullman 1988). Specifically, the statements inside the while block

insert a pair 〈e.a1, y〉 in the transitive closure, if there exist an edge 〈e.a1, e.a2〉
and a node y such that the transitive closure contains the pair 〈e.a2, y〉. The

loop ends when no more pairs of nodes can be derived.

If a program contains negated literals, it is possible to apply the stratified fixpoint

algorithm, by dividing the rules into strata and computing one stratum at a time,

following the order derived from the dependencies among predicate symbols.

Translation of nondeterministic components. The translation of a nondeterministic

program P (denoted by WP(P)) produces an OPL program. For the sake of

simplicity of presentation, it is assumed that P satisfies the following conditions:

• Guess predicates are defined by either generalized partition rules or subset

rules;
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• Standard predicates are defined by a unique extended rule of the form:

A← body1 ∨ · · · ∨ bodym,

where bodyi is a conjunction of literals;

• Constraint rules are of the form A⇐ B, where A is a disjunction of atoms and

B is a conjunction of atoms;

• Rules do not contain two (or more) occurrences of the same variable taking

values from different domains;

• Constants appear only in built-in atoms of the form x θ y where θ is a

comparison operator.

It should be noticed that the previous assumptions do not imply any limitation

as every program can be rewritten in such a way that it satisfies them. For instance,

the two rules defining the predicate f in Example 4 can be rewritten into the rule

f(X)← (p(X, V), s(V)) ∨ (n(X, Z),¬s(Z)),

whereas the rules defining the predicate v in Example 8 can be rewritten in the form

v(X)← e(X, V) ∨ e(U, X).

Specifically, the function WP receives in input a program P and gives in output

an OPL program consisting of two components WP(P) = (TD(P),TP(P)), where

(i) TD(P) consists of the definition of arrays of integers and decision variables, (ii)

TP(P) translates theNPDatalog program into an OPL program. Analogously, the

functionWQ receives in input anNPDatalog query Q = 〈P, G〉 and gives in output

an OPL program consisting of two componentsWQ(〈P, G〉) = (TD(P),TQ(〈P, G〉)),
where TQ(〈P, G〉) translates theNPDatalog query into an OPL program.

The function TD(P) introduces some data structures for each IDB predicate

defined in P. Specifically, for each IDB predicate p defined in P2 with arity k, a

k-dimensional array of boolean decision variables is introduced as follows:

dvar boolean p[D1, . . . , Dk];

where D1, . . . , Dk denote the domains on which the predicate p is defined. For instance,

for the binary predicate col of Example 6 the declaration

dvar boolean col[node, color];

is introduced. For any other IDB predicate q defined in P with arity m, a m-

dimensional array of integers is introduced as follows:

int q[D1, . . . , Dm];

where D1, . . . , Dm denote the domains on which the predicate p is defined.

The function TQ and TP are defined as follows:

(1) Query: TQ(〈P, G〉) =TQ(G) TP(P)

(2) Goal:

(a) TQ(v(X1, . . . , Xk)) = ∅
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(b) TQ(min|v(X1, . . . , Xk)|)
= minimize sum(X1 in dom(X1), . . . , Xk in dom(Xk)) v[X1, . . . , Xk];

(c) TQ(max|v(X1, . . . , Xk)|)
= maximize sum(X1 in dom(X1), . . . , Xk in dom(Xk)) v[X1, . . . , Xk];

(3) Sequence of rules: TP(S1 . . . Sn) = subject to{ TP(S1) . . . TP(Sn)};
(4) Partition rules of the form

⊕Ls(X1, . . . , Xk, L)← body(X1, . . . , Xk, Y1, . . . , Yn), d(L)

are translated into the following OPL statement:

forall(X1 in dom(X1), . . . , Xk in dom(Xk))

TP(∃(Y1, . . . , Yn) body(X1, . . . , Xk, Y1, . . . , Yn)) > 0

⇒ sum(L in d) s[X1, . . . , Xk, L] == 1;

forall(X1 in dom(X1), . . . , Xk in dom(Xk), L in d)

s[X1, . . . , Xk, L] > 0⇒TP(∃(Y1, . . . , Yn) body(X1, . . . , Xk, Y1, . . . , Yn)) > 0;

(5) Subset rules of the form

s(X1, . . . , Xk) ⊆ body(X1, . . . , Xk, Y1, . . . , Yn) are translated as follows:

forall(X1 in dom(X1), . . . , Xk in dom(Xk))

s[X1, . . . , Xk] > 0⇒TP(∃(Y1, . . . , Yn) body(X1, . . . , Xk, Y1, . . . , Yn)) > 0;

(6) Standard rules of the form

p(X1, . . . , Xk) ← Body1(X1, . . . , Xk, Y11, . . . , Y
1
n1

) ∨ · · · ∨ Bodym(X1, . . . , Xk, Ym1, . . . , Y
m
nm

)

are translated as follows:

forall(X1 in dom(X1), . . . , Xk in dom(Xk))

p[X1, . . . , Xk] > 0⇔TP(∃(Y11, . . . , Y1n1 )Body1)+ · · ·+TP(∃(Ym1, . . . , Ymnm )
Bodym) > 0;

where Yi1, . . . , Y
i
ni

is the list of existentially quantified variables in Bodyi.
(7) Conjunction of literals with existentially quantified variables: A conjunction of

literals with n > 0 existentially quantified variables is translated as follows:

TP(∃(Y1, . . . , Yn)Body) = (sum(Y1 in D1, . . . , Yn in Dn) (TP(Body)))

where Dj is the domain associated with the variable Yj.
(8) Conjunction of literals without existentially quantified variables:

TP(A1, . . . , Ak) =

{
(TP(A1) ∗ · · · ∗ TP(Ak)) if k > 0

1 if k = 0
(9) Literal:

TP(q(X1, . . . , Xk)) =

{
q[X1, . . . , Xk], if q is a derived pred.

(sum(〈X1, . . . , Xk〉 in q) 1 > 0), if q is a base pred.

TP(q(X)) = (sum(X in q) 1 > 0) if q is a domain predicate,

TP(E1 θ E2) = (E1 θ E2), where θ is a comparison operator and E1, E2 are

either variables or constants or arithmetic expressions,

TP(¬A) = (1−TP(A));
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(10) Constraints of the form A1∨· · ·∨Am ⇐ body(X1, . . . , Xk) where body(X1, . . . , Xk)

is a conjunction of atoms are translated as follows:

TP( A1 ∨ · · · ∨ Am ⇐ body(X1, . . . , Xk))

= forall(X1 in dom(X1), . . . , Xk in dom(Xk))

TP(body(X1, . . . , Xk)) > 0 ⇒ (TP(A1) + · · ·+TP(Am)) > 0;

For m = 0 the above constraint becomes TP(body(X1, . . . , Xk)) > 0 ⇒ false.

Observe that the OPL code associated with the translation of a rule can be

simplified by means of trivial reductions. As an example, an expression of the form:

((c > 0) > 0) can be simply replaced by (c > 0), whereas expressions of the form

1 ∗ 1 are replaced by 1.

The following theorem shows the correctness of our translation. As we partition a

program P into four distinct components P1, P2, P3, and P4, where the components

P1, P3
S , and P4 are computed by means of a fixpoint algorithm, whereas the

components P2 and P 3
C are translated into OPL programs, we next show the

correctness of the translation of queries Q = 〈P, G〉, where P = P2, i.e., we assume

that components P1, P3, and P4 are empty. Thus, such queries consist only of

rules defining guess predicates, constraints and standard rules defining constrained

predicates which are not recursion-dependent. Programs and queries of this form

will be called R-NPDatalog (restrictedNPDatalog).

Theorem 2

For every R-NPDatalog query Q,WQ(Q) ≡ Q.

Proof. For each R-NPDatalog query Q = 〈P, G〉, where each standard predicate

is defined by a unique extended rule, the query Qr = 〈Pr, Gr〉 is derived as follows:

(1) Every generalized partition rule of the form:

⊕Ls(X1, . . . , Xk, L)← body(X1, . . . , Xk, Y1, . . . , Yn), d(L)

is substituted by the constraints:

body(X1, . . . , Xk, Y1, . . . , Yn)⇒ s(X1, . . . , Xk, L),

s(X1, . . . , Xk, L1), s(X1, . . . , Xk, L2)⇒ L1 = L2,

s(X1, . . . , Xk, L)⇒ body(X1, . . . , Xk, Y1, . . . , Yn).

(2) Each subset rule of the form:

s(X1, . . . , Xk) ⊆ body(X1, . . . , Xk, Y1, . . . , Yn)

is replaced by the constraint:

s(X1, . . . , Xk)⇒ body(X1, . . . , Xk, Y1, . . . , Yn).

(3) Every standard rule of the form:

A← Body1 ∨ · · · ∨ Bodym
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is replaced by the constraint10:

A⇔ Body1 ∨ · · · ∨ Bodym.

(4) For each derived predicate p with schema p(dom1, . . . , domk) we introduce (i) a

new predicate symbol p′ with schema p′(dom1, . . . , domk), and (ii) a rule of the

following form:

p(X1, . . . , Xk)⊕ p′(X1, . . . , Xk)← dom1(X1), . . . , domk(Xk). (8)

These rules are introduced to assign, nondeterministically, a truth value to

derived atoms.

Clearly, the queries Q and Qr are equivalent as the correct truth value of derived

atoms is determined by the constraints. It is worth pointing out that for each

(partition, subset, and standard) rule r a constraint of the form Head(r)⇒ Body(r)

was introduced to guarantee that models contain only “supported atoms”, i.e., atoms

derivable from r.

The program WQ(Q) is just a translation of Qr into OPL statements where:

• Rules of form (8) do not need to be translated into correspondent OPL

statements as each derived predicate p, defined by such a rule, is translated

into a boolean k-dimensional array.

• The first two constraints, derived from the rewriting of partition rules, for

ensuring (i) the assignment of each element in the body to some class L

and (ii) the uniqueness of this assignment, are rewritten into a unique OPL

constraint. �

Example 12

Min Coloring. The OPL program corresponding to the (simplified) translation of the

min coloring query of Example 6 is as follows:

dvar boolean col[node,color];

dvar boolean used color[color];

minimize

sum(c in color) used color[c];

subject to {
forall (x in node)

(sum (x in node) 1 > 0) > 0 ⇒ sum(c in color) col[x, c] == 1;

forall (x in node, c in color)

col[x, c] > 0⇒ (sum(x in node) 1 > 0) > 0;

forall (c in color)

10 A shorthand for the two constraints:

A⇒ Body1 ∨ · · · ∨ Bodym
A⇐ Body1 ∨ · · · ∨ Bodym
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used color[c] > 0⇔ sum(x in node) col[x, c] > 0;

forall (x in node, y in node, c in color)

(sum(〈x, y〉 in edge) 1 > 0) ∗ col[x, c] ∗ col[y, c] > 0⇒ false;

}; �

Code optimization. The number of (ground) constraints can be strongly reduced by

applying simple optimizations to the OPL code.

• Range restriction. If the OPL code contains constructs of the form:

forall(X1 in D1, . . . , Xn in Dn)

(sum(〈X1, . . . , Xk〉 in T) 1 > 0) 〈Statement1〉 ⇒ 〈Statement2〉

the sum construct can be deleted so that the constraint can be rewritten as

follows:

forall(〈X1, . . . , Xk〉 in T, Xk+1 in Dk+1, . . . , Xn in Dn)

1 〈Statement1〉 ⇒ 〈Statement2〉

If the OPL code contains constructs of the form

forall(X1 in D1, . . . , Xn in Dn)

(sum(X1 in D1) 1 > 0) 〈Statement〉

the sum construct can be deleted so that the constraint can be rewritten as

forall(X1 in D1, . . . , Xn in Dn)

1 〈Statement〉

Example 13

By applying the optimizations above, the min coloring problem can be

rewritten as follows:

dvar boolean col[node,color];

dvar boolean used color[color];

minimize

sum(c in color) used color[c];

subject to {
forall (x in node)

1 > 0 ⇒ sum(c in color) col[x, c] == 1;

forall (x in node, c in color)

col[x, c] > 0⇒ 1 > 0;

forall (c in color)

used color[c] > 0⇔ sum(x in node) col[x, c] > 0;

forall (〈x, y〉 in edge, c in color)

col[x, c] ∗ col[y, c] > 0⇒ false;

}; �
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• Constraint optimization. A very simple optimization consists in deleting the

OPL constraints whose head is always true (e.g., the head consists of the

constant 1) as they are always satisfied. For instance, in the above example the

second OPL constraint can be deleted as its head consists of the constant 1.

An additional simple optimization can be performed by “pushing down”

conditions defined inside the OPL constraints. For instance, the following code:

Q (X1 in D1, . . . , Xk in Dk) 〈statement1〉 Xi θ Xj ⇒ 〈statement2〉,

where Q is either forall or sum, Xi and Xj are either variables or constants or

arithmetic expressions, θ is a comparison operator, can be rewritten as

Q (X1 in D1, . . . , Xk in Dk : Xi θ Xj) 〈statement1〉 ⇒ 〈statement2〉

• Arrays reduction. A further optimization can be performed by reducing the

dimension of the arrays (of decision variables) corresponding to some guess

predicates. Specifically, given a guess predicate s defined by generalized

partition rules of the form:

⊕Ls(X1, . . . , Xk, L)← body(X1, . . . , Xk, Y1, . . . , Yn), dom(L)

instead of declaring a (k+1)-dimensional array of boolean decision variables,

it is possible to introduce a k-dimensional array s of integer decision variables

ranging in {0, . . . , |dom|} and map each value in dom to {1, . . . , |dom|} by means of

a one-to-one function. The meaning of s[X1, . . . , Xk] = c is that if c �= 0 then the

atom s(X1, . . . , Xk, c′) is true, where c′ is the value in dom corresponding to the

integer c; if c = 0 then the atom s(X1, . . . , Xk, c′) is false for any value c′ in dom.

Clearly, to make consistent the OPL program, every instance of s[X1, . . . , Xk, C]

must be substituted with (s[X1, . . . , Xk] == C) and in each forall or sum state-

ment containing variables ranging in dom the condition C �= 0 must be verified.

Example 14

The application of the previous optimizations to the program of Example 13

gives the following OPL program:

int cardcolor = card(color);

range intcolor = 0 .. cardcolor;

dvar int col[node] in intcolor;

dvar boolean used color[intcolor];

minimize

sum(c in intcolor : c �= 0) used color[c];

subject to {
forall (x in node)

1 > 0 ⇒ sum(c in intcolor : c �= 0) (col[x]== c) > 0;

forall (c in intcolor : c �= 0)

used color[c] > 0⇔ sum(x in node) (col[x]==c) > 0;

forall (〈x, y〉 in edge, c in intcolor : c �= 0)

(col[x]==c) ∗ (col[y]==c) > 0⇒ false;

}; �
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Variable deletion. A further optimization regards the deletion of unnecessary

variables and the reduction of domains. For instance, in the last constraint in

the OPL program of the previous example, the variable c can be deleted as

it is just used to define the matching between col[X] and col[Y]. Thus, this

constraint can be rewritten as:

forall (〈x, y〉 in edge)

(col[X]== col[Y]) > 0⇒ false;

Observe that, if the body of the partition rule only contains database domains, the

integer decision variables of the guess predicate can range in the set of integers

{1, . . . , |dom|} as the head atom is true for all possible values of its variables X1, . . . , Xk.

This means that under such circumstances, it is not necessary to introduce the

additional condition stating that the value of the variable cannot be 0. Under this

rewriting, the first constraint can be deleted as its head is always satisfied.

The following example shows the final version of the min coloring program,

obtained by applying the optimizations above.

Example 15

Min Coloring (optimized version).

int cardcolor = card(color);

range intcolor = 1 .. cardcolor;

dvar int col[node] in intcolor;

dvar boolean used color[intcolor];

minimize

sum(c in intcolor) used color[c];

subject to {
forall (c in intcolor)

used color[c] > 0⇔ sum(x in node) (col[x] == c) > 0;

forall (〈x, y〉 in edge)

(col[x] == col[y]) > 0⇒ false;

};

The OPL program corresponding to the k-coloring problem consists of only one

constraint, namely the second OPL constraint in the previous example.

Aggregates. The current version of the paper does not include aggregates, although

the language could be easily extended with stratified aggregates which can be

effortlessly translated into OPL programs.

Consider, for instance, a digraph stored by means of the two relations node and

edge and the following logic rule with aggregates11:

out(X, C)← edge(X, Y), count((X), C)

11 The syntax used refers to the proposal presented in (Greco 1999).
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computing for each node X the number C of outgoing arcs. Such a rule could be

easily translated into the following OPL script code:

{string} node = . . . ;

tuple edge{string a; string b; };
{edge} edges = . . . ;

int out[node];

execute{
for (var e in edges)

out[e.a] = out[e.a] + 1;

};

In this paper, we have not considered aggregates since we would like to define

more efficient translations which allow us to express and efficiently compute greedy

and dynamic programming algorithms. In the literature, there have been several

proposals to extend Datalog with aggregates. For instance, the proposal of (Greco

1999) allows us to write rules with stratified aggregates and evaluate programs so

that the behavior of dynamic programming is captured (see also Greco and Zaniolo

2001 for greedy algorithms).

Consider the query 〈SP, stc(X, Y, C)〉 computing the shortest paths of a weighted

digraph, where SP consists of the following rules:

stc(X, Y, C)← tc(X, Y, C), min((X, Y), C).

tc(X, Y, C)← edge(X, Y, C).

tc(X, Y, C)← edge(X, Z, C1), tc(Z, Y, C2), C = C1 + C2.

and weights associated with arcs are positive integers. A standard translation and

execution has two main problems: (i) the computation is not efficient since for each

pair of nodes all paths with different weights are considered, and (ii) if the graph is

cyclic the computation never terminates (or terminates with an error). Since shortest

paths can be obtained by considering other shortest paths, an OPL Script computing

them could be as follows:

// declarations

tuple edge{string a; string b; int c; };
{edge} edges = . . . ;

{string} node = . . . ;

int tc [x in node][y in node] = maxint;

int stc [x in node][y in node] = maxint;

execute {
// exit rule

for (var e1 in edge) {
tc[e1.a][e1.b] = e1.c;

stc[e1.a][e1.b] = e1.c;

}
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Fig. 1. System architecture.

// recursive rule

var modified = true;

while (modified) {
modified = false;

for (var e in edges)

for (var y in node) {
tc[e.a][y] = e.c + stc[e.b][y];

if(tc[e.a][y] < stc[e.a][y]) {
modified = true;

stc[e.a][y] = tc[e.a][y];

}
}

}
}

5.1 Implementation and experiments

A system prototype translating NPDatalog queries into OPL programs and

executing the target code using the ILOG OPL Development Studio has been

implemented. The system architecture, depicted in Figure 1, consists of five main

modules whose functionalities are next briefly discussed.

• User interface – This module receives in input a pair of strings identifying

the file containing the source database and the file containing the query. If

both the database and the query have already been translated, then the User

interface (UI) asks the module ILOG Solver to execute the query. If the

database (resp. query) has not been translated, then the UI sends the name of

the file containing the source database (resp. query) to the module Database
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Compiler (resp. Query Compiler) to be translated. Moreover, this module is in

charge of visualizing the answer to the input query.

• Database compiler – This module translates the source database into an OPL

database.

• Query compiler – This module receives in input an NPDatalog query and

gives in output the corresponding OPL code. In order to check the correctness

of the query and generate the target code, the module uses information on the

schema of predicates.

• Optimizer – This module rewrites the OPL code received from the module

Query Compiler and gives in output the target (optimized) OPL code.

• Query executor – This module consists of the ILOG OPL Development Studio

which executes the query stored by the module Optimizer into the OPL program

storage, over a database stored into the OPL database storage. The module

Query executor interacts with the module User interface by providing it the

obtained result.

Therefore, NPDatalog can be also used to define a logic interface for constraint

programming solvers such as ILOG. The experiments presented in this subsection

show that the combination of the two components is effective so that constraint

solvers (as well as SAT solvers) can be used as an efficient tool for computing logic

queries whose semantics is based on stable models.

In order to assess the efficiency of our approach, we have performed several

experiments comparing the performance obtained by implementing NPDatalog
over the ILOG OPL Development Studio against Answer Set Programming systems.

Specifically, NPDatalog/OPL has been compared with DLV, Smodels, ASSAT,

Clasp, and XSB. The following version of the aforementioned systems have been

used:

• ILOG OPL Development Studio 6.1,

• DLV release 2007-10-11,

• Smodels 2.33 (and lparse 1.1.1),

• ASSAT 2.02 (lparse 1.1.1 and zChaff 2007.3.1212),

• Clasp 1.2.1 (and lparse 1.1.1),

• XSB version 3.2 March 15, 2009.

The performances of the systems have been evaluated by measuring the time

necessary to find one solution of the following problems: 3-Coloring, Hamiltonian

Cycle, Transitive Closure, Min Coloring, N-Queens, and Latin Squares.

For each system, we have used efficient encodings of the problems which exploit

efficient built-in constructs provided by the systems. Every encoding and database

used in the experiments can be downloaded from theNPDatalog web site13.

All the experiments were carried out on a PC with a processor Intel Core Duo

1.66 GHz and 1 GB of RAM under the Linux operating system. In the sequel of

this section the experimental results are presented.

12 zChaff. URL: http://www.princeton.edu/∼chaff/zchaff.html
13 NP datalog web site. URL: http://wwwinfo.deis.unical.it/npdatalog/
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Fig. 2. Structured graphs.
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Fig. 3. Execution time for the 3-coloring problem on structured graphs.

3-Coloring. The 3-Coloring query has been evaluated on structured graphs of the

form reported in Figure 2(i) and random graphs. Specifically, structured graphs with

base = height have been used (here base denotes the number of nodes in the same

row, height the number of nodes in the same column; the total number of nodes

in the graph is base ∗ height). The random graphs have been generated by means

of Culberson’s graph generator14. Specifically, the following parameters have been

used: K-coloring scheme equal to Equi-partitioned, Partion number equal to 3, Graph

type is IID (independent random edge assignment). Both structured and random

graphs are all 3-colorable; the results, showing the execution times (in seconds) as

the size of the graph increases, are reported in Figures 3 and 4, respectively.

14 K-Colorable graph generator.
URL: http://web.cs.ualberta.ca/∼joe/Coloring/Generators/generate.html
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Fig. 4. Execution time for the 3-coloring problem on random graphs.

As for structured graphs, the x-axis reports the number of nodes in the same layer

(i.e., the value of base). NPDatalog and DLV are faster than the other systems;

ASSAT and Clasp have almost the same execution times (observe that the scale of

the y-axis is logarithmic).

Regarding random graphs, it is worth noting that we have considered, for each

number of nodes, five different graphs. Thus, the execution times reported in Figure 4

have been obtained by evaluating the query five times (over different graphs with the

same number of nodes) and computing the mean value.NPDatalog/OPL is faster

than the other systems; again, ASSAT and Clasp have almost the same execution

times.

Hamiltonian Cycle. The Hamiltonian Cycle problem has been evaluated over

benchmark graphs used to test other systems15 and random graphs generated by

means of Culberson’s graph generator16. All the graphs have a Hamiltonian cycle.

The NPDatalog encoding (as well as the encodings for the other systems) can be

found on NPDatalog web site. The results are reported in Figures 5 and 6. The

x-axis reports the used graphs: a label nvXaY refers to a graph with X nodes and

Y arcs. Observe that, in Figure 5, a missing value means that the system has not

answered in 30 min. Clasp is the fastest system for both types of graphs. DLV and

Smodels are on average faster than the remaining systems. For large “dense” graphs

Smodels outperforms DLV, but on some benchmark instances it runs out of time.

Transitive Closure. The Transitive Closure problem has been evaluated over directed

structured graphs such as those reported in Figure 7. Specifically, instances with

15 Hamiltonian Cycle Instances. URL: http://assat.cs.ust.hk/Assat-2.0/hc-2.0.html
16 Hamiltonian Cycle Program Archive.

URL: http://web.cs.ualberta.ca/∼joe/Theses/HCarchive/main.html
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Fig. 5. Execution time for the Hamiltonian Cycle problem on benchmark graphs.
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Fig. 6. Execution time for the Hamiltonian Cycle problem on random graphs.

base = height have been used (base denotes the number of nodes in the same row,

height the number of nodes in the same column).

The results, which are reported in Figure 8, show that DLV and XSB are faster

than the other systems; ASSAT, Clasp, and Smodels almost have the same execution

times.

Min Coloring. As for the Min Coloring optimization problem, we have used

structured graphs such as those of Figure 2. Instances having the structure reported

in Figure 2(i) need at least three colors to be colored, whereas instances having the

structure reported in Figure 2(ii) need at least four colors to be colored. The number
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Fig. 7. Directed structured graphs.
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Fig. 8. Execution time for the Transitive Closure problem on directed structured graphs.

of colors available in the database has been fixed for the two structures, respectively,

to four and five (one more than the number of colors necessary to color the graph).

The results are reported in Figure 9 and show that NPDatalog outperforms DLV.

A missing time means that DLV runs out of time (also in this case we had a 30 min

time limit).

N-Queens. We have considered empty chessboards to be filled with N Queens for

increasing values of N. The results are reported in Figure 10. Clasp is faster than

NPDatalog which is in turn faster than ASSAT; for a high number of queens,

DLV and Smodels become slower than the other systems.

Latin Squares. We have considered partially filled tables which have been generated

randomly. In every table, 60% of the squares are empty. We have considered, for each

table size, five different instances. Thus, the execution times reported in Figure 11

have been obtained by evaluating the query five times (over different tables of the
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0.01

0.1

1

10

100

1000

10000

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of queens

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

NP Datalog\OPL ASSAT + zChaff DLV Smodels Clasp

Fig. 10. Execution time for the N-Queens problem.

same size) and computing the mean value. The results show that NPDatalog and

Clasp are faster than the other systems.

The experimental results reported above show that our system only seems to

suffer with programs where the evaluation of the deterministic components is

predominant. The reason is that deterministic components (often consisting of

recursive rules) are translated into OPL scripts, which correspond to the evaluation

of such components by means of the naive fixpoint algorithm, whereas problems

which can be expressed without recursion (or in which the nondeterministic

components are predominant) are executed efficiently. The implementation of our

system prototype could be enhanced by making more efficient the translation of

stratified (sub)programs or by using a different evaluator for these components. For

instance, they could be evaluated by means of ASP systems, thus combining their

efficiency in the computation of deterministic components with the efficiency of OPL

in the computation of nondeterministic components.
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Fig. 11. Execution time for the Latin Squares problem on random squares.

6 Related languages and systems

Several languages have been proposed for solving NP problems. Here we have

analyzed three different classes of languages: specification languages, constraint and

logic programming languages, and answer set logic languages.

6.1 Specification languages

Specification languages are highly declarative and allow the user to specify problems

in terms of guess and check techniques.

NP-SPEC (Cadoli et al. 2000; Cadoli and Schaerf 2005) is a logic-based specification

language allowing the built-in second-order predicates Subset, Partition,

Permutation, and IntFunc. The semantics of an NP-SPEC program is based

on the notion of model minimality and the language upon which this semantics

relies on is DATALOGCIRC , i.e., an extension of DATALOG in which only some

predicates are minimized and the interpretation of the other is left open. An

NP-SPEC program consists of two sections: the DATABASE section, specifying

the instance and the SPECIFICATION section specifying the question. To make

NP-SPEC executable, specifications are translated into SAT instances and then

executed using a SAT solver.

KIDS (Kestrel Interactive Development System) (Smith 1990) is a semi-automatic

program development system that, starting from an initial specification of the

problem, produces an executable code through a set of consistency-preserving

transformations. The problem is written in a logic based language augmented

with set-theoretic data types and functional constraints on the input/output

behavior. To make the language executable, specifications are firstly translated

into CommonLisp and then into machine code. Before the compilation task,
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the user may select an optimization technique, such as simplification or partial

evaluation, to obtain a more efficient target code.

SPILL-2 (SPecifications In a Logic Language) is the second version of an executable

typed logic language that is an extension of the Prolog-like language Goedel

(Kluzniak and Milkowska 1997). A specification in SPILL-2 consists of a set of

type declarations, a set of function declarations, a set of predicate declarations and

a number of logical expressions (queries) that are used to test the specification. A

specification in SPILL is required to be “executable” in the sense that it is possible

to “test” whether a provided solution is feasible w.r.t. a given specification. The

execution of a program consists in evaluating each query in the context of the spec-

ification and reporting the result (true if the query succeeds and false otherwise).

6.2 Constraint and logic programming languages

The basic idea of constraint programming (CP) is to model and solve a problem

by exploring the set of constraints that fully characterize the problem. Almost all

computationally hard problems, such as planning, scheduling and graph theoretic

problems, fall into this category. A large number of systems (more than 40)

for solving CP problems have been developed in computer science and artificial

intelligence:

• Constraint Logic Programming, an extension of logic programming able to

manage constraints, started about 20 years ago by Jaffar et al. (Jaffar

et al. 1992). Several constraint logic languages allowing the formulation of

constraints over different domains exist. Basically, all these languages embed

efficient constraint solvers in logic-based programming languages, such as

Prolog. Here we cite, among the others, CLP (Marriott and Stuckey 1998),

SICStus Prolog, BProlog (Zhou 2002), ECLiPSe (Wallace and Schimpf 1999),

and Mozart (Van Roy 1999).

• ILOG OPL Development Studio, an integrated development environment for

mathematical programming and combinatorial optimization applications. The

syntax of OPL is well suited to express optimization problems defined in

the mathematical programming style (Van Hentenryck 1988; Van Hentenryck

et al. 1999).

• Constraint LINGO (Finkel et al. 2004), a high-level logic-programming

language for expressing tabular constraint-satisfaction problems such as those

found in logic puzzles and combinatorial problems such as graph coloring.

Several languages extending Prolog have been proposed as well. Most of these

languages have been designed to provide powerful capabilities to represent and solve

general problems and not to solve NP problems. Here we mention:

BinProlog17, a fast and compact Prolog compiler, based on the transformation of

Prolog to binary clauses. BinProlog is based on the BinWAM abstract machine, a

specialization of the WAM for the efficient execution of binary logic programs.

17
BinProlog. URL: http://www.binnetcorp.com/BinProlog/
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XSB (Rao et al. 1997), an extension of Prolog supporting the well-founded

semantics (Van Gelder et al. 1991) and including implementations of OLDT

(tabling) and HiLog terms. OLDT resolution is extremely useful for recursive

query computation, allowing programs to terminate correctly in many cases where

Prolog does not. HiLog supports a type of higher order programming in which

predicate symbols can be variable or structured.

An extension of classical first-order logic, called ID-Logic, has been proposed

in (Denecker 2000). Basically, in an ID-Logic theory, we can distinguish four

different components describing (i) data, (ii) open predicates, (iii) definitions, and

(iv) assertions (or constraints). The relationships between ID-Logic and ASP has

been studied in (Marien et al. 2004), where it has been also presented how ID-Logic

theories can be translated into DATALOG¬ programs under ASP semantics.

6.3 Answer set programming languages and systems

Several deductive systems based on stable model semantics have been developed

too. Here we discuss some of the more interesting answer-set-based systems and

languages:

DLV (Vienna University of Technology and University of Calabria) (Leone et al.

2006; Eiter et al. 1997) is a deductive database system, based on disjunctive

logic programming. DLV extends Datalog with general negation, inclusive head

disjunction and two different forms of constraints: strong constraints, which must

be satisfied, and weak constraints, which are satisfied if possible (preferred models

are those which minimize the number of ground weak constraints which are not

satisfied). For instance, the program of Example 1 is a DLV program, whereas

by replacing exclusive disjunction with inclusive disjunction in the program of

Example 2 we get a DLV program (the minimality of the models guarantees that

every node cannot belong to both relations v and nv). The optimization query of

examples 1 and 2 can be defined by adding the weak constraint :∼ v(X) which

minimizes the number of ground false weak constraints (i.e., v-tuples).

Smodels (Helsinki University of Technology) (Simons et al. 2002) is a system for

answer set programming consisting of Smodels, an efficient implementation of the

stable model semantics for normal logic programs and lparse, a front-end that

transforms user programs so that they can be understood by Smodels.

Besides standard rules lparse also supports a number of extended rules: choice,

constraint and weight rules. The formal semantics of all three types of rules can

be defined through the use of weight constraints and weight constraint rules. In

lparse the weight constraints are implemented as special literal types. Basically, a

weight constraint is of the form: L � l1 = w1, . . . , ln = wn � U where l1, . . . , ln,

are literals, L and U are the integral lower and upper bounds, and w1, . . . , wn are

weights of the literals. The intuitive semantics of a weight constraint is that it is

satisfied exactly when the sum of weights of satisfied literals l1, . . . , ln is between

L and U, inclusive. A weight constraint rule is of the form C0 ← C1, . . . , Cn where

C0, . . . , Cn are weight constraints. Besides the use of literals, lparse also enhances
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the use of conditional literals having the form: p(X) : q(X) where p(X) is any

basic literal and q(X) is a domain predicate.

Datalog Constraint. (East and Truszczynski 2000) proposed a new nonmonotonic

logic, called Datalog with constraints or DC. A DC theory consists of constraints

and Horn rules (Datalog program). The language is determined by a set of atoms

At = AtC ∪ AtH where AtC and AtH are disjoint. Formally, a DC theory is a

triple T = (TC, TH, TPC ) where TC is a set of constraints over AtC , TH is a set of

Horn rules whose head atoms belong to AtH and TPC is a set of constraints over

At (post constraints). The problem of the existence of an answer set, for a finite

propositional DC theory T , isNP-complete (East and Truszczynski 2000).

ASSAT. (Lin and Zhao 2004) proposed a translation from normal logic programs

with constraints under the answer set semantics to propositional logic. The

peculiarity of this technique consists in the fact that for each loop in the program,

a corresponding loop formula to the program’s completion is added. The result

is a one-to-one correspondence between the answer sets of the program and the

models of the resulting propositional theory. As in the worst case the number

of loops in a logic program can be exponential, the technique proposes to add a

few loop formulas at a time, selectively. Based on these results, a system called

ASSAT(X), depending on the SAT solver X used, has been implemented for

computing answer sets of a normal logic program with constraints.

Cmodels (Lierler 2005a, 2005b) is an answer set programming system that uses the

frontend lparse and whose main computational characteristic is that it computes

answer sets using a SAT solver for search. Cmodels deals with programs that

may contain disjunctive, choice, cardinality and weight constraint rules. The basic

execution steps of the system can be outlined as follows: (1) the program’s

completion is produced; (2) a model of the completion is computed using a SAT

solver; (3) if the model is indeed an answer set, then the model is returned,

otherwise the system goes back to Step 2. The idea is thus to use a SAT solver

for generating model candidates and then check if they are indeed the answer sets

of a program. The way Step 3 is implemented depends on the class of a logic

program.

Clasp (Gebser et al. 2007) is an answer set solver for (extended) normal

logic programs. It combines the high-level modeling capacities of answer set

programming (ASP) with state-of-the-art techniques from the area of Boolean

constraint solving. In fact, the primary Clasp algorithm relies on conflict-driven

learning, a technique that proved successful for satisfiability checking (SAT).

Unlike other ASP solvers that use conflict-driven learning, Clasp does not rely on

legacy software, such as a SAT solver or any other existing ASP solver.

A-Prolog (Gelfond 2002) is a logic language whose semantics is based on stable

models, designed to represent defaults (i.e., statements of the form “Elements

of a class C normally satisfy property P”), exceptions and causal effects of

actions (“statement F becomes true as a result of performing an action A”). In

the same work, an extension of the language, called ASET-Prolog, is presented.

Such an extension enriches the language with two new types of atoms: s-atoms,

which allows us to define subsets of relations, and f-atoms, which allows us to
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express constraints on the cardinality of sets. An interesting application showing

how declarative programming in A-Prolog can be used to describe the dynamic

behavior of digital circuits is presented in (Balduccini et al. 2000).

6.4 Comparison with the other approaches proposed in the literature

NPDatalog is related (i) to specification languages, for the style of defining

problems, (ii) to answer set languages, for the syntax and declarative semantics,

and iii) to constraint programming.

6.4.1 Specification languages

The problem with specification languages is the tradeoff between the expressiveness

of the formal notation and its execution. In general, specifications can be executed

only by blind search through the space of all proofs. A possible solution consists

in adding (to specifications) refinements which improve the execution, but the

result could be a longer specification, containing details and, consequently, hard to

understand.

NP-SPEC programs have a structure similar to the one of NPDatalog programs,

although from the syntax point of view, the use of meta-predicates, in some

cases, does not make programs shorter and more intuitive (see, for instance,

the N-Queen problem reported in(Cadoli and Schaerf 2005)). NP-SPEC uses

in addition to standard Datalog rules, also meta-predicates and set operators,

whereasNPDatalog uses only standard Datalog rules with shortcuts for limited

forms of (unstratified) negation. Moreover, although there is no difference in

expressivity, guesses in NP-SPEC are defined over base relations, whereas in

NPDatalog they are defined over general ‘deterministic’ relations defined by

stratified Datalog programs. As a further difference, the partition mechanism

is more general and flexible in NPDatalog w.r.t. NP-SPEC as in the latter the

number of partitions is fixed. Concerning the semantics aspects, the declarative

semantics of NP-SPEC programs is based on the notion of model minimality,

whereas those of NPDatalog is based on stable models.

KIDS results are “sensitive” to the implementation issue. Indeed, the KIDS

system is semiautomatic: the user is asked to interact with the system in order

to transform high level declarative specification into an efficient, correct and

executable program. Moreover, the complexity of the final implementation in

KIDS can result in dramatic improvements if specialized techniques are used.

On the other hand, NPDatalog is a fully declarative language whose execution

process is automatically optimized by the ILOG OPL Development Studio.

SPILL-2 is not meant to use the specification of a problem in order to compute

a solution, but to test the specification against some specific case, i.e., to verify

whether a given specification implies certain intended properties or, in other

words, if a specified property is consistent with the specification. As for differences,

specification and queries in SPILL are compiled to Prolog, whereas our approach

introduces specifications using NPDatalog and then performs the translation
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of queries into OPL programs. Moreover, NPDatalog is based on stable model

semantics, whereas SPILL uses a pure first-order semantics, i.e., it does not include

any form of model minimization operations. As for a further difference, it is worth

noting that SPILL does not provide a characterization of its expressive power and

its complexity.

6.4.2 Constraint and logic programming languages

Constraint Logic Languages, such as SICStus Prolog, ECLiPSe and BProlog, are

extensions of Prolog and, therefore, they are not fully declarative. Their semantics

is based on top-down evaluation of queries (SLDNF resolution), whereas answer-

set programming is based on bottom-up evaluation. XSB is an extension of Prolog

with a declarative semantics (namely the well-founded semantics) based on top-down

evaluation of queries (OLDT resolution) with tabling. Moreover, while answer-set

languages permit NP problems to be easily expressed (it suffices to translate

their logic definition into logic programming rules), constraint logic programming

languages are procedural and the efficient implementation ofNP problems is hard

and time-consuming.

The relationship between ID Logic and NPDatalog is strong since in our

language we can also distinguish components describing data, guess predicates,

standard rules and constraints, which correspond, respectively, to the ID logic

components describing data, open predicates, definitions and constraints. Moreover,

the aim of NPDatalog is also the easy translation into different formalisms (other

than ASP), including constraint programming languages.

6.4.3 Answer set programming languages

The main difference of NPDatalog with respect to DLV and Smodels is that only

restricted forms of (unstratified) negations, embedded into built-in constructs, are

allowed. As a consequence,NPDatalog is less expressive than DLV since the latter

also uses (inclusive) disjunction and permits expression of problems in the second

level of the polynomial hierarchy. The use of simpler languages such asNPDatalog
allows us to avoid writing nonintuitive queries which are difficult to optimize or

translate in other formalisms for which efficient executors exist. It is important to

observe that cardinality constraints and conditional literals of Smodels allows us to

express both subset and (generalized) partition rules as defined inNPDatalog. This

means that in Smodels it is also possible to avoid using unstratified negation without

losing expressiveness. We also note that s-atoms and f-atoms of ASET-Prolog enable

us to express subset and (generalized) partition rules.

NPDatalog is also strongly connected to Datalog Constraint (DC), which is also

based on stable model semantics. The main difference between NPDatalog and

DC consists in the fact that NPDatalog forces users to write queries in a more

disciplined form. In particular, DC guesses are expressed by means of constraints

(a guess is any set of atoms in AtC satisfying the constraint in TC) and there is

no clear separation between TC (constraints used to guess) and TPC (constraints

used to check ). Moreover, DC only uses positive rules to infer true atoms, whereas
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NPDatalog uses stratified rules. The expressive power of both languages captures

the first level of the polynomial hierarchy. The experiments reported in (East and

Truszczynski 2000) show that the guess and check style of expressing hard problems

can be further optimized.

The philosophy of ASSAT is similar to that ofNPDatalog: while in the ASSAT

approach programs are translated in propositional logic and then executed by means

of a SAT solver,NPDatalog programs are translated into OPL programs and then

executed by using the ILOG OPL Development Studio. An approach similar to the

one of ASSAT is adopted by Cmodels.

A-Prolog is a general logic language (i.e., it allows function symbols, classical

negation, head disjunction, and subset rules) whose semantics is based on stable

models. The aim of A-Prolog is the design of a general language for knowledge

representation and causal reasoning, whereas NPDatalog is a simpler language

(similar to the restricted FA-Prolog) which can be easily efficiently executed and

translated in other formalisms.

7 Conclusion

NP search and optimization problems can be formulated as DATALOG¬ queries under

nondeterministic stable model semantics. In order to enable a simpler and more in-

tuitive formulation of these problems, theNPDatalog language has been proposed.

It is obtained by extending stratified Datalog with constraints and two constructs

for expressing partitions of relations, so that search and optimization queries can be

expressed using only simple forms of unstratified negation. It has also been shown

that NPDatalog captures the class of NP search and optimization problems and

thatNPDatalog queries can be easily translated into OPL programs. An algorithm

for the translation ofNPDatalog programs into OPL statements has been provided

and its correctness has been proved. The proposed algorithm has been implemented

by a system prototype which takes in input an NPDatalog query and gives in

output an equivalent OPL program which is then executed using the ILOG OPL

Development Studio. Consequently, NPDatalog can also be used to define a logic

interface for constraint programming solvers. Several experiments comparing the

computation of queries by different systems have shown the validity of our approach.
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