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Creeping motion of a sphere along the axis of a
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1UMR 6634 CNRS Université de Rouen, 76801 Mont Saint Aignan, France

2PMMH, ESPCI, 10, rue Vauquelin, 75005 Paris, France

(Received 29 January 2007 and in revised form 16 March 2007)

The creeping flow around a sphere settling along the axis of a closed axisymmetric
container is obtained both theoretically and experimentally. The numerical technique
for solving the Stokes equations uses the classical Sampson expansion; the boundary
conditions on the sphere are satisfied exactly and those on the container walls are
applied in the sense of least squares. This is an extension to the axisymmetric case
of the technique for solving various two-dimensional flow problems. Two types of
axisymmetric container are considered here as examples: circular cylinders closed by
planes at both ends, and cones closed by a base plane. Calculated streamlines patterns
show various sets of eddies, depending upon the geometry and the sphere position.
Results are in agreement with earlier Stokes flow calculations of eddies in corners
and in closed containers. Experiments use laser interferometry to measure the vertical
displacement of a steel bead a few millimetres in diameter settling in a container filled
with a very viscous silicone oil. The Reynolds number based on the sphere radius is
typically of the order of 10−5. The accuracy on the vertical displacement is 50 nm.
Experiments show that the motion towards the apex of a cone is much slower than
that towards a plane; the bead takes hours to reach the micrometre size roughness
asperities on a conical wall, as compared with minutes to reach those on a plane wall.
The numerical results for the drag force are in excellent agreement with experiments
both for the cylindrical and the conical containers. With standard computer accuracy,
the present numerical technique applies when the gap between the sphere and the
nearby wall is larger than about one radius. For a sphere in the vicinity of any plane
horizontal wall, these results also match with a previous analytical solution. That
solution is in excellent agreement with our experimental results at small distances
from the wall (typically less than a diameter, depending on the sphere size).

1. Introduction
The creeping motion of a spherical particle at a finite distance from a boundary

may require a substantial correction to Stokes’ law. This is because the far-field
hydrodynamic interactions in Stokes flow decay slowly, as the inverse of the distance.
As an example, the correction to the drag force on a sphere moving near a plane wall
becomes important when the sphere–wall spacing is of the order of five diameters or
less.

† Author to whom correspondence should be addressed: feuillebois@pmmh.espci.fr.
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This paper is concerned with the motion of a sphere settling along the axis of an
axisymmetric closed container filled with a viscous fluid, in the creeping-flow regime.

This problem may be of interest in various small-scale hydrodynamic devices in
which creeping flow occurs. It also concerns the detailed flow field in a falling ball
rheometer for various geometries, with the prospect of exploring the applicability of
such an instrument to more complex fluids. Finally, it is the first step toward the
determination of particle motion in any direction in a closed container.

In spite of the extensive literature on Stokes flow (see e.g. Happel & Brenner
1991; Kim & Karrila 1993), there appears to be little work on a particle in a closed
three-dimensional container. Blake (1979) and Sano (1987) calculated the flow field
generated by a Stokeslet located on the axis of a closed cylinder of finite length. Both
their calculations of streamlines show the existence of a set of toroidal eddies. These
eddies alternate in sign and the magnitude of the streamfunction decays exponentially
with the distance from the driving singularity. However, there appear to be important
differences between the calculations.

There are various numerical techniques which are appropriate to Stokes flow.
The collocation technique of Ganatos, Pfeffer & Weinbaum (1980) can handle an
axisymmetric system of particles. It was developed for spheres moving along the axis
of an infinite cylinder or between parallel plane walls. Graham et al. (1989) reported
some two- and three-dimensional finite-element solutions for a sphere settling in
a circular cylinder. End and eccentricity effects were investigated for a number of
values of the sphere to cylinder aspect ratio. The singularity technique pioneered by
Youngren & Acrivos (1975) and presented in detail by Pozrikidis (1992) was also used
by various authors; for example, Elasmi, Berzig & Feuillebois (2003) calculated the
axisymmetric motion of a line of particles perpendicular to a plane wall. However,
the case of a closed container was not studied. Another technique first developed by
Bourot (1969), Coutanceau (1971) and Sigli (1970) has been used by Hellou (1988),
Hellou & Coutanceau (1992), Bourot & Moreau (1987) Moreau (1988) and Moreau
& Bourot (1993) to study two-dimensional Stokes flows due to motions of a cylinder
in a container with a closed cross-section. Their results show various eddies which
were also observed with an elaborate visualization technique by Hellou (1988). This
numerical technique was a priori appropriate to closed containers. We therefore extend
it here to three-dimensional axisymmetric flows involving a sphere moving in closed
containers.

The most classical experimental way to determine the hydrodynamic interactions
is to visualize the motion of a particle, e.g. a sphere, in a viscous oil. Adamczyk,
Adamczyk & Van de Ven (1983) report results for the motion of a sedimenting
sphere near various obstacles. Ambari, Gauthier-Manuel & Guyon (1984, 1985)
imposed the displacement of a sphere with a magnetic field. They measured the force
necessary to move the sphere and at the same time observed with a microscope the
location of the particle.

In this paper, we use a more accurate experimental technique in which the vertical
motion of a sphere is followed by Michelson laser interferometry. The typical accuracy
on the measured displacement of a millimetre sized sphere is a fraction of the laser
wavelength, that is, of the order of 50 nm. This technique may be used to study
the hydrodynamic interactions of a vertically moving sphere with walls at various
distances, in particular in the lubrication regime, as shown by Lecoq et al. (1993, 1995).
To study the three-dimensional displacement of a sphere, this set-up was synchronized
with a mechanical system following up the horizontal sphere motion (although with
a lesser accuracy), (see Ekiel-Jeżewska et al. 1999, 2002a, b; Masmoudi et al. 2002).
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Figure 1. Closed containers and a moving ball. (a) Cylindrical container closed at both
ends. (b) Conical container with semi-angle α closed at its top.

Although now classical, this interferometry set-up has no equivalent in providing an
accurate measurement of the displacement of a sphere in the creeping-flow regime.

The specific containers studied in this article are closed cylinders and truncated
cones closed by a plane wall. In all cases, the container symmetry axis is set in a
vertical position. To our knowledge, there are neither comprehensive theoretical nor
experimental results for these containers. Nevertheless, limited comparisons will be
possible with the theoretical results for an infinite cylinder by Coutanceau (1971) and
for two plane walls by Ganatos et al. (1980). In our calculation of streamlines, the
classical works of Dean & Montagnon (1949) and Moffatt (1964) on the flow in a
corner are of particular relevance to this section, since we obtain the symmetric and
the antisymmetric Moffatt corner eddies. We also obtain what may be called ‘interior
viscous toroidal eddies’ of various intensities, depending on the shape of the container
and relative size of the sphere.

The outline of the paper is as follows. The basic equations for the problem and
the numerical technique are described in § 2. The numerical results and comparison
with other works are presented in the § 3. Various eddies obtained from the numerical
calculation of streamlines are shown in § 4. The experimental set-up and procedure are
described in § 5. The experimental results for the drag force and the comparison with
our theoretical results and earlier ones are presented in § 6. Finally, the conclusion is
in § 7.

2. Mathematical formulation and numerical procedure
Consider a spherical particle moving along the axis of an axisymmetric container.

This container is either a cylinder closed at both ends or a closed conical cell pointing
down. The notation is shown in figure 1. The cylinder height is 2L∗ and that of
the cone is H ∗. The largest inner radius is denoted R∗ in both cases. Let z∗ denote
a coordinate along the vertical axis of symmetry. Each container is filled with a
Newtonian viscous fluid. The particle with radius a is settling along z∗ in the negative
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direction. Using a reference frame attached to the sphere centre, the container walls
are moving with a velocity V0 along z∗.

Normalizing all lengths with the sphere radius a, we define

L = L∗/a, R = R∗/a, z = z∗/a,

and so on for the various quantities displayed in figure 1. The values of the radius a,
velocity V0 and fluid kinematic viscosity ν are assumed to be such that the Reynolds
number Re = aV0/ν is low and the fluid is in creeping motion. We use V0 and µV0/a

as reference velocity and pressure, respectively (with µ the fluid dynamic viscosity).
The fluid dimensionless velocity v and pressure p satisfy the Stokes equations. The
appropriate no-slip conditions are v = 0 on the sphere and v = ez on the container
walls, where ez denotes the unit vector along z.

The axisymmetric flow is conveniently described in term of the streamfunction Ψ ,
defined in spherical polar coordinates (r, θ, ϕ) (see figure 1) by:

vr =
−1

r2 sin(θ)

∂Ψ

∂θ
, vθ =

1

r sin(θ)

∂Ψ

∂r
. (2.1)

Stokes equations then give

D2(D2Ψ ) = 0, (2.2)

where D2 is the Stokesian differential operator (Happel & Brenner 1991):

D2 =
∂2

∂r2
+

1 − cos2(θ)

r2

∂2

∂(cos(θ))2
. (2.3)

The classical general solution of (2.2) derived by Sampson (1891) is expressed in
terms of a series expansion:

Ψ =

+∞∑
n=2

C−1/2
n (t)(anr

1−n + bnr
3−n + cnr

n + dnr
n+2), (2.4)

where t = cos(θ), C−1/2
n (t) is the Gegenbauer polynomial of degree n and order −1/2,

and an, bn, cn and dn are arbitrary coefficients to be determined by the boundary
conditions. The terms n= 0 and n= 1 are excluded from this calculation since they
would give a divergent velocity on the symmetry axis (for more details, see chap. 4 of
Kim & Karrila 1993). The no-slip boundary condition on the sphere surface provides
expressions for the an and cn in terms of bn and dn. The expression (2.4) of the
streamfunction then takes the form:

Ψ =

∞∑
n=2

C−1/2
n (t)

[
bn

(
3 − 2n

2n − 1
r1−n + r3−n − 2

2n − 1
rn

)

+ dn

(
2

2n − 1
r1−n − 2n + 1

2n − 1
rn + rn+2

)]
(2.5)

and the components (2.1) of the fluid velocity become:

vr =

+∞∑
n=2

Pn−1(t)

[
bn

(
3 − 2n

2n − 1
r−1−n + r1−n − 2

2n − 1
rn−2

)

+ dn

(
2

2n − 1
r−1−n − 2n + 1

2n − 1
rn−2 + rn

)]
, (2.6a)
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ε = 24.00 ε = 11.50 ε = 5.25

N f T
zz �V �Ψ f T

zz �V �Ψ f T
zz �V �Ψ

15 1.09266 10−5 10−3 1.113 10−3 10−2 1.21 10−2 10−2

20 1.092642 10−6 10−4 1.1132 10−4 10−3 1.220 10−2 10−2

30 1.0926448 10−7 10−6 1.11321 10−5 10−4 1.220 10−3 10−2

40 1.0926448 10−7 10−7 1.113212 10−6 10−5 1.2194 10−3 10−3

50 1.09264480 10−7 10−7 1.1132174 10−7 10−6 1.2194 10−4 10−3

60 1.09264480 10−8 10−8 1.1132174 10−7 10−6 1.2193 10−4 10−3

70 1.09264480 10−8 10−8 1.1132174 10−8 10−7 1.2193 10−4 10−3

Table 1. Convergence of the numerical method and variations of the average residual velocity
and streamfunction on the walls for a small sphere moving in a closed cylinder with normalized
dimensions L = R =25. In the first column, the sphere is located in the middle of the cell, in
the last one, the sphere is closer to any of the plane walls.

vθ =

+∞∑
n=2

Yn(t)

[
bn

(
(3 − 2n)(1 − n)

2n − 1
r−1−n + (3 − n)r1−n − 2n

2n − 1
rn−2

)

+ dn

(
2 − 2n

2n − 1
r−1−n − (2n + 1)n

2n − 1
rn−2 + (n + 2)rn

)]
, (2.6b)

where Pn(t) is the Legendre polynomial of order n, and Yn(t) = C−1/2
n (t)/s, with

s = sin(θ). The boundary conditions on the container walls, that is vr = t, vθ = −s

can be applied using the series (2.6), but they cannot be expressed in a simple way
owing to the cylindrical geometry. We use instead the quadratic minimization method
mentioned in § 1. The specificity here is that this method is applied to an axisymmetric
flow field. The method consists in minimizing the quadratic difference between the
boundary value to be imposed and the series expansions of the velocity on the
container boundary:

J =

∫
S

[(vr − t)2 + (vθ + s)2] dS =

∫
Γ

[(vr − t)2 + (vθ + s)2]2πrs dΓ (2.7)

where Γ denotes the contour around the flow domain boundary in a meridian plane
and dΓ is a line element along this contour. Since rs is bounded by R, it is sufficient
to minimize:

I =

∫
Γ

[(vr − t)2 + (vθ + s)2] dΓ. (2.8)

Conditions for I to be at a minimum then provide equations for the unknown
coefficients bn and dn. For this purpose, the series (2.6) is truncated at N terms. The
formulation and numerical technique are presented in the Appendix.

Estimates of the precision are obtained by calculating �V , average of the residual

velocity �V =
√

(vr − t)2 + (vθ + s)2) and �Ψ , averaged absolute value of the residual
of the streamfunction at the collocation points on the contour Γ . The maximum value
accepted here for these averages is 10−2. The calculation accuracy, which as expected
increases with the number N of coefficients in the series, is presented in table 1
for various sphere locations in a cylinder with radius R and height 2L, such that
R = L = 25. The dimensionless gap between the sphere and the nearest plane wall is
denoted by ε (with ε = 0 defined as the contact with that wall). Analogous results
(not displayed here) were obtained for a sphere in a cone.
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Table 1 shows that with increasing value of N , the numerical scheme converges
monotically to the retained solutions to three or more significant figures for all tested
spacings. Convergence is rapid and the average of the velocity deviation on the
boundary decreases for increasing sphere–walls spacing. However, the technique is
not appropriate when the sphere is located immediatly adjacent to the wall. The
average velocity deviation then increases, owing to the presence of positive exponents
in the series (2.6) which increase with distance. Details about the algorithm stability,
convergence and precision are given in the Appendix.

When the sphere is close to a plane wall, we then simply use the exact solution in
bispherical polar coordinates obtained by Brenner (1961) and Maude (1961) (these
references are hereinafter referred to as BM). In fact, for distances to the wall of less
than three radii and for R � 3, disturbances generated by the cylindrical or conical
lateral walls can be neglected because the drag experienced by the sphere becomes
large as the particle comes close to the plane wall. Fortunately, there is an overlap
domain in which both calculations are in agreement (see figure 11). Now, when the
sphere comes close to the vertex of the cone, no analytical solution exists, except for
the lubrication solution of Masmoudi et al. (1998). This solution is only valid for a
gap that is very small compared with the sphere radius.

Generally speaking, the convergence is better for L/R near unity and R larger
than 3. It is found that the errors are greater on the upper and lower walls and that
the errors on the lateral wall decay rapidly with distance. It is also found that the error
on the streamfunction is largest in the corners, that is at the intersections between the
endwall and the lateral wall. A similar result was obtained by Shankar (1993) who
also used a least-squares method for the boundary condition on the fluid velocity.
Since the fluid velocity is very low in corners, this error in Ψ does not impede the
convergence of the solution; it is merely found that a comparatively larger number
of terms is required to obtain the same accuracy in the vicinity of corners.

From the symmetry of the configuration and from the linearity of the Stokes
equations of fluid motion, the hydrodynamic force Fz exerted upon the translating
sphere may be expressed as:

Fz = 6πaµV0f
T
zz , (2.9)

where the drag coefficient f T
zz represents the ratio of the drag force on the sphere

between walls to that on the same sphere moving with the same velocity −V0 in an
unbounded quiescent fluid. Coutanceau (1971) showed that:

Fz = 4πµaA1V0 = 4πµab2V0,

where A1 is the first coefficient obtained when inverting the linear system (A 2) and
b2 the first non-zero bn coefficient in the series expansion (2.4) of the streamfunction.
Equating the two expressions for the drag force yields f T

zz = (2/3)A1. Typical results
for the drag coefficient f T

zz for the sphere in a cylinder are given in table 1. The
underlined numbers correspond to the last significant figure.

As an independent verification of our results, the flow field in the cylinder in the
case L = R =25 and ε = 11.50 (that is, for the sphere located in the first quarter of the
cylinder) giving f T

zz = 1.1132174 (table 1) was also calculated with the FEMLAB finite-
elements package. Taking the largest mesh size on the sphere surface to be π/180 (that
is, calculating the force as an integral on 180 points) provided the value f T

zz = 1.1133.
Thus, there is a 10−4 difference from our results. A quantitative comparison for the
z-component of the fluid velocity is shown along the axis of symmetry (figure 2a) and
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Figure 2. The z-component of the normalized fluid velocity around a sphere located in the
first quarter of a closed cylinder with R = 25,L/R =1. (a) Along the axis of symmetry of the
cylinder. (b) In an equatorial plane. —, results using FEMLAB +, our calculation.

in an equatorial plane (figure 2b). The results are superimposed on both plots; the
relative difference is of the order of 10−3.

3. Results for the drag coefficient
Figure 3 shows the drag coefficient f T

zz for a sphere translating along the axis of a
closed cylinder for various values of R, L, ε. Results are also available as tables with
the online version of the paper. For a given cylinder height 2L, the sphere experiences
the minimum drag when it is located midway between the two plane walls. The limit
value obtained by Coutanceau (1971) for the drag on a sphere moving along the
axis of an infinite cylinder is approached for increasing L. This condition is found
in figure 3 for the middle point (ε + 1)/(2L) = 0.5 and for large values of L. For
R = 10, figure 3(b), our result for L =40 is 1.263238259 (with a 10−9 precision on
the boundary condition on walls), whereas Coutanceau’s result is 1.2629. For R =50
(figure 3c), we find for L = 50 the value 1.044327198 (also with a 10−9 precision) and
Coutanceau’s result is 1.0439. That is, the limit value is approached within 10−3.

The limit case of a sphere moving perpendicularly to two plane walls, which was
calculated with the collocation technique by Ganatos et al. (1980) is also approached
for large R, that is when the distance between the centre of the sphere and the plane
walls is smaller than the distance between the sphere and the lateral wall of the
tube. For instance, for a sphere centred midway between the plane walls: our result
for R =50 and L = 6 is 1.313 ± 10−3 whereas the Ganatos et al. (1980) result for
R → ∞ and L =6 is 1.3265; for R = 50 and L =10 we find 1.16873 ± 10−5 whereas
the Ganatos et al. (1980) result for R → ∞ and L = 10 is 1.1685.

The case of a semi-infinite cylinder appears in a plot for constant R (figure 3) as
the limit L → ∞ at constant ε (on a dashed line). It is observed that this limit is
practically attained for L � 50.

For lower values of R, the lateral wall contribution is no more negligible and the
motion of the sphere is perturbed by all boundaries. For (ε + 1)/(2L) < 0.25, the
presence of the second plane wall has no significant effect on the drag of the sphere,
as demonstrated by the small slope of the curves of the isovalues of ε (dashed lines).
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Figure 3. Drag coefficient for a sphere translating along the axis of a closed cylindrical
container for various values of R. (a) Three-dimensional representation, (b) magnification for
R = 10, (c) magnification for R = 50. The solid lines correspond to a constant L, and the
dashed lines to a constant ε.

As discussed later, ε = 3 is the minimum value that can be considered with the present
numerical technique.

The variation of 1/f T
zz , that is the normalized sphere velocity, is replotted in more

detail in figure 4 versus the normalized position relative to the centre of the cell

z0/(L − 1) = 1 − ε/(L − 1)

for the specific ratio L/R = 0.8 (this configuration will be used in the experiments,
see § 6). Our numerical results are compared to those of Sano (1987, personal
communication 1990) for a small sphere moving on the axis of a closed circular
cylinder. Blake (1979) presents streamlines only for several closed cylinders, and
there is no possible comparison on the drag coefficient. Sano uses the assumptions
L � 1, R � 1 and models the small sphere by a point-force singularity, namely,
a Stokeslet. His solution is obtained as a first-order expansion in 1/L and 1/R.
Specifically, his result for the drag coefficient is written in the form:

f T
zz = 1 + k∗

(
L

R
,

|z0|
L

)
1

L − |z0| + O

(
1

L − |z0|

)2

. (3.1)

Sano’s k∗ coefficient is proportional to
(
1/(L − |z0|)

)
so that his results for 1/f T

zz

have a discontinuous derivative at z0 = 0. The results of Ganatos et al. (1980) and
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Figure 4. Inverse of the drag coefficient for spheres of radius a translating along the axis of
a closed cylindrical container. The horizontal axis shows positions of the sphere on the axis,
1 corresponding to the top wall, −1 to the bottom wall and 0 to the midpoint (see figure 1).
(Dotted lines) our numerical results for closed cylinder; (solid lines) theoretical results for a
Stokeslet in a closed cylinder (Sano 1987, personal communication 1990) (curved dashed lines)
theoretical value, independent of position for an infinitely long cylinder (Coutanceau 1971);
(horizontal straight dashed lines) theoretical results for an infinitely wide cylinder, i.e. for a
sphere falling between two infinite horizontal plates (Ganatos et al. 1980; Lobry & Ostrowsky
1996). aR = 25 mm; aL = 20 mm.

Lobry & Ostrowsky (1996) for two infinite plane walls are also shown for comparison
in figure 4.

As the sphere approaches one of the plane walls, the drag becomes large and the
numerical method gives a poor description of this behaviour. For ε < 3, we then use
the exact solution obtained by BM for the motion of a sphere perpendicular to a
single plane wall. For this range of ε, Lecoq et al. (1993) have shown that this exact
solution is in excellent agreement with experiment for a sphere moving towards a
plane endwall of a closed cylindrical container. For clarity, this theoretical result was
not added in figure 4. The exact solution of BM matches our calculations near ε =2
depending on L/R and R. For larger ε, the difference between the BM solution and
the numerical calculation is due to the influence of lateral walls.

As observed in figure 4, the individual effects of the sphere volume, the lateral
walls of the cylinder and the end walls combine in a non-trivial way. It is clear that
a large sphere is affected by the walls of the container to a greater extent than a
small sphere and that the effects of a container endwall become important only when
the particle is very close to it. Our results are consistent with the boundary-element-
method calculations (Graham et al. 1989; Tullock, Phan-Thien & Graham 1992) of
the effects of lateral and endwalls experienced by a spherical particle settling in a
circular container filled with a Newtonian fluid.

Consider now the results for the motion of a spherical particle settling along the
axis of an infinite conical container. To our knowledge, there are no theoretical
calculations of this problem, except that of Kim (1979) who used a method of
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fT

zz

α = 20°
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Figure 5. Inverse of the drag coefficient for a small sphere of radius a translating along the
axis of an infinite circular cone with semi-angle at the apex α = 45◦ (top curves) and α = 20◦

(bottom curves). The horizontal axis shows the position h of the sphere on the container axis
(h =h∗/a, see h∗ in figure 1), h = 0 corresponds to the lowest contact position. (Dash-dotted
line) our numerical results; (solid line) theoretical results for a Stokeslet (Kim 1979).

reflections to evaluate the drag experienced by a Stokeslet moving on the axis of a
circular cone.

Figure 5 presents the inverse of the drag coefficient, that is the particle settling
velocity normalized by its Stokes velocity in terms of h = h∗/a, the normalized distance
to the lowest contact position (h∗ is defined in figure 1). Values of 1/f T

zz start at 0.2
since the calculation does not converge for lower values of h.

For increasing cone angle, the gap between the sphere and the lateral walls increases,
so that the drag coefficient decreases. The results of Kim (1979) show that the drag
coefficient is smaller for a Stokeslet than for a sphere. This is expected, since there
is no volume effect for a Stokeslet. For the same reason, for increasing cone angle,
our result becomes closer to that of Kim (1979) for a Stokeslet. For both angles
α = 20◦ and 45◦, our solution and that of Kim have the same limit behaviour when
the normalized distance h → ∞. This can be understood, since the volume of the
particle has no effect far from boundaries.

4. Streamline patterns
The numerical procedure outlined in § 2 also provides a description of the streamline

patterns. The relative normalized streamfunction Ψ is determined from (2.5) and
the absolute streamfunction is then calculated as Ψabs = Ψ + (1/2)r2 sin2 θ . In this
section, we describe the shape and intensity of streamlines for several positions
of the sphere. Partial comparisons with previous theoretical works are possible:
(i) The flow in corners is discussed by comparison with Moffatt’s antisymmetric and
symmetric eddies (§ 4.1); (ii) the flow in the vertex of the cone is also compared with
Wakiya’s (1976) solution (§ 4.2). However, unlike Coutanceau (1971) and Hellou &
Coutanceau (1992), our experimental method is not based upon the visualization of
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–6.1 × 103
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× 7
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Figure 6. Streamlines for a sphere located in the centre of a closed cylinder with aspect ratio
L/R = 1 and (a) R = 25. An enlargement of the corner region enclosed in a dashed square is
also shown. The solution of Blake (b) for a Stokeslet in the centre of a closed cylinder with
aspect ratio L/R = 1 is represented for comparison.

the flow field with solid tracers, so that comparisons with experiment cannot be made
directly.

4.1. Flow pattern in a closed cylinder

The flow pattern for a small sphere corresponding to R =25 in a closed container of
aspect ratio L/R =1 is presented in figure 6. The sphere is located in the centre of the
cylinder. Owing to the problem axisymmetry, the flow field consists of toroidal shaped
eddies, represented here in a half meridian plane. Arrows indicate the flow direction if
the sphere moves conventionally to the right, as represented. The streamlines consist
of a main flow (the primary eddy), that is driven directly by the particle motion, and
secondary eddies in the corners. The outer streamlines of these eddies have a nearly
triangular cross-section. The flow in secondary eddies is driven by the primary eddy
and therefore turns in the opposite direction, as indicated also by the negative values
of the streamfunction. It is observed in the enlargement that these secondary eddies
are like the first of the theoretical infinite sequence of two-dimensionnal corner eddies
predicted by Moffatt (1964). With our numerical precision, we could not, however,
calculate beyond the secondary eddy. It is nevertheless remarkable that the ratio
of intensities of the consecutive Moffatt eddies is consistent with the 10−5 ratio of
intensities of secondary to primary eddy in our case.

Streamlines of the primary eddy are similar to those due to a Stokeslet in a closed
cylindrical container, as represented by results from Blake (1979) (figure 6b). However,
Blake’s calculation does not go as far as the secondary corner eddies.

Table 2 gives a summary of the main characteristics of the primary and secondary
eddies, for R = 4 and L =7.8, 9.5, 10, 12, 15. The relevant points O , O ′, C and S
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L = 7.8 L= 9.5 L = 10 L = 12 L= 15 O’Neill

O ′C 6.85 7.14 7.14 7.14 7.14 —
OS 7.80 9.50 9.50 8.83 8.83 —
(OS − O ′C)/R 0.2375 0.59 0.59 0.4225 0.4225 0.426
Ψ (M1) 0.847 0.847 0.847 0.847 0.847 —
Ψ (M2) −3.95 × 10−6 −1.73 × 10−5 −2.72 × 10−5 −4.77 × 10−5 −5.35 × 10−5 —
Ψ (M2)/Ψ (M1) −4.66 × 10−6 −2.04 × 10−5 −3.21 × 10−5 −5.63 × 10−5 −6.31 × 10−5 −7.33 × 10−5

f T
zz 1.97907078 1.97907077 1.97907077 1.979076 1.979079 —

Table 2. Some characteristics of the primary and secondary eddies for a sphere moving along
the axis of closed cylinders with various values of the reduced semi-length L and with radius
R = 4 (see figure 7). Theoretical results of O’Neill (1983) for L → ∞ are shown for comparison
in the last column.

are those represented in figure 7. Note that the drag coefficient f T
zz stays practically

constant (up to the fifth decimal place) for varying L. This is because the primary
eddy close to the sphere is practically unchanged. As evidence of this behaviour, the
intensity of the primary eddy, represented here by the value of the streamfunction
in the eddy centre, say Ψ (M1), is constant. On the other hand, the intensities of
the secondary eddy, |Ψ (M2)|, increase with L, while the eddy increases and distorts
(figure 7). The outer half-length of the primary eddy, that is the distance O ′C (figure 7),
becomes constant for L � 9.5. On the other hand, the inner half-length of this eddy,
that is the distance OS, stabilizes for L � 12. The dividing streamline Ψ = 0, which
delineates the main driving current, detaches from the endwall at approximately
L =9.76; then it moves towards the sphere and for L =12 reaches a limit position.
Consequently, from this stage on, the main current becomes confined approximately
to a rectangular region. In the case of an infinite cylinder, the curve Ψ = 0 determines
the quartic curve which can be used to limit the perturbed fluid domain, if secondary
eddies are ignored. As remarked above, the present result is consistent with the
visualization and calculation of Coutanceau (1971). From table 2, it can also be seen
that the characteristic distance (OS − O ′C)/R =0.423 for L � 12. This value is in
agreement with O’Neill (1983) who obtained (OS(i) − O ′C(i))/R =0.426. The index
(i) indicates that the result of O’Neill is valid for each of the cells in an infinite series
of cells in the infinite cylinder. The next cells in the series for increasingly large L

could not be calculated here because of the limitation in accuracy of our present
technique. Nevertheless, this numerical technique might be extended in the manner
of Moreau (1988) who calculated the analogous two-dimensional flow field due to a
cylinder moving between parallel planes. The idea would be to renormalize numerical
values at each cell and then match the neighbouring cells.

The previous results are still valid if the relative size of the particle is reduced. The
ratio L/R determines the shape of the eddies.

Let us now consider the motion of a sphere in a squat cylinder; figure 8 presents
streamlines for increasing values of R, when the sphere is located exactly in the
middle of the cylinder. Toroidal secondary eddies then appear far from the sphere in
the radial direction. Figures 8(a) and 8(b) show how the corner eddy pattern changes
when R is increased systematically from 8 to 11.6. In the range 8 to 10.7, the corner
eddy structure changes rapidly. For R close to 10.7 (and a little below), the growing
corner eddies connect, leading to the formation of a continuous dividing streamline
touching the middle of the lateral wall. As soon as R increases beyond 10.7, this
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Figure 7. Streamlines for a sphere located in the centre of a long closed cylinder with R = 4 and (a) L = 9.5, (b) L = 10, (c) L =12.
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Figure 8. Streamlines for a sphere located in the centre of a squat closed cylinder with
half-length L = 3 and (a) R =8, (b) R = 10.7, (c) R = 11, (d) R = 11.6.

streamline detaches from the lateral wall and, consequently, the two corner eddies
come into contact at a saddle type stationary point for Ψ (see figure 8b). Figures 8(c)
and 8(d) show how the two corner eddies merge to produce the new secondary large
eddy. The new stagnation point is located on the axis z = 0 owing to the symmetry
of the configuration. A similar merging process was considered theoretically in detail
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R = 10.7 R = 11.6 R = 15 O’Neill

OH 10.6 9.625 9.366 —
O ′K 8.49 8.49 8.49 —
(OH − O ′K)/(2L) 0.352 0.189 0.146 0.1451
Ψ (M1) 0.986 0.986 0.986 —
Ψ (M2) −1.46 × 10−4 −3.24 × 10−4 −1.68 × 10−4 —
Ψ (M2)/Ψ (M1) −1.48 × 10−4 −3.28 × 10−4 −1.7 × 10−3 −2.8 × 10−3

ln(Ψ (M1)/Ψ (M2)) 8.82 8.02 6.37 5.88
f T

zz (present work) 1.8396 1.8398 1.84 —
f T

zz (Lobry & Ostrowsky 1996) 1.8432 1.8432 1.8432 —

Table 3. Some characteristics of the primary and secondary eddies for a sphere moving along
the axis of squat cylinders with various radii and with constant half-length L = 3 (see figure 8).
The theoretical result of O’Neill for the two-dimensional flow between two parallel planes is
shown for comparison. The drag coefficient f T

zz obtained from our calculation is compared
with the results of Lobry & Ostrowsky (1996) for two parallel planes.

by Davis et al. (1976 and references therein) concerning the separation from the
surface of two equal spheres. Such a separation was also observed experimentally
and calculated for a rotating cylinder between two parallel plane walls by Hellou &
Coutanceau (1992).

For increasing R beyond R = 11.575, the centre of the secondary main eddy moves
towards larger values of ρ and increases in strength while the line Ψ =0 becomes
less curved. Note that new corner eddies may appear, but as stated previously, it was
not possible to calculate them with our present technique and accuracy. For larger R,
beyond the value of figure 8(d), the secondary eddy would probably reach a limiting
size and become similar to the antisymmetric eddies calculated by O’Neill (1983) and
Shankar (1993) for the case of a two-dimensional flow between parallel planes. A
novel eddy would then arise.

Some characteristics of the primary and secondary eddies for the squat cylinder
are presented together with the result of O’Neill (1983) for two parallel planes in
table 3. Let (figure 8) O be the centre of the sphere, O ′ the middle of the plane
boundary, H and K the middle and end-points of the streamline Ψ =0. The ratio
(OH − O ′K)/(2L) decreases gradually towards the value obtained by O’Neill (1983)
for the flow between parallel planes. The last row of table 3 shows the agreement
between our value of the friction factor f T

zz for large R and the formula obtained for
two parallel planes by Lobry & Ostrowsky (1996). Note that this formula is in good
agreement with the results obtained for two parallel planes by Ganatos et al. (1980)
using the collocation method.

From this calculation, we can deduce that the secondary eddy has a very low
influence on the drag coefficient.

Blake (1979), when considering a Stokeslet in the middle of a squat cylinder,
obtained only a primary eddy for L/R = 0.3, and secondary eddies for L/R � 0.25
which have the same shapes as those we obtained, but are not so well defined. Sano,
as in the previous cases, obtained more complicated structures.

In figure 9, the streamlines are skewed because the particle is located closer to
one endwall and a large primary interior eddy occupies the whole cylinder with
the exception of corners. There are two small secondary eddies in the corners, with
different sizes and intensities because of the asymmetric location of the particle.
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Figure 9. Streamlines for a sphere located in the first quarter of a closed cylinder with R = 5
and (a) L/R = 1, (b) L/R = 2.

Figure 9(b) show the existence of two large eddies (a primary and a secondary one )
and the streamline Ψ = 0 clearly divides the cylinder into two domains.

4.2. Flow pattern in a closed circular cone. Moffatt–Wakiya’s corner eddies

The flow patterns for closed cones with R = 5 and semi-angle at the apex
α = 45◦, 30◦ are displayed in figures 10(a) and 10(b) respectively. The sphere is located
approximately in the centre of the cone. Each represented eddy is the cross-section of
a vortex ring surrounding the axis of symmetry. As previously, for simplicity we have
plotted only the eddies in a half meridian plane. The streamlines of the main flow
(primary eddy), that is the flow directly driven by the particle in motion, are clearly
obtained for both configurations. Moreover, in the top corner, there is a toroidal
cell with a triangular cross section, centred on the bisecting line of the container
cross-section (corner eddy). This type of eddy has been discussed in the previous
section, since it corresponds to an asymmetric type of Moffatt’s corner eddy. The
results are summarized in table 4.

On the other hand, at the tip of the cone, two counter-rotating cells are displayed
(apex eddies). The minus sign of the values of the streamfunction indicates that the
secondary eddy turns in the opposite direction to the primary one. Wakiya (1976)
presented the general features of a three-dimensional axisymmetric flow in a space
with a conical boundary. His solution near the apex reveals features similar to
Moffatt’s flow. As in the two-dimensional case, Wakiya shows the existence of an
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Figure 10. Streamlines for a sphere located in a closed cone with R = 5 and (a) α = 45◦, (b) α =30◦.
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α = 30◦ α = 45◦

Wakiya Moffatt Wakiya Moffatt

Ψ1 0.728 — — 0.82 — —
Ψ2a −2.76 × 10−6 — — −2.70 × 10−7 — —
Ψ3a 1.27 × 10−11 — — — — —
ln(Ψ1/Ψ2a) 12.49 9.68 9.2 14.93 10.5 8.87
ln(Ψ2a/Ψ3a) 12.27 9.68 9.2 — — —
Ψ2c −2.35 × 10−4 — — −6.40 × 10−4 — —
Ψ3c 7.29 × 10−8 — — 4.39 × 10−7 — —
ln(Ψ1/Ψ2c) 8.04 — 6.53 7.16 — 6.15
ln(Ψ2c/Ψ3c) 8.08 — 6.53 7.28 — 6.15

Table 4. Some characteristics of the primary, secondary and tertiary eddies for a sphere moving
along the axis of a closed cone with radius R =25 and with a semi-angle at the apex equal to
30◦ and 45◦. Index a refers to the apex eddies and c refers to the corner ones. The theoretical
results of Wakiya for apex eddies and Moffatt for corner eddies are indicated for comparison.

infinite sequence of eddies near the apex. A summary of our numerical results and
a comparison with Wakiya’s (1976) theoretical ones is presented in table 4. In both
cases of apex and corner eddies, we could calculate a tertiary one. From table 4, we
observe an exponential decay in the magnitude of the streamfunction between two
consecutive eddies for each case, as was predicted by Moffatt (1964) and Wakiya
(1976) in the cases of corner and apex eddies, respectively.

5. Experimental set-up and measurements
The vertical displacement of a sphere along the axis of a closed container was

measured with an interferometric technique. Details on the application of laser
interferometry to the study of hydrodynamic interactions between a particle and
walls in a viscous fluid are presented in Lecoq et al. (1993, 1995), and Masmoudi
et al. (2002).

This technique is applied here to study hydrodynamic interactions between a sphere
and the closed containers described above (figure 1). Spherical particles used in the
experiments are steel balls manufactured by SNR with radii ranging from 1.00 to
4.00mm. Departure from sphericity is small, typically less than 5 µm and the surface
roughness observed under a scanning microscope is less than 0.5 µm. We used two
cylindrical containers with inner height 2L∗ =40 mm and diameters of 2R∗ = 50 mm
and 2R∗ =80 mm. Their lateral wall are made of Altuglas and they are closed at both
ends with stuck-on windows made of a glass of optical quality. We also used two
cones with the same inner height and maximal diameters as the closed cylinders. Thus
their semi-angles at the apex are α = 31.6◦ and α = 45◦. The cones were made from
a full cylindrical tube of Altuglas and by machining on a conical shape so that their
apex is sharp and their lateral walls are smooth. Their largest inner radius is closed
by a plane glass window of optical quality.

The cells contain a very viscous oil (Rhodorsyl 47V100000 manufactured by Rhône-
Poulenc) with a kinematic viscosity given by the manufacturer of ν = 0.1 m2 s−1 at
T = 25 ◦C.

The sphere is released on the container axis close to the upper horizontal wall. The
accuracy in the position of the sphere relative to the axis is 20 µm (Masmoudi et al.
2002). The experimental set-up provides a measurement of the sphere vertical motion
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versus time with an accuracy on the displacement of 50 nm. The contact position
between the sphere and the wall (bottom plane wall for the cylinders or conical
wall for the cones) is defined, within the experimental accuracy of 50 nm in the
displacement, as that at which the particle velocity vanishes for the first time. When
considering the motion toward a horizontal plane wall, this contact position is taken
as the origin for the sphere-to-wall distance. The gap ε∗ between the particle and
the wall is defined from this origin and is therefore recalculated from the recorded
displacement and from the contact position at the end of each experiment. More
details on the experimental procedure can be found in Lecoq et al. (2004).

To obtain the drag coefficient in term of the experimentally measured particle
velocity Vexp , we replace V0 in (2.9) by −Vexp , and use the balance of forces on the
moving sphere to show:

f T
zz = VSt/Vexp, (5.1)

where VSt is the Stokes velocity. VSt is calculated from the particle weight and
buoyancy and from the fluid viscosity. The oil temperature is measured before
and after the experiment and we take into account the variation of viscosity with
temperature. During an experiment, the viscosity can change by less than 0.5%; this
small variation is due to the absorption of the laser beam by the fluid and hand
manipulation of the measurement cell before the experiment.

It was shown by Lecoq et al. (1993, 1995) that when the particle moves away from
or towards a plane wall, the ratio of the measured velocity to the Stokes velocity is
in excellent agreement with the theoretical result of BM. Thus, a measurement of the
velocity of the particle close to the flat wall of the cell provides a way to determine the
Stokes velocity. The ‘experimental’ Stokes velocity measured in this way was found to
be in excellent agreement with the velocity calculated from the Stokes formula using
the physical data given above.

6. Experimental results, comparison with calculations and discussion
Figure 11(a) shows that the results of the numerical calculations are superimposed

onto the experimental results for values of z0/(L − 1) in the intervals limited
by the points T

j
i (located near ±0.75), for the four sizes of particles and both

cylinders (i =1, . . . , 4, j = 1, 2). The enlargement of the central dashed rectangular
area, (figure 11c) shows the very good agreement between experiments and theoretical
results for all configurations considered here. As in Lecoq et al. (1993), the results of
Sano (1987) for the drag coefficient (not represented here) are not in good agreement
with experiments even in the case of a small sphere. Figure 11(b) concentrates on
the near-wall region. It presents the inverse of the experimental friction coefficient
(dotted line), the theoretical one derived by BM (dashed line) and the results of our
numerical calculation (solid line) as a function of the distance εa for the four particle
sizes and the two cylinders. Close to the horizontal plane wall, the BM solution is
valid in the region between contact and the vertical bars S

j
i (i = 1, . . . , 4, j = 1, 2).

The upper limits S
j
i are chosen so that the relative error between the experimental

curves and the BM solution does not exceed 1%. The influence of the top wall and
of the lateral boundaries then can be neglected. From the vertical bars T

j
i to the

middle of the cylinder, our numerical calculation is in very good agreement with the
experimental measurements. Both solutions match in the small domain [T j

i , S
j
i ].

Figure 12 presents the inverse of the experimental friction coefficient (dotted lines),
that determined by the numerical calculation (solid lines) and, as previously, the
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Figure 11. (a) Measured sphere normalized velocity versus normalized position relative to
the centre of the cell for spheres with different radii sedimenting along the axis of closed
cylindrical containers. For a given sphere, the top curve corresponds to the large cylinder.
Results of our calculation (solid lines) are superimposed. The vertical bars Ti (i = 1, . . . , 4)
show the limit of the calculation. The T 1

i corresponds to the large cylinder and T 2
i to the

small one. (b) Enlargement of the lubrication region. The BM theoretical solution for a
sphere moving towards a single plane wall (dashed lines) is superimposed on the experimental
data (dotted lines). The vertical bars S

j
i (i = 1, . . . , 4, j = 1, 2) indicate the upper limit of

the matching region between the BM solution and our calculation. (c) Enlargement of the
dashed rectangle indicated on (a) showing the distribution of experimental points around the
theoretical solution (solid lines).

BM solution (dashed lines) as a function of the normalized gap ξ (where aξ

is the gap between the sphere and the lateral wall) for the particles with radius
a =4.00, 3.175 mm, settling along the axis of both cones. Our experimental domain
being limited (ξ varies from 0 to 7.5), a comparison with the theoretical solution
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Figure 12. Inverse of the drag coefficient (or normalized velocity) versus normalized position
for spheres with several radii settling along the axis of closed cylindrical cones: experimental
results (dotted lines); theoretical results obtained with our calculation are superimposed (solid
lines). The points Ti (i = 1, . . . , 4) correspond to the lower limit of the theoretical solution and
the points Ci (i = 1, . . . , 4) to the upper one. The BM theoretical solution for a sphere moving
towards a single plane wall (dashed lines) is superimposed on the experimental results. The
circle near the origin of coordinates indicates the domain of validity of the lubrication solution
obtained by Masmoudi et al. (1998).

proposed by Kim (1979) is not possible since that solution is valid only far from the
boundaries. The results of our numerical calculation coincide with the experimental
results in the domain between the vertical bars Ti (i =1, . . . , 4) and the vertical bars
Ci (i = 1, . . . , 4). The size of this domain depends on the radius of the particle and the
geometry of the cone. Near the upper plane wall, the BM solution is superimposed
onto the experimental results, showing that the effect of the lateral walls is negligible.
As in the case of the cylinder, close to the bars Ci , there is a domain where the
results of our numerical calculation match the BM solution, the difference between
both sets of values being smaller than 1%. Therefore, the results of the numerical
calculation completed by the BM solution allow a full determination of the velocity
of the spherical particle in the upper part of a closed cone. The discrepancy between
experiments and theory (least-squares method completed with BM solution) also does
not exceed 1%. In the lower part of the cone, there is a gap between the present
numerical solution and the lubrication solution of Masmoudi et al. (1998). More
work is required here. Thus, apart from this region, the method of least squares is
well adapted to the calculation of the drag coefficient correction of Stokes law for a
sphere in motion on the vertical axis of a closed container.

7. Conclusion
The low-Reynolds-number flow driven by a spherical particle settling along the axis

of symmetry of a closed container is analysed numerically and experimentally. The
typical containers considered here are finite cylinders and truncated closed cones.
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By adapting the least-squares method of Bourot (1969) to the axisymmetric closed
geometry, the Stokes flow was calculated for various container shapes, sizes and
aspect ratios. It is shown that the accuracy of the method may be carefully controlled,
even though the linear system is ill-conditioned. Details are given in the Appendix.
Apart from accuracy, compared with other numerical techniques an advantage of
the present method is its speed. The method is appropriate provided the particle is
not too close to the walls. On the other hand, the method becomes inaccurate for
the treatment of lubrication phenomena since the linear system becomes too severely
ill-conditioned.

Results for the flow field and drag force on the particle are provided for various
values of the shape, size and aspect ratio of the container. The precision of results
allows us to demonstrate special features of the complex bounded axisymmetric flow
fields. These include the structure of the main eddy, the nature of the corner eddies
and their eventual merging for increasing aspect ratio, leading to the formation of a
new secondary eddy. Convincing comparisons are made with earlier results obtained
by other authors, in particular for viscous eddies near sharp corners.

The displacement of a spherical particle settling along the axis of a closed container
was measured using laser interferometry. This technique provides an accuracy of
50 nm, even for very small gaps between the particle and the wall. From this
measurement, we derived the reduced velocity Vexp/VSt , that is the inverse of the
friction coefficient experienced by the particle in motion. The experimental results for
the friction coefficient are in excellent agreement with the theoretical solution obtained
from the least-squares method, except near walls where the numerical technique loses
accuracy. For a plane wall, the analytical BM solution provides the description near
the wall and matches in a significant domain with our numerical solution. The
numerical and experimental results show that the contributions of the volume of the
sedimenting sphere, of the lateral walls of the container and of the endwall(s) combine
in a non-trivial way.

This experimental technique can be used to measure hydrodynamic interactions
between a particle and walls when the geometry is more cumbersome and theoretical
calculations are consequently more difficult to perform. The experimental technique
and numerical scheme could be applied, for instance, to a slightly deformed sphere.
Finally, the flow field around a sphere near the apex of a cone and matching with the
Masmoudi et al. (1998) lubrication solution are under consideration (see Lecoq &
Feuillebois 2007).

The authors would like to thank the personnel of SCRIR at Rouen University for
providing the computational facilities used for this study as well as F. Bostel (Rouen
University) for his generous help in generating the streamline plots. They also thank
R. Patte (Rouen University) for his advice in the tests involving several numerical
methods in the final phase of the computation. The authors finally would like to
thanks the referees for their valuable suggestions and comments.

Appendix. Details of the calculation and results of tests with several numerical
techniques

For the computer coding, it is simpler to replace bn and dn by a single set of 2N

unknown coefficients. Integrals are replaced by a summation of values at appropriately
chosen collocation points.
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The velocity components (2.6), with n limited to N , may be written as:

vr =

2N∑
j =1

AjFj , vθ =

2N∑
j=1

AjGj , (A 1)

where the Aj with odd j indices correspond to the bn and those with even j indices
to the dn. The Aj , Fj and Gj are obtained as follows.

For odd values of j , with k = (j + 1)/2 + 1:

Aj = bk,

Fj = Pk−1(t)

(
3 − 2k

2k − 1
r1−k − 2

2k − 1
rk−2

)
,

Gj = Yk(t)

(
(2k − 3) (k − 1)

2k − 1
r−1−k + (3 − k) r1−k − 2k

2k − 1
rk−2

)
.

For even values of j , with k = j/2 + 1:

Aj = dk,

Fj = Pk−1(t)

(
2

2k − 1
r−1−k − 2k + 1

2k − 1
rk−2 + rk

)
,

Gj = Yk(t)

(
2 − 2k

2k − 1
r−1−k − (2k + 1) k

2k − 1
rk−2 + (k + 2) rk

)
.

The conditions for the integral (2.8) to be at a minimum are:

∂

∂Ai

∫
Γ

[
(vr − t)2 + (vθ + s)2

]
dΓ = 0 (i = 1, . . . , 2N).

Then, the minimization yields the linear system

2N∑
j=1

Aj

∫
Γ

(FiFj + GiGj )dΓ = −
∫

Γ

(Gis − Fit)dΓ, (i = 1, 2, . . . , 2N). (A 2)

In the system (A 2), the integrals are replaced by simple summation on an adequate
number Np of points evenly distributed along the boundary Γ : the variable of
integration is the colatitude 0◦ <θ < 180◦ and the points are regularly spaced with
equal steps (0.5◦ or 0.05◦). The points corresponding to θ = 0◦ and θ = 180◦ are not
singular. The Gegenbauer and Legendre polynomials are obtained from a recurrence
law (Press et al. 1990). Several methods were employed for this numerical integration:
Newton–Cotes formulas and Gauss–Legendre quadrature. Results for the first 20
terms obtained with these methods were compared to the exact value obtained by
analytic integration using the Maple computer algebra software. In every case, there
is at least twelve-figures agreement between the results of the Newton–Cotes and
Gauss–Legendre integrations and the exact value of the integral.

The linear system (A 2) can be written Ax = b, where A is a 2N × 2N , symmetric
positive definite matrix and x and b are column vectors. The matrix is severely
ill-conditioned; estimates of the condition number κ(A) versus the location of the
particle in the closed container and versus the number of unknowns are given in
table 5. An ill-conditioned system may imply an instable solution, but this solution
may still be usable, provided the residual velocity is below the required tolerance.
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ε = 24 ε = 11.5 ε = 5.25

N f T
zz �V κ(A) f T

zz �V κ(A) f T
zz �V κ(A)

20 1.092642 10−6 1064 1.1132 10−4 1068 1.220 10−2 1070

40 1.0926448 10−7 10125 1.113212 10−6 10134 1.2194 10−3 10138

60 1.09264480 10−8 10187 1.1132174 10−7 10199 1.2193 10−4 10205

70 1.09264480 10−8 10218 1.1132174 10−8 10232 1.2193 10−4 10239

80 1.1 0.92 10248 0.844 0.93 10264 0.93 0.97 10272

Table 5. Convergence of the numerical method and variations of the average residual velocity
on the walls and condition number of the matrix A for a small sphere moving in a closed
cylinder with normalized dimensions L = R = 25 In the first case, the sphere is located in the
middle of the cell, in the last one, the sphere is closer to any of the plane walls.

This is the case here, as proved by the results presented in table 5 for �V , the average
residual velocity on the walls. When the particle is close to the centre of the container
(ε = 24), the condition number is very high (�1064) for a small number of unknowns,
N = 20. It increases up to 10218 for a large number of unknowns, N = 70, but the
residual average velocity decreases to 10−8. This implies that the boundary conditions
are satisfied even though the linear system is severely ill-conditioned. The convergence
of values of f T

zz is also observed in table 5 (values are recalled from table 1). Then,

for N = 80, �V diverges strongly. There is thus an optimum number of terms in the
expansion. The situation is akin to the use of non-convergent series as asymptotic
expansions.

Zimmerman (2004) studied in detail series expansion solutions for creeping flows
which lead to linear systems with a high condition number. He showed that this
problem arises even for the simple Poisson operator. He found that the condition
number increases with the order of truncation of the system and also for close surfaces.
Similar situations arise in our case. Zimmerman argues that this ill-conditioning
arises from an incompatibility between the shape of bounding surfaces and the
natural geometry of the harmonics. Thus, if a general axisymmetric surface is to be
considered, there is a priori no adapted type of harmonics and ill-conditioning seems
to be inevitable. In spite of this drawback, precision can be controlled (Zimmerman
2004) for various series solutions and as shown here for our technique.

Several well-known direct and iterative methods were tested for solving the linear
system (A 2): Gauss–Jordan and Cholesky decomposition as direct methods, Gauss–
Seidel, Conjugate gradient method and MINRES (minimum residual) method as
iterative procedures. The LAPACK subroutines and templates by Barrett et al. (1994)
were used.

The Cholesky method failed rapidly because of errors during the decomposition (the
matrix is severely ill-conditioned and the square roots of negative terms are computed).
In a similar way, the conjugate gradient method provides good convergence only if
the condition number κ(A) of the matrix is low (lower than 100). A way to overcome
the problem of a low convergence rate with a high condition number is to use a
preconditioner (Axelsson 1985; Davey & Ward 2000). It is recognized that a suitable
preconditioner can improve the convergence characteristics of the conjugate gradient
method. Essentially, the system KT AKy =KT b is solved instead of Ax = b where K

is chosen so that κ(KT AK) 	 κ(A). The preconditioned conjugate gradient method
was applied here using several preconditioners (Jacobi, SSOR, . . .). Convergence was
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obtained with a limited number of iterations, but there was no significant improvement
of the solution. Therefore, the linear system (A 2) was inverted using simply the Gauss–
Jordan elimination method. The boundary conditions on the walls are satisfied with
a (�V � 10−4) tolerance in all considered cases.

Once the unknowns Aj of the linear system are determined, all the hydrodynamic
characteristics such as the velocity and pressure fields may be calculated.
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