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The problem of steady subcritical free surface flow past a submerged inclined step is con-

sidered. The asymptotic limit of small Froude number is treated, with particular emphasis on

the effect that changing the angle of the step face has on the surface waves. As demonstrated

by Chapman & Vanden-Broeck, (2006) Exponential asymptotics and gravity waves. J. Fluid

Mech. 567, 299–326, the divergence of a power series expansion in powers of the square of

the Froude number is caused by singularities in the analytic continuation of the free surface;

for an inclined step, these singularities may correspond to either the corners or stagnation

points of the step, or both, depending on the angle of inclination. Stokes lines emanate from

these singularities, and exponentially small waves are switched on at the point the Stokes

lines intersect with the free surface. Our results suggest that for a certain range of step

angles, two wavetrains are switched on, but the exponentially subdominant one is switched

on first, leading to an intermediate wavetrain not previously noted. We extend these ideas to

the problem of flow over a submerged bump or trench, again with inclined sides. This time

there may be two, three or four active Stokes lines, depending on the inclination angles. We

demonstrate how to construct a base topography such that wave contributions from separate

Stokes lines are of equal magnitude but opposite phase, thus cancelling out. Our asymptotic

results are complemented by numerical solutions to the fully nonlinear equations.

Key words: exponential asymptotics; free surface flows; small-Froude number limit; interme-

diate waves; trapped-wave solutions

1 Introduction

The problem of steady two-dimensional free surface flow of an ideal fluid past uneven

bottom topography has been the subject of much consideration. In order to provide an

appropriate background for the problem, we shall refer to the typical channel topography

given in Figure 1(a). Upstream the flow is assumed to be uniform, with height H and speed

U, while downstream the average height and speed are denoted by D and V , respectively.

It is instructive to describe the flow regimes in terms of the upstream and downstream

Froude numbers

F =
U√
gH

and F∗ =
V√
gD

, (1.1)

respectively, where g is the acceleration due to gravity.
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Figure 1. Schematics of the two flow configurations considered in this paper. (a) Flow over a

submerged step. (b) Flow over a submerged bump.

We are particularly interested in subcritical flows, for which these problems are charac-

terised by a train of waves on the downstream free surface. For the linearised problem that

applies formally as δ = h/H → 0, where h is a measure of the height of the obstruction,

this regime has both F < 1 and F∗ < 1. For fully nonlinear flows (with δ finite), this

definition is not strictly valid, as more extreme subcritical flows can exist for a small range

of Froude numbers F > 1 as well as the usual range F < 1. (The other two classical

regimes, with which we are not concerned, are supercritical and critical flows. Within the

linearised framework, the former is defined as having F > 1 and F∗ > 1, while the latter

has either F < 1 and F∗ > 1 or F > 1 and F∗ < 1. For a further discussion on the three

flow regimes, see [17, 18], for example.)

There are two notable asymptotic limits for the problem of subcritical flow past an

uneven topography: one where the Froude number, F , tends to zero, and the other where

the height of the obstruction, δ, tends to zero. The former limit is singular, and will

be the concern of the bulk of this paper. The latter limit leads itself to the classical

linearised formulation, considered by Lamb [25], for example, who studied the flow past

a submerged semicircular obstruction. Lamb solves the linear problem exactly, obtaining

an explicit formula for shape of the free surface, including the downstream wavetrain.

Similar analysis was undertaken by Wehausen & Laitone [41] for the linearised problem

of two-dimensional flow past a submerged cylinder. However, as noted by Zhang and

Zhu [42], if either stagnation points or singularities occur on the boundary of the flow (at
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corners, for example), then for a linear solution to be valid throughout the flow field, the

linearisation must take place in an appropriate conformally mapped plane (as in [18, 22],

for example).

For small Froude numbers F � 1, care must be taken when treating linear problems

valid for δ � 1, since a formal power series in δ breaks down in the limit F → 0 (the

correction term in the expansion for δ � 1 overtakes the leading order term as F → 0).

Such issues are addressed by Ogilvie [32] and Dagan [13] for the problem of flow past a

submerged body, and noted more recently by Zhang & Zhu [42] for flow over topography.

As a consequence of this small Froude number nonuniformity, the limits F → 0 and δ → 0

do not commute, and provide a distinguished limit that relates both the Froude number

F and the obstruction height δ. The absence of commutivity is not unexpected, since

the asymptotic limit F → 0 is singular, while δ → 0 is regular. Additionally, numerical

evidence [34, 42] suggests that the amplitude of the surface waves becomes exponentially

small in the limit F → 0. A formal power series in F2 is therefore unable to capture the

correct surface wave behaviour of the flow in this limit, as the exponentially small waves

take place ‘beyond all orders’ of the power series expansion.

Studies of other two-dimensional free surface problems have demonstrated similar

qualitative results in the limit that the Froude number F → 0. For example, Vanden-

Broeck and coauthors treat infinite-depth flows both past a two-dimensional stern [38,39]

and due to a submerged line source [38] analytically, and show that for these configurations

a power series in the Froude number squared is everywhere divergent. The finite-depth

versions of these problems are treated in McCue & Forbes [27] and Mekias & Vanden-

Broeck [30], for example, where the main goal was to solve the problems numerically for

all Froude numbers; in these cases, numerical results strongly suggest the amplitude of

the waves is exponentially small in the Froude number as F → 0. Other early examples of

similar observations are given for flows past submerged bodies and pressure distributions

by Dagan [13] and Doctors & Dagan [15]. Note that these are in contrast to certain

other configurations, such as flow past a semi-infinite plate [2, 26, 28, 29, 31, 37], for which

solutions with downstream waves do not exist for sufficiently small Froude numbers, and

so there is no corresponding small Froude number nonuniformity.

Returning to the subject of free surface flow past a bottom topography, numerical

investigations of these problems normally employ a boundary integral method involving

complex variable theory, sometimes with the use of conformal mappings. In particular,

Forbes & Schwartz [18] treated the flow past a semi-circular obstacle, while King &

Bloor [22] solved for the flow over a step. Further early studies are given by [16,23,42,43],

for example. Of relevance to the present study, Binder et al. [3] recently consider free

surface flow over a bump or trench, such as that sketched in Figure 1(b). For subcritical

flow, they demonstrate that it is possible to obtain a bump/trench configuration for

which the downstream waves past the obstacle are completely eliminated; these are

referred to as trapped-wave solutions. Forbes [16] generated trapped-wave solutions for

free surface flow over a submerged ellipse, while Binder et al. [4] demonstrated that

multiple obstacles on the base of the flow could also be used in order to generate trapped

surface waves between the two separate obstacles. Similar results have been obtained for

obstacles suspended in the flow [19, 36] and for flows past pressure distributions [40], for

example.
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In response to the analytical and numerical evidence noted above, Chapman & Vanden-

Broeck [12] have recently constructed an asymptotic framework in which two-dimensional

steady free surface flows could be described in the limit F → 0. These authors employ

techniques in exponential asymptotics, developed in [9,33] (and applied to other potential

flow problems in [7,8]), that involve applying an asymptotic series expansion in powers of

F2 and capturing the precise factorial/power nature of the divergent tail. After truncating

the divergent series optimally, the exponentially small remainder is subsequently analysed

using matched asymptotic expansions, providing an expression for the exponentially small

surface wave behaviour valid in the limit F → 0. Chapman & Vanden-Broeck [12] apply

this method to the test case of free surface flow over a step, which is illustrated in

Figure 1(a) with θI = π/2. As a result, they demonstrate the existence of a downstream

train of exponentially small surface waves with amplitude of order F−2/5e−c/F2

, where c

is a constant related to the height of the step, as F → 0. These results were subsequently

verified numerically using boundary integral methods. Very recently, Trinh et al. [35]

applied the techniques developed in [12] to the problem of surface-piercing flow past a

semi-infinite stern, resolving many of the issues treated in [38, 39].

In the present study, we revisit the problem of free surface flow over a step, and adapt the

analysis of Chapman & Vanden-Broeck [12] to allow the step to have an arbitrary angle

of inclination, θI , as sketched in Figure 1(a). Mathematically this problem is interesting

since, as pointed out in [12], Stokes lines are generated by corners with in-fluid angles

of greater than 2π/3. Thus for −π/3 < θI < π/3 there are, in general, exponentially

small correction terms generated from two active Stokes lines, whereas in the case treated

in detail in [12] (that is, θI = π/2), there is only one such Stokes line. As a result, for

−π/3 < θI < π/3 there are two points on the free surface at which exponentially small

waves are ‘switched on’. We find that one of the wavetrains has an amplitude of order

F−2(3θI−π)/(3θI+π)e−c/F2

as the Froude number F → 0, while the other has an amplitude

of order F−2(3θI+π)/(3θI−π)e−1/F2

. Downstream, one of these contributions is exponentially

subdominant compared to the other (meaning that the smaller of the contributions will

be almost impossible to detect in practice); however, for 0 < θI < π/3, there is a finite

region, between the points at which the two active Stokes lines intersect the free surface,

over which only the smaller of the two contributions is present, leading to an intermediate

wavetrain not previously noted for this type of problem. Furthermore, we find that for an

infinite number of angles in the range −π/3 < θI < π/3, the amplitude of the subdominant

wavetrain vanishes, leaving only the contribution of a single active Stokes line.

To extend these ideas further, we apply the techniques to the problem of flow over a

submerged bump or trench, allowing for inclined sides, as in Figure 1(b). In this case

there may be two, three or four active Stokes lines, depending on the angles θA and

θB . We find that it is possible to construct the base topography in such a manner that

the wave contributions from separate Stokes lines are of equal magnitude, but directly

out of phase. As a result, we are able to generate trapped-wave solutions for particular

base configurations, supporting the complementary results for the limit that the Froude

number F → 1− (with small obstacle height, δ � 1) by Binder et al. [3] using weakly

nonlinear theory.

The layout of the paper is as follows. We begin in Section 2 by formulating the

problem of flow over an inclined step using conformal mapping techniques. Subsequently,
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in Section 3 we follow the general method outlined by Chapman & Vanden-Broeck [12]

for the specific case of flow over an inclined step in order to obtain the exponentially

small contribution to the surface behaviour as F → 0. In Section 4, we present results

for this problem and note the possible existence of multiple downstream wavetrains due

to the presence of multiple singularities in the flow path. Numerical solutions to the

full nonlinear problem are presented to support our findings. The results obtained in

Sections 3 and 4 are extended in Section 5 for flow over a submerged bump or trench,

particularly noting the possibility of trapped-wave free surface solutions, while the paper

concludes in Section 6 with a brief discussion.

2 Formulation for flow over an inclined step

2.1 Governing equations in physical plane

We consider irrotational flow of an incompressible fluid over an inclined step of height

h, with the upstream speed given by U, and the upstream channel depth given by H (see

Figure 1(a)). We denote the velocity of the fluid as q(x, y), where q = q cos θ i + q sin θ j,

where q = |q| is the speed of the flow, and θ gives the angle between the streamline and

the horizontal at a given point. As the flow is irrotational, we write q = ∇φ, where φ is the

velocity potential. Together with incompressibility ∇ · q = 0, we have Laplace’s equation

∇2φ = 0 (2.1)

throughout the flow domain, except at singular points on the boundary.

We scale all velocities by a factor of U and the lengths by a factor of H/π, and

use dimensionless equations from here on. The scaled equivalent of the topography in

Figure 1(a) is shown in Figure 2(a). In terms of the velocity potential, the problem is now

to solve (2.1) subject to

∇φ · n̂ = 0 (2.2)

on the solid bottom boundary below and the free surface y = S(x) above, where n̂ is a

normal vector to these surfaces. Far upstream we have φ ∼ x as x → −∞. Finally, we

have Bernoulli’s equation

1

2
q2 +

y

πF2
=

1

2
+

1

F2
on y = S(x), (2.3)

where F is the upstream Froude number defined in (1.1). To be consistent with Chapman

& Vanden-Broeck [12] we shall introduce the parameter ε = πF2, but of course the

subsequent analysis could as well be applied using F2 as the small parameter.

2.2 Conformal mapping

As is well known, since the velocity potential φ satisfies (2.1), the complex potential

w(z) = φ + iψ is an analytic function of the complex variable z = x + iy (except at

singular points), where ψ is the streamfunction that also satisfies Laplace’s equation. We

are free to set ψ = 0 on the free surface y = S(x), and it therefore follows that ψ = −π
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Figure 2. Conformal mapping for the dimensionless flow over a submerged step.

on the base of the flow. Fixing these values for ψ has the effect of satisfying the kinematic

condition (2.2). We are also free to set a value for φ at some point on the base of the

channel, and for flow over an inclined step we choose φ = 0 on the top of the step. A

schematic of the mapping from the z-plane to the w-plane is shown in Figures 2(a) and (b).

The w-plane is subsequently mapped to the ζ-plane by applying the transformation

ζ = ξ + iη = e−w. (2.4)

In the ζ-plane, the base of the channel AD maps to the negative real axis (η = 0, ξ < 0),

while the free surface EF maps to the positive real axis (η = 0, ξ > 0), as indicated in

Figure 2(c). The value of the velocity potential φ at the point B is unknown a priori,

and so the location of B in the ζ-plane is also unknown; we label this point ξ = −b,
η = 0. The flow region occupies the upper-half ζ-plane, with the limit |ζ| → ∞ (η > 0)

corresponding to the uniform flow far upstream AF . Note that the mapping (2.4) applies

to all channel flows over arbitrary bottom topography, including that treated in Section 5.

It is worth noting that we could have just as easily mapped the uniform flow far

upstream AF to the origin ζ = 0 via ζ = ew , and consequently mapped ED to the far

field ζ = ∞; indeed, Hocking & Forbes [20] recommend such an approach, as it avoids

mapping a limiting flow region with period waves to a single point (leading to what

Hocking & Forbes refer to as an ‘unpleasant’ type of singularity). However, we wish to

follow [12] as closely as possible, and so adopt (2.4) as they did. Further, many authors
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apply conformal transformations that map periodic waves to a single point for flow over

uneven topography, apparently with considerable success (see [3, 22, 43], for example).

2.3 Boundary integral approach

The complex velocity dw/dz = qe−iθ is an analytic function of z and, as such, ln q − iθ is

an analytic function of ζ. We derive an integral equation by applying Cauchy’s integral

formula to ln q−iθ, taking the contour to be the part of the real axis −R < ξ < R together

with a semi-circle centred at ζ = 0 with radius R. In the limit R → ∞, the imaginary part

gives

ln q = − 1

π
−
∫ ∞

−∞

θ(ξ′)

ξ′ − ξ
dξ′, (2.5)

where here q(ξ) and θ(ξ) are real quantities on the boundary of the flow domain. The

integral in (2.5) is of Cauchy Principal Value type.

For flow over an inclined step, as depicted in Figure 2, the function θ(ξ) for ξ < 0

describes the angle of the bottom topography. Since the sloped face of the step maps to

−b � ξ < −1, we have as an input to the problem

θ(ξ) =

⎧⎨
⎩

0 ξ < −b,
θI −b � ξ < −1,

0 −1 � ξ < 0,

(2.6)

and thus (2.5) simplifies to

ln q =
θI

π
ln

(
ξ + b

ξ + 1

)
− 1

π
−
∫ ∞

0

θ(ξ′)

ξ′ − ξ
dξ′, ξ > 0. (2.7)

Equation (2.7) provides one equation relating q and θ on the free surface ξ > 0. It is

worth emphasising that solutions to (2.7) identically satisfy Laplace’s equation (2.1) and

the kinematic condition (2.2).

To close the system we first note that differentiating ζ = e−w with respect to z gives the

inverse transform

dx

dξ
= − 1

ξq
cos θ,

dy

dξ
= − 1

ξq
sin θ, ξ > 0. (2.8)

Thus differentiating Bernoulli’s equation (2.3) with respect to ξ leads to

εq2ξ
dq

dξ
= sin θ, ξ > 0 (2.9)

(remembering that we are using the parameter ε = πF2, where F is the Froude number).

The problem of steady free surface flow over an inclined step therefore consists of the

coupled system (2.7) and (2.9) for the unknown functions q(ξ) and θ(ξ) on the free surface

ξ > 0, η = 0. The problem has three parameters: ε, which is effectively the Froude number

squared; the step angle θI ; and b > 0, which is a measure of the step height. Given the

speed q and angle θ, the shape of the free surface in the physical plane is recovered via
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(2.8). Finally, the physical step height h can be found from conservation of mass

lim
x→∞

ψ(x, h) = −
∫ π

h

q(0) dy,

which gives

h = π

(
1 − 1

q(0)

)
. (2.10)

We emphasise that (2.5) and (2.8)–(2.9) hold for more general flows past a bottom

topography, including flow over a bump or trench with inclined sides, as treated in

Section 5. The defining characteristics of each flow geometry are provided by the angles

of each segment on the bottom, as in (2.6). Thus the first term on the right-hand side of

(2.7) is for flow over an inclined step; for other flows this term will change.

2.4 Complexifying the free surface

The two real-valued equations (2.7) and (2.9) hold only on the free surface ξ > 0, η = 0.

A series expansion for q(ξ) and θ(ξ) in powers of ε diverges, this divergence being caused

by the presence of singularities in the analytic extension of q(ξ) and θ(ξ) into the complex

ξ-plane which (abusing notation somewhat) we refer to as the ζ-plane. Thus, in order to

proceed, we analytically continue (2.7) and (2.9) into the upper half ζ-plane, giving

log q − iθ =
θI

π
log

(
ζ + b

ζ + 1

)
− 1

π

∫ ∞

0

θ(ξ′)

ξ′ − ζ
dξ′, (2.11)

εq2ζ
dq

dζ
= sin θ. (2.12)

The functions q(ζ) and θ(ζ) that satisfy (2.11)–(2.12) effectively provide a complexified

description of the free surface. It will be at the singularities of q(ζ) and θ(ζ) that Stokes

lines originate (these will be at ζ = −1 and/or ζ = −b, depending on the angle θI ) and

across the Stokes lines that the exponentially small surface waves will be ‘switched on’.

Thus, it is important to treat (2.11)–(2.12) in what follows, instead of the real-valued

equations (2.7) and (2.9) (but we note, of course, that (2.11)–(2.12) reduce to (2.7) and

(2.9) on the positive ξ-axis).

3 Exponential asymptotics

3.1 Preamble

In order to determine the form of the waves on the free surface, we solve (2.11) and (2.12)

asymptotically as ε → 0. We will apply the method developed in [9, 12], which involves

analysing the form of the late-order terms of the (divergent) series expansion (in powers of

ε; see (3.1) below) and truncating the series optimally. The error after optimal truncation

will be exponentially small in ε. The idea is to determine how this exponentially small

correction term ‘switches on’ across Stokes lines, and also to calculate where the Stokes

lines intersect the free surface. The waves will appear on the surface downstream from

this intersection point.
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The theory in this section is essentially taken from [12], with the emphasis on the

problem of flow over an inclined step (the main ideas carry over to the problem of flow

over a bump or trench, treated in Section 5, except that instead of having the important

singularities located at ζ = −1 or −b, they are at ζ = −d, −c, −b and −a). The new

results for flow over an inclined step are provided in Section 4.

3.2 Asymptotic power series expansion

We express the components of the fluid velocity as power series in ε:

θ ∼
∞∑
n=0

εnθn, q ∼
∞∑
n=0

εnqn as ε → 0. (3.1)

Thus, from (2.11) and (2.12), we have

εζ (q0 + εq1 + . . .)2
d

dζ
(q0 + εq1 + . . .) = θ0 + εθ1 + . . . , (3.2)

log q0 + ε
q1

q0
+ . . .−i (θ0 + εθ1 + . . .) =

θI

π
log

(
ζ + b

ζ + 1

)

− 1

π

∫ ∞

0

θ0(ξ
′) + εθ1(ξ

′) + . . .

ξ′ − ζ
dξ′ , (3.3)

where the omitted terms are O(ε2) or smaller. To leading order we find θ0 ≡ 0, with the

first nonzero terms for q and θ being

q0 =

(
ζ + b

ζ + 1

)θI/π

, (3.4)

θ1 = −θI

π

ζ(b− 1)

(ζ + 1)(ζ + b)

(
ζ + b

ζ + 1

)3θI/π

. (3.5)

Obtaining expressions for the higher-order terms quickly becomes difficult, and in any

event is not necessary. A crucial point to note is that the terms θ0(ξ), q0(ξ) and θ1(ξ)

do not oscillate on the free surface ξ > 0, and so cannot describe wavelike behaviour.

Furthermore, since these lower-order terms are waveless, the higher order terms will be

as well. The reason that straightforward power series expansion (3.1) does not capture

the waves is that the wave amplitude is exponentially small compared to all the terms

in (3.1). Thus, the wave behaviour lies ‘beyond all orders’ of the asymptotic power series

expansion.

3.3 Late-order terms

In order to truncate (3.1) optimally, we must determine from (3.2)–(3.3) the form of qn,

θn as n → ∞. Following [12], and keeping only terms that will be dominant as n → ∞, we

find

q2
0ζ

dqn−1

dζ
+ 2q0q1ζ

dqn−2

dζ
+ · · · + 2q0qn−1ζ

dq0

dζ
+ . . . = θn + . . . , (3.6)
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qn

q0
− qn−1q1

q0
+ · · · − iθn = − 1

π

∫ ∞

0

θn(ξ
′) dξ′

ξ′ − ζ
, n � 3. (3.7)

As a means to motivate an appropriate ansatz for qn and θn in the upper ζ-plane (provided

in (3.10) below), we note from (3.4) that near ζ = −1 and ζ = −b,

q0 ∼ λ(ζ − ζ0)
α as ζ → ζ0,

where

α = −θI

π
, λ = (b− 1)θI/π, for ζ0 = −1, (3.8)

α =
θI

π
, λ = (1 − b)−θI/π, for ζ0 = −b. (3.9)

Using (3.6)–(3.7), we are able to obtain the behaviour of each term in the neighbourhood

of either ζ = −1 or −b, noting that the integral on the right-hand side of (3.7) is

subdominant when compared to the left-hand side in the limit that ζ → −1 or −b,
significantly simplifying the expression. We find that

qn ∼ in+2αµnλ
3n+1(ζ − ζ0)

n(3α−1)+α, θn ∼ in+1ανnλ
3n(ζ − ζ0)

n(3α−1), (3.10)

in the neighbourhood of ζ0 as n → ∞, where α and λ depend on whether ζ0 is −1

or −b (through (3.8)–(3.9)), and µn and νn are polynomials in α of order n − 1 with a

constant term (n − 1)!. Thus, in the neighbourhood of ζ = −1 the late order terms grow

in the familiar factorial/power rate when θI > −π/3 (forcing 3α − 1 < 0), while in the

neighbourhood of ζ = −b we encounter the same type of divergence when θI < π/3

(again forcing 3α − 1 < 0). It follows that for θI > π/3 there is only one singularity (at

ζ = −1), including the special case θI = π/2 considered in detail by [12]. Similarly, for

θI < −π/3 there is also one singularity (this time at ζ = −b), which includes the case

θI = −π/2 for a step down mentioned in [12]. Interestingly, for −π/3 < θI < π/3 the late

order terms diverge near both ζ = −1 and ζ = −b, meaning for this range of step angles

there will be two Stokes lines of interest (originating at each of ζ = −1 and ζ = −b),
across which waves will be switched on. In general, one of these contributions will be

subdominant, meaning that in practice it will not be observed; however, there will be a

region on the free surface over which only the subdominant wave train appears (we shall

call this an intermediate wavetrain).

While the above argument does not apply away from the singularities at ζ = −1

or b, the asymptotic expansion (3.1) still diverges for any fixed ζ. To obtain the form

of the late-order terms qn and θn in the entirety of the upper ζ-plane, Chapman &

Vanden-Broeck [12] apply the ansatz

θn ∼ ΘΓ (n+ γ)

χn+γ
, qn ∼ QΓ (n+ γ)

χn+γ
(3.11)

as n → ∞, where χ is forced to be zero at ζ = ζ0, with ζ0 = −1 or −b. (For the range

−π/3 < θI < π/3, where both singularities exist, the idea is to write θn and qn as a sum of

two terms of the form (3.11), with one having χ = 0 at ζ = −1 and the other with χ = 0
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at ζ = −b.) By substituting (3.11) into (3.6)-(3.7), Chapman & Vanden-Broeck find that

χ = i

∫ ζ

ζ0

dζ ′

ζ ′q3
0

, (3.12)

Θ = − Λ

q3
0

exp

(
3i

∫ ζ

0

q1

ζ ′q4
0

dζ ′
)
, Q =

Λ

q2
0

exp

(
3i

∫ ζ

0

q1

ζ ′q4
0

dζ ′
)
. (3.13)

To obtain these results we must assume the integral on the right-hand side of (3.7) is

subdominant as n → ∞. Arguments in support of this assumption are given recently in

Trinh et al. [35], and the references therein.

The constants γ and Λ are found by matching (3.11)–(3.13) with (3.10) near the

appropriate singularities ζ = −1 or −b, with the result that

γ = − 6α

1 − 3α
, Λ =

λ6−3γeiπγ/2

2C(1 − 3α)γ
lim
n→∞

βn

Γ (n+ γ)
, (3.14)

where α is related to θI through (3.8)–(3.9) (depending on which singularity is appropriate),

C = q3
0(0) exp

(
−3i

∫ ζ

0

1

ζπq3
0

∫ ∞

−∞

θ1(ξ
′)dξ′

ξ′ − ξ
dζ

)

and βn is given by

β0 = 1, βn =

n−1∑
m=0

(
m− 2α

1 − 3α

)
βmβn−m−1.

For full details, see [12].

Finally, from Dingle [14], we know that Stokes lines will follow the contour where

the successive late-order terms θn and qn have the same phase, which is given by

the curve where χ is real and positive. As such, by determining the form of the late-

order terms, we have obtained an expression for the path followed by the Stokes line

originating from the singularity at ζ = ζ0, where ζ0 = −1 or −b. This is significant, as a

downstream wavetrain will be switched on at the point where this Stokes line intersects

with the free surface. (To be precise, the local condition 3α−1 < 0 guarantees a singularity

and thus Stokes lines, but the question of whether the Stokes line encounters the free

surface is a global issue and depends on the behaviour of q0 in the complex plane. For

the examples treated in this paper the Stokes lines do intersect the free surface.)

3.4 Behaviour in the neighbourhood of Stokes lines

With the form of the late-order terms for q and θ now identified, we truncate (3.1) after

N terms and write

θ =

N−1∑
n=0

εnθn + RN, q =

N−1∑
n=0

εnqn + SN, (3.15)

where RN and SN are the remainder terms. As mentioned above, behaviour that is

exponentially small in ε as ε → 0 cannot be demonstrated by the series in (3.15); however,
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it is well known that such behaviour is described by RN and SN when (3.1) is truncated

optimally [1]. The following analysis that shows how the exponentially small wavetrain is

made visible is essentially a summary of [12], but with some emphasis on our particular

application (by keeping q0 and q1 unspecified, the details apply for flows over a more

general topology).

By substituting (3.15) into (3.6)–(3.7), we derive a first order differential equation for SN
in the limit N → ∞ and ε → 0. The homogeneous version of this equation has a solution

Qe−χ/ε, where χ and Q are given by (3.12)–(3.13) (this homogeneous solution is consistent

with the ansatz (3.11) for the late order terms), motivating the form

SN = AQ e−χ/ε,

where the unknown function A(ζ; ε) is the Stokes multiplier. Optimal truncation gives

N ∼ |χ|/ε as ε → 0, which then provides a differential equation for A in terms of χ and ε.

By writing χ = ρeiϑ (here ϑ is not to be confused with the dependent variable θ), matched

asymptotic expansions yields

A =

√
2πi

εγ

∫ √
ρϑ/ε

−∞
e−t2/2dt, (3.16)

with A clearly varying smoothly and rapidly in the neighbourhood of the point where

the Stokes line intersects the free surface, given as ϑ = 0. Finally, matching away from

the Stokes line allows us to show that the jump in A across the Stokes line is 2πi/εγ . The

information regarding the remainder RN is then determined via RN ∼ −iSN/q0 as N → ∞.

We find that the exponentially small correction terms that are smoothly switched on by

the appropriate singularity (either ζ = −1 or −b) take the form

2πi

εγ
Θe−χ/ε,

2πi

εγ
Qe−χ/ε, (3.17)

respectively, as ε → 0.

For the above, we have analytically continued (2.7) and (2.9) into the upper half ζ-plane,

but an analogous analysis holds if we were to analytically continue into the lower half

plane, except that the contribution that switches on as the Stokes line is crossed is the

complex conjugate of the terms in (3.17). Taking this contribution into account, and using

the notation θexp to denote the leading order term for the remainder on the free surface

ζ = ξ, we have

θexp = 2|AΘ|e−Re(χ)/ε cos

(
argΘ − Im(χ)

ε

)

=
2|AΛ|
q3

0

e−Re(χ)/ε cos

(
3

∫ ξ

0

q1

ξ′q4
0

dξ′ + argΛ− Im(χ)

ε

)
. (3.18)

This expression is clearly oscillatory, and as such demonstrates the existence of the

exponentially small free surface waves under investigation. To help compute the term |Λ|

https://doi.org/10.1017/S0956792512000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000022


Free surface flow past topography 453

θI

(a) θI > π
3

θI

(b) 0 < θI < π
3

θI

(c) −π
3

< θI < 0. .

..

θI

(d) θI < −π
3

Figure 3. Possible configurations for flow over an inclined step, with the Stokes line paths

indicated as dotted lines.

in (3.18) we require |C|, which works out to be [12]

|C| = q3
0(0) exp

(
1

q3
0(0)

− 1

)
. (3.19)

In the following section, we will apply these results to the specific problem of flow over

an inclined step.

4 Waves generated over an inclined step

As explained above, for the flow configuration in Figure 2, there are two possible singu-

larities in the ζ-plane, located at ζ = −1 and ζ = −b. As such, there are three different

intervals for the step angle θI that need to be treated; see Figure 3.

In Figure 3(a), θI > π/3. For this range of θI , the only corner with an in-fluid angle

greater than 2π/3 corresponds to ζ = −1. In Figure 3(d), θI < −π/3. Here, the only

corner with an in-fluid angle greater than 2π/3 corresponds to ζ = −b. In both of these

configurations, there is only one singularity in the ζ-plane which generates a Stokes line.

Therefore, in each of these cases, there is a single downstream wavetrain switched on at

the point where the Stokes line intersects the free surface.

In Figures 3(b) and (c), −π/3 < θI < π/3. Here both corners will have in-fluid angles

greater than 2π/3, meaning that there are two Stokes lines that intersect the free surface.

As such, there are two downstream wavetrains switched on for these configurations.

In order to determine the behaviour of the downstream waves that are switched on in

the neighbourhood of the possible Stokes lines, each singularity is considered separately

and the contributions added together. Before we proceed, however, we must note some

limitations of this approach. First, if the points B and C (see Figure 2) lie too close

together (resulting in a small step height), the analysis in the previous section will no

longer be valid, as the inner regions near each of the two singularities will overlap. This
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case must therefore be approached separately, as explained in Appendix A of [12] for

the special case θI = π/2. Similarly, the above analysis will not be valid in the limit that

θI → ±π, as the base of the channel will lie in the inner region of the singularity, meaning

that the configuration must also be approached separately.

4.1 Singularity at ζ = −1

For the singularity at ζ = −1, (3.4) and (3.12) combine to give

χ = i

∫ ζ

−1

(
ζ ′ + 1

ζ ′ + b

)3θI/π
dζ ′

ζ ′ . (4.1)

There is a Stokes line that originates at ζ = −1 (where χ = 0) and follows the path upon

which χ is real and positive (i.e. the Stokes line has Re(χ) > 0 and Im(χ) = 0). This path

intersects the positive ξ-axis (corresponding to the free surface) at a value of ξ that can be

determined numerically; it is at this point on the free surface that the wavetrain (3.18) is

switched on. The numerical calculation is undertaken by interpreting (4.1) as an integral

over a box in the upper half plane (for example, by integrating from ζ ′ = −1 to −1 + i,

then ζ ′ = −1 + i to 1 + i, then ζ ′ = 1 + i to 1) and evaluating the resulting integrals using

matlab’s ‘quad’ function, which uses an adaptive Simpson quadrature. On the other hand,

by indenting the contour clockwise around the pole at ζ = 0, the real part of χ for any

ξ > 0 is given exactly by

Re(χ) = −πi Res
ζ=0

{
i

ζ

(
ζ + 1

ζ + b

)3θI/π
}

= π

(
1

b

)3θI/π

.

Using the general expression for the exponential, given in (3.18), with the components

(3.4), (3.8) and (3.14), we find

θexp,−1 = |A|
(

π(b− 1)

π + 3θI

)6θI/(π+3θI ) (1

b

)3θI/π

exp

(
1 −

(
1

b

)3θI/π

− π

ε

(
1

b

)3θI/π
)

× lim
n→∞

βn

Γ (n+ γ)

(
ξ + 1

ξ + b

)3θI/π

cos

(
3

∫ ξ

0

q1

ξ′q4
0

dξ′ + argΛ− Im(χ)

ε

)
, (4.2)

where, effectively, downstream from the point at which the Stokes line intersects the free

surface, |A| = 2πε−6θI/(π+3θI ) (of course, strictly speaking, this term is smoothly switched

on over a very small spatial region via (3.16)).

Given the form of θexp,−1, we may compute the free surface in the physical plane

through

dy

dx
= tan θ ∼ θ,

as ε → 0. As such, integrating θexp,−1 with respect to x will give the free surface variation

caused by the singularity at ζ = −1, denoted yexp,−1. Using F instead of ε for a moment,

the wave amplitude in the far field is therefore of order F−2(3θI−π)/(3θI+π)e−c/F2

as the

Froude number F → 0, where the constant c = b−3θI/π. For the case θI = π/2, this
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result agrees with that given in Chapman & Vanden-Broeck [12] (and mentioned in the

Introduction).

4.2 Singularity at ζ = −b

A similar analysis holds for the singularity at ζ = −b. In this case the form of χ changes

slightly to give

χ = i

∫ ζ

−b

(
ζ ′ + 1

ζ ′ + b

)3θI/π
dζ ′

ζ ′ . (4.3)

Again, the Stokes line originates at ζ = −b and intersects the ξ-axis at some finite value

of ξ; it is at this point that the wavetrain (3.18) is switched on. Now suppose that ζ is

real and positive in (4.3). By integrating from ζ ′ = −b to ζ ′ = ξ > 0 via a contour that

runs from ζ ′ = −b to ζ ′ = −∞, clockwise around an infinitely large semi-circle, and then

from ζ ′ = ∞ to ζ ′ = ξ, we find that

Re(χ) = π.

Thus, combining (3.4), (3.9), (3.14) and (3.18), we have

θexp,−b = |A|
(

π − 3θI
π(1 − b)

)6θI/(π−3θI ) (1

b

)3θI/π

exp

(
1 −

(
1

b

)3θI/π

− π

ε

)

× lim
n→∞

βn

Γ (n+ γ)

(
ξ + 1

ξ + b

)3θI/π

cos

(
3

∫ ξ

0

q1

ξ′q4
0

dξ′ + argΛ− Im(χ)

ε

)
. (4.4)

In cases, in which (1 − b)6θI/(π−3θI ) is complex, we must take care to include an additional

argument in the cosine term. Again, integrating θexp,−b with respect to x will give the

free surface amplitude, yexp,−b. In this case we find the wave amplitude is of order

F−2(3θI+π)/(3θI−π)e−1/F2

as the Froude number F → 0.

4.3 Flow over an inclined step with one Stokes line

We consider the flow configurations shown in Figures 3(a) and (d). In both of these

configurations, there is only one corner with an in-fluid angle greater than 2π/3, and

thus only one Stokes line in the ζ-plane originating at the associated singularity. In (a),

this corner corresponds to a singularity at ζ = −1. The Stokes line generated at this

singularity will follow the path upon which χ, given in (4.1), is real and positive. At the

point where this Stokes line intersects the free surface, exponentially small variation in θ,

given in (4.2), will be switched on. In (d), however, it is the first corner in the flow path

which has an in-fluid angle greater than 2π/3. This angle corresponds to a singularity at

ζ = −b, which will generate a Stokes line that follows the curve along which χ, given in

(4.3), is real and positive. At the point where this Stokes line intersects the free surface,

exponentially small variation in θ, given in (4.4), will be switched on.

Figure 4 shows approximate free surface plots for flow over an inclined step, obtained

by computing the early terms θ0 + εθ1 of the asymptotic expansion (3.1) (or, equivalently,

(3.15)) for the position of the free surface, and adding the exponentially small free surface

https://doi.org/10.1017/S0956792512000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000022


456 C. J. Lustri et al.

x
−5 5 100

−0.1

−0.2

y

(a) θI = π
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Figure 4. Approximate free surface profiles for b = 2 and F = 0.4, giving ε = 0.5029: (a) θI = π/2

and 3π/2; (b) θI = −π/2 and −3π/2. In each flow configuration, there is one Stokes line that

intersects the free surface, the intersection point being denoted by a solid circle.

variation (4.2) or (4.4) caused by the singularities in the flow path. For this figure, the

angles were selected such that there is only a single corner with an in-fluid angle greater

than 2π/3 in the channel, and as such only a single Stokes line that intersects the free

surface, originating from this corner.

In Figure 4(a), the angle of inclined step is positive, and it is the second corner in the

flow path that generates the Stokes line, while in Figure 4(b) the angle of inclination is

negative, and it is the first corner that generates the Stokes line. In each plot, the point at

which χ is purely real, and therefore the point at which the Stokes line intersects the free

surface, is noted. For the cases in which the wavetrain is generated by the second corner,

as in (a), the Stokes line intersects the free surface at a point farther down the flow path

than when the wavetrain is generated by the first corner, as in (b).

As a check on the asymptotic results we also compute fully nonlinear solutions, using

the numerical scheme of Chapman and Vanden-Broeck [12]. We checked the accuracy of

our computations by comparing them with their nonlinear results (Figures 4–7 in [12])

for the special case θ = π/2. Shown in Figure 5 is the (logarithm of the) amplitude of

the wavetrain in the far field as a function of our small parameter (effectively the Froude

number squared) ε for two cases: θ = π/2 and 3π/8. The solid curve is the asymptotic

result, while the solid dots comes from our numerical solutions. We see that the agreement

is quite reasonable for moderately small values of ε, and much better as ε decreases.

4.4 Flow over an inclined step with two Stokes lines

We now consider the flow configurations shown in Figures 3(b) and (c). In each of these

configurations, there are two angles with an in-fluid angle greater than 2π/3, and as such

will generate Stokes lines originating at the two associated singularities in the ζ-plane.

Thus, there will be two separate downstream wavetrains in each of these configurations,

https://doi.org/10.1017/S0956792512000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000022


Free surface flow past topography 457

log(Amplitude)

0

−5

−10

−15

−20

−25

0.1 0.2 0.3 0.4 0.5

(a) θI = π/2 (top), θI = −π/2 (bottom).
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(b) θI = 3π/8 (top), θI = −3π/8 (bottom).

Figure 5. Log of far field wave amplitude versus ε. The solid curves represent our asymptotic

results, while the solid dots represent numerical simulation.

with the exponentially small variation in θ given as

θexp = θexp,−1 + θexp,−b.

By comparing the magnitude of both terms, it is apparent that the exponentially small

variation in θ, for which Re(χ) takes the greatest value, will dominate the other exponen-

tially in the limit that ε → 0. As such, θexp,−1 will dominate θexp,−b when θI > 0, while

θexp,−b will dominate θexp,−1 for θI < 0. (For the case of θI = 0, there is no corner in

the flow-path, and as such there will be no waves generated.) As a consequence, for any

nonzero θI for which there are two Stokes lines generated in the flow path, the expo-

nentials generated by one of the Stokes lines will always dominate the other as ε → 0,

precluding the possibility that the two waves could cancel for this geometry (unlike in the

analogous problem for capillary waves [11], discussed briefly in Section 6).

Figure 6 shows a comparison of the far field downstream amplitude for the surface

waves generated by both singularities over a range of step inclinations. The plot is

not symmetric in θI , which is consistent with observations by Zhang & Zhu [42], who

demonstrated that flow over a semicircular bump and trench of the same size is also not

symmetric. We note that the exponential dominance of one wavetrain over the other is

apparent, with the waves generated by the singularity at ζ = −1 clearly dominating the

waves generated at ζ = −b for θI > 0, while the opposite occurs for θI < 0. These results

compare relatively well with fully nonlinear results which are shown on the right of the

figure.

Interestingly, the amplitude of the subdominant wavetrain appears to be zero for a

sequence of isolated angles θI . Indeed, we find that βn converges to zero as n → ∞ for

these values of θI , and changes sign as these they are crossed, causing the phase of the

surface waves to switch by π. This behaviour is demonstrated in Figure 7, where the

appropriate limit is plotted against θI . As θI decreases, the first few zeros of βn are at

θI = 0, −0.3668, −0.5389,−0.6414,−0.7085,−0.7565 and −0.7930.

For a step with 0 < θI < π/3, the subdominant wavetrain (generated by a Stokes line

originating at ζ = −b) will be switched on before the dominant wavetrain (generated by

a Stokes line originating at ζ = −1), as shown in Figure 3(b). Therefore, there will be a

region of the free surface over which the subdominant waves have been switched on, but
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(a) Asymptotic results for = 0.4, b = 1.5.
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Figure 6. Log of far field wave amplitude caused by singularities at ζ = −1 (black) and ζ = −b
(grey), as θI is varied, with (a) ε = 0.2, b = 3, (c) ε = 0.4 and b = 1.5. The corresponding numerical

results are shown in (b) and (d).

θI

lim
n→∞ βn/Γ(n + γ)

0 π
3-

2

20

−2

π
3

Figure 7. This figure demonstrates lim
n→∞

βn/Γ (n + γ) for waves generated by the singularity at

ζ = −1 over a range of step inclinations. The points at which the value changes sign, denoted by

black dots, occur increasingly rapidly as θI → −π/3.

the dominant waves have not. Our analysis thus predicts the existence of intermediate

waves, illustrated in the schematic in Figure 8. Unfortunately, these predicted waves tend

to have amplitudes far too small to be detected by our numerical scheme, at least for

ε � 1.

Figure 9 shows approximate free surface plots in the case where both corners have

an in-fluid angles greater than 2π/3 in the channel. For the examples θI = ±π/4, both

https://doi.org/10.1017/S0956792512000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000022


Free surface flow past topography 459

θI

intermediate waves

Figure 8. Schematic of flow over a submerged step for 0 < θI < π/3, for which our analysis

predict the existence of an intermediate wavetrain.
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4

Figure 9. Asymptotic free surface profiles calculated for (a) θI = π/4 and 0.5389, and (b) θI = −π/4

and −0.5389. In each case, b = 2 and F = 0.4, giving ε = 0.5029. The Stokes lines that originate at

ζ = −1 intersect the free surfaces at points denoted by a circle, while the Stokes lines originating at

ζ = −b intersect at squares.

singularities generate downstream wavetrains, however only the dominant wavetrain is

visible. (For θI = π/4, the dominant wave has amplitude roughly 1.49 × 10−2, while the

subdominant wave has amplitude roughly 3.56 × 10−7, which explains why we cannot

clearly demonstrate both wave trains on a single figure.) For the other two examples

θI = ±0.5389, the angle of inclination was chosen such that limn→∞ βn = 0 and so the

amplitude of the subdominant waves (that are switched on at the point on the free surface

where the Stokes line is crossed) is zero. Thus the dominant wavetrain is therefore the only

nonzero wave contribution that is switched on, despite the in-fluid angle being greater

than 2π/3 for both corners.

5 Waves generated over a bump or trench with inclined sides

The ideas outlined in the previous section extend naturally to the problem of flow over

a submerged bump or trench with inclined edges. In this case, there are four corners

in the flow path, and as such there may be two, three or four Stokes lines present that
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Figure 10. Conformal mapping for the dimensionless flow over a submerged bump.

originate at singularities in the ζ-plane. To illustrate the main features, it will be sufficient

to consider only cases with two active Stokes lines.

The configuration under consideration is shown in Figure 1(b). If θA is positive and θB
is negative, the channel will contain a bump, while if θA is negative and θB is positive, the

channel will contain a trench. In order to ensure that only two singularities are present in

the ζ-plane, we restrict the inclination angles to the range |θA| > 2π/3 and |θB | > 2π/3.

The conformal mapping techniques developed in previous sections were applied to this

flow configuration, which is demonstrated in Figure 10. Expanding q and θ in power

series as in (3.1) in ε we find

θ0 = 0,

q0 =

(
ζ + d

ζ + c

)θA/π (
ζ + a

ζ + b

)θB/π

,

θ1 =
ζ

π

(
ζ + d

ζ + c

)3θA/π (
ζ + b

ζ + a

)3θB/π (
θA(c− d)

(ζ + c)(ζ + d)
+

θB(a− b)

(ζ + a)(ζ + b)

)
.

Using identical methods to those presented in the previous section, we find that the

downstream wavetrains generated at ζ0 = −a,−b,−c and −d take the form

θexp,ζ0 =
2|AΛζ0 |
q3

0

exp

(
−Re(χζ0 )

ε

)
cos

(
3

∫ ζ

0

q1

ζ ′q4
0

dζ ′ + argΛ− Im(χζ0 )

χζ0

)
,

where

χζ0 = i

∫ ζ

ζ0

(
ζ ′ + d

ζ ′ + c

)3θA/π (
ζ ′ + b

ζ ′ + a

)3θB/π
dζ ′

ζ ′ ,

and Λζ0 and γζ0 are determined by (3.14). For flow over a bump or trench, there will always

be at least two corners with in-fluid angles of at least 2π/3 in the flow path. As such,

the exponentially small variation in θ will be equal to the sum of multiple downstream

wavetrains, which switch on at the point where the relevant Stokes line intersects the
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Figure 11. Approximate free surface profiles for (a) a bump with walls of inclination π/2 and 3π/8

with ε = 0.2, d = 3000, c = 1500, b = 0.002 and a = 0.001, and (b) a trench with walls of π/2 and

3π/8 and ε = 0.5, d = 80, c = 40, b = 0.02 and a = 0.01. In each flow configuration, there are two

Stokes lines that intersects the free surface, with the intersection points denoted by circles.

free surface. For simplicity, we will consider only channel configurations which contain

two corners that will generate Stokes lines in the ζ-plane, and as such generate two

downstream wavetrains. This means that the exponentially small behaviour in θ for flow

over a bump will take the form

θexp = θexp,−b + θexp,−c,

while the exponentially small variation in θ for flow over a trench will take the form

θexp = θexp,−a + θexp,−d.

Figure 11(a) shows free surface profiles for flow over a bump with walls having

inclinations of θA = θB = π/2 and θA = θB = 3π/8, while Figure 11(b) is for flow over a

trench with θA = θB = −π/2 and θA = θB = −3π/8. In order to contrast with results in

the following figure, we note that for these configurations there are clearly waves on the

downstream free surface.

If, for a given parameter set, the downstream wavetrains have equal magnitude and are

exactly out of phase, the configuration will exhibit trapped wave behaviour, in a similar

fashion to that demonstrated in Binder et al. [3] using weakly nonlinear theory. In order

for the amplitude of the wavetrains to be identical, we require

Λζ0
εγζ0

exp

(
−Re(χζ0 )

ε

)
=
Λζ1
εγζ1

exp

(
−Re(χζ1 )

ε

)
, (5.1)

where ζ0 and ζ1 are the locations of the two singularities in the ζ-plane. In order for the

wavetrains to cancel, we require that

− Im(χζ0 )

ε
+ argΛζ0 = − Im(χζ1 )

ε
+ argΛζ1 +Nπ, (5.2)
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Figure 12. Approximate free surface profiles for a bump with walls of inclination (a)

θA = θB = π/2 and θA = θB = 3π/8 with ε = 0.2, and (b) θA = π/2 and θB = 3π/8 with ε = 0.2.

where N is an odd integer. (If N is chosen to be an even integer, the downstream

wavetrains in the resulting configuration will be in phase, and will therefore produce

constructive interference between the wavetrains.) We find that if a flow configuration

with a bump or trench has one wall with fixed position, and the inclination of each wall is

specified, it is generally possible to use these two expressions to determine the position and

size of the other wall such that the downstream wavetrains will cancel, thus generating

trapped waves over the submerged bump or trench.

Figure 12 shows approximate free surface profiles for cases in which we have fixed

the parameters a and b, and used (5.1) and (5.2) to calculate values for c and d that

generate trapped waves. In Figure 12(a), the solid profile is for flow over a bump with

sides of inclination θA = θB = π/2. The values of a and b were set to be 0.001 and 0.002,

respectively, as in Figure 11(a). Using (5.1) and (5.2), values for c and d that cause wave

cancellation were obtained, giving c = 750 and d = 1500. Similarly, the grey profile in

Figure 12(a) is for θA = θB = 3π/8. For the same values of a and b, we find that a trapped

wave solution exists for c = 560 and d = 1120. For these examples, the downstream

wavetrains are eliminated, and the free surface is therefore flat in the limit x → ∞.

Figure 12(b) shows that downstream wave cancellation is still possible for bumps

and trenches with sides of different inclinations. For flow over an asymmetric bump in

Figure 12(b), the first angle of inclination is θA = π/2 while the second is θB = 3π/8.

Using the prescribed values for a and b of 0.01 and 0.02, as in Figure 11(b), equations (5.1)

and (5.2) are used to show that wave cancellation occurs for c = 24000 and d = 51650

when ε = 0.2. It is notable that for this kind of wave cancellation to occur when the

walls have the same inclination, the downstream surface height will be identical to the

upstream height, but if the walls have different inclination, the downstream height will be

different, indicating that the depth of the channel has changed.

We mention that when the inclination of the walls and the values for a and b are

prescribed, there are an infinite number of solutions for c and d that will cause down-

stream wave cancellation, as adjusting the values of c and d amounts to translating the

position of the first wall horizontally until the waves switched on by the two Stokes
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Figure 13. Numerically computed free surface profiles. The parameter values for (a) and (b) are

the same as Figures 11(a) and (b), respectively. The solid profile in (c) has c = 1712, d = 3417; the

grey profile in (c) has c = 1175, d = 2348; (d) has c = 19841, d = 40587. Otherwise, the parameter

values in (c) and (d) are the same as Figures 12(a) and (b), respectively.

lines are exactly out of phase. This freedom is reflected in (5.2) by the fact that N may

take any odd integer value, and the equation will still hold. Each unique solution cor-

responds to the presence of a different number of trapped waves in between the Stokes

lines.

To support our asymptotic predictions, we present in Figure 13 numerical results com-

puted using the numerical scheme described in Binder et al. [3] (which is an extension

of that used in Chapman and Vanden-Broeck [12]). The four free surface profiles in

Figures 13(a) and (b) are computed using the same parameter values as those in Fig-

ures 11(a) and (b). While small in amplitude, the waves on the surface are clearly evident

in these plots. The three free surface profiles in Figures 13(c) and (d) are computed using

the same values of θA, θB , ε, a and b as the corresponding profiles in Figures 12(a) and

(b); however, in order to demonstrate the existence of trapped-wave solutions that are

flat far down downstream, we have had to fix the step height and allow the parameters

c and d to be found as part of the solution process. Although trapped-wave solutions

of this sort were computed numerically in [3] (see Figure 14(a) of that paper), it is

worth pointing out that Figure 13(d) demonstrates for the first time that these numerical
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solutions exist for flows past a bump with different angles of inclination. We see that

numerically computed free surface profiles in Figure 13 compare very well with the asymp-

totic approximations in Figures 11 and 12. Our main emphasis, however, is to use the

numerical results to support our argument that the asymptotic results valid in the limit

ε → 0 can be used to predict and explain qualitative behaviour of free surface flows more

generally.

The examples presented above in Figures 11 and 12 should be enough to illustrate the

power of using this analysis to describe the variety of flow regimes. By extending these

ideas, it is easy to see that for configurations that have three or four corners with an

in-fluid angle greater than 2π/3, it is possible that some of the downstream wavetrains

could cancel, while others remain. If the two dominant downstream wavetrains cancel,

then the resultant flow could only have a single downstream wavetrain, exponentially

small compared to the trapped waves. Additionally, if there are four corners with an

in-fluid angle greater than 2π/3, it is possible that a, b, c and d may be chosen so that the

two dominant wavetrains and the two subdominant wavetrains are of equal amplitude

and opposite phase. This leads to both the dominant and subdominant waves being

trapped, and therefore the free surface is flat far downstream.

6 Discussion

In this study, we have applied the beyond-all-orders framework developed in [12] to

two specific examples of steady two-dimensional free surface flow: flow over an inclined

step (Figure 1(a)) and flow over a bump/trench with inclined sides (Figure 1(b)). These

examples are characterised by having a different number of Stokes lines, depending

on the angles of inclination of the bottom obstruction. We have illustrated a variety

of possibilities, including those that exhibit intermediate wavetrains and trapped-wave

solutions. Numerical solutions have also been presented to support these scenarios. Note

we have not treated the limits that the Froude number F → 0 with small obstacle height

δ = h/H � F2 nor the distinguished limit F → 0 with δ = O(F2), as done in [12] for the

step-up problem with θI = π/2. We expect, however, that the details will follow from [12]

closely. Further, we have not given much consideration to the limit θI → ±π/3, for which

there appears to be interesting behaviour not previously encountered.

It is worth contrasting the results in this study to the analogous problem of surface-

tension driven flows past a bottom obstruction (ignoring the effects of gravity) in the limit

of small surface tension [11]. First, for that problem Stokes lines are generated by all

corners of the bottom obstruction, regardless of the in-fluid angle. Thus for the geometry

sketched in Figure 1(a), the authors in [11] state there will be exponentially small capillary

waves switched on at two points on the free surface for all step angles θI (see Figure 9

in [11]). Further, unlike in the present problem, while the phase of the capillary waves

will depend on the location of the corners, the amplitude of each wavetrain will be the

same. As a consequence, for flow over a step with angle θI , it is possible to have the two

wave forms cancelling each other in the capillary wave case, but not the gravity-driven

wave case.

We close by mentioning some open problems and extensions in this area. First, it

should not be difficult to generalise the results in [12] and this paper to hold for
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multiple obstructions on the channel bottom, such as those treated numerically in Binder

et al. [4] (see Figures 8 and 9 of that paper). Presumably it would be possible to describe the

switching across Stokes lines for each relevant singularity and thus construct trapped-wave

solutions as we have done here.

Second, we note that each example treated in [12] and this paper has had sharp corners,

with well-defined singularities in the ζ-plane. While the important point is that these are

singularities of the complexified free surface, it happens that they are also singularities on

the boundary of the physical flow field. For flows past curved bottom obstructions, such

as flow past a semi-circle [18], there are no in-fluid angles greater than 2π/3, but we would

still expect there to be exponentially small waves in the limit that the Froude number

F → 0, suggesting there are Stokes lines that intersect the free surface. For these flows the

relevant singularities of the complexified free surface may be off the real ξ-axis, although

for some geometries it may not be obvious where they are located, or whether they are of

the form treated in [12]. There are a plethora of configurations that could be addressed,

but once theory for curved solid boundaries is developed, one could solve problems such

as flow past a submerged ellipse [16], for example, with a view to explaining trapped

waves in the limit F → 0.

Third, it would be interesting to compute accurate numerical solutions that demonstrate

the existence of intermediate waves (illustrated schematically in Figure 8) for Froude

numbers that are not small. Success in this regard would further support the argument

here and in [12] that qualitative features determined asymptotically in the limit ε → 0

hold more generally.

Finally, it remains a significant challenge to address time-dependent free surface flows

using a beyond all orders approach, especially since the conformal mapping approaches

used here for steady flows can no longer be applied. It is worth noting, however, that for

the (nonlinear) crystal growth model proposed in [6] and studied using beyond all orders

techniques by [9,24] for example, linear time-dependent generalisations have been treated

successfully by [5, 10, 21]. The extent to which all these techniques can be applied to fully

nonlinear time-dependent free surface flows is as yet untested.

Acknowledgement

CJL thanks Professor Jonathan Chapman for his guidance and for many fruitful discus-

sions on exponential asymptotics.

References

[1] Berry, M. V. (1991) Asymptotics, superasymptotics, hyperasymptotics. In: H. Segur, S. Tanveer

& H. Levine (editors), Asymptotics Beyond All Orders, Plenum, Amsterdam, pp. 1–14.

[2] Binder, B. J. (2010) Steady free-surface flow at the stern of a ship. Phys. Fluids, 22,

012104.

[3] Binder, B. J., Dias, F. & Vanden-Broeck, J.-M. (2007) Influence of rapid changes in a channel

bottom on free-surface flows. IMA J. Appl. Math. 73, 1–20.

[4] Binder, B. J., Vanden-Broeck, J.-M. & Dias, F. (2005) Forced solitary waves and fronts past

submerged obstacles. Chaos 15, 037106.

[5] Body, G. L., King, J. R. & Tew, R. H. (2005) Exponential asymptotics of a fifth-order

differential equation. Euro. J. Appl. Math. 16, 647–681.

https://doi.org/10.1017/S0956792512000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000022


466 C. J. Lustri et al.

[6] Brower, R. C., Kessler, D. A., Koplik, J. & Levine, H. (1983) Geometrical approach to

moving-interface dynamics. Phys. Rev. Lett. 51, 1111–1114.

[7] Chapman, S. J. (1999) On the rôle of Stokes lines in the selection of Saffman-Taylor fingers

with small surface tension. Euro. J. Appl. Math. 10, 513–534.

[8] Chapman, S. J. & King, J. R. (2003) The selection of Saffman-Taylor fingers by kinetic

undercooling. J. Eng. Math. 46, 1–32.

[9] Chapman, S. J., King, J. R. & Adams, K. L. (1998) Exponential asymptotics and Stokes

lines in nonlinear ordinary differential equations. Proc. Roy. Soc. Lond. A 454, 2733–

2755.

[10] Chapman, S. J. & Mortimer, D. B. (2005) Exponential asymptotics and Stokes lines in a

partial differential equation. Proc. Roy. Soc. Lond. A 461, 2385–2421.

[11] Chapman, S. J. & Vanden-Broeck, J.-M. (2002) Exponential asymptotics and capillary waves.

SIAM J. Appl. Math. 62, 1872–1898.

[12] Chapman, S. J. & Vanden-Broeck, J.-M. (2006) Exponential asymptotics and gravity waves.

J. Fluid Mech. 567, 299–326.

[13] Dagan, G. (1975) Waves and wave resistance of thin bodies moving at low speed: The

free-surface nonlinear effect. J. Fluid Mech. 69, 405–416.

[14] Dingle, R. B. (1973) Asymptotic Expansions: Their Derivation and Interpretation, Academic

Press, New York.

[15] Doctors, L. J. & Dagan, G. (1980) Comparison of nonlinear wave-resistance theories for a

two-dimensional pressure distribution. J. Fluid Mech. 98, 647–672.

[16] Forbes, L. K. (1982) Non-linear, drag-free flow over a submerged semi-elliptical body. J. Eng.

Math. 16, 171–180.

[17] Forbes, L. K. (1988) Critical free-surface flow over a semi-circular obstruction. J. Eng. Math.

22, 3–13.

[18] Forbes, L. K. & Schwartz, L. W. (1982) Free-surface flow over a semicircular obstruction.

J. Fluid Mech. 114, 299–314.

[19] Gazdar, A. S. (1973) Generation of waves of small amplitude by an obstacle placed on the

bottom of a running stream. J. Phys. Soc. Japan 34, 530.

[20] Hocking, G. C. & Forbes, L. K. (1992) Subcritical free-surface flow caused by a line source

in a fluid of finite depth. J. Eng. Math. 26, 455–466.

[21] Howls, C. J., Langman, P. J. & Olde Daalhuis, A. B. (2004) On the higher-order Stokes

phenomenon. Proc. Roy. Soc. Lond. A 460, 2285–2303.

[22] King, A. C. & Bloor, M. I. G. (1987) Free-surface flow over a step. J. Fluid Mech. 182,

193–208.

[23] King, A. C. & Bloor, M. I. G. (1990) Free-surface flow of a stream obstructed by an arbitrary

bed topography. Q. J. Mech. Appl. Math. 43, 87–106.

[24] Kruskal, M. D. & Segur, H. (1991) Asymptotics beyond all orders in a model of crystal

growth. Stud. Appl. Math. 36, 129–181.

[25] Lamb, H. (1932) Hydrodynamics. Cambridge University Press.

[26] Maleewong, M. & Grimshaw, R. H. J. (2008) Nonlinear free surface flows past a semi-infinite

flat plate in water of finite depth. Phys. Fluids 20, 062102.

[27] McCue, S. W. & Forbes, L. K. (1999) Bow and stern flows with constant vorticity. J. Fluid

Mech. 399, 277–300.

[28] McCue, S. W. & Forbes, L. K. (2002) Free-surface flows emerging from beneath a semi-infinite

plate with constant vorticity. J. Fluid Mech. 461, 387–407.

[29] McCue, S. W. & Stump, D. M. (2000) Linear stern waves in finite depth channels. Q. J. Mech.

Appl. Math. 53, 629–643.

[30] Mekias, H. & Vanden-Broeck, J.-M. (1991) Subcritical flow with a stagnation point due to a

source beneath a free surface. Phys. Fluids A 3, 2652–2658.

[31] Ogilat, O., McCue, S. W., Turner, I. W., Belward, J. A. & Binder, B. J. (2011) Minimising

wave drag for free surface flow past a two-dimensional stern. Phys. Fluids 23, 072101.

https://doi.org/10.1017/S0956792512000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000022


Free surface flow past topography 467

[32] Ogilvie, T. F. (1968) Wave Resistance. The Low Speed Limit. Technical Report, Michigan

University, Ann Arbor, MI.

[33] Olde Daalhuis, A. B., Chapman, S. J., King, J. R., Ockendon, J. R. & Tew, R. H. (1995)

Stokes phenomenon and matched asymptotic expansions. SIAM J. Appl. Math. 55, 1469–

1483.

[34] Scullen, D. & Tuck, E. O. (1995) Nonlinear free-surface flow computations for submerged

cylinders. J. Ship Res. 39, 185–193.

[35] Trinh, P. H., Chapman, S. J., & Vanden-Broeck, J.-M. (2011) Do waveless ships exist? Results

for single-cornered hulls. J. Fluid Mech. 685, 413–439.

[36] Tuck, E. O. & Scullen, D. C. (1998) Tandem submerged cylinders each subject to zero drag.

J. Fluid Mech. 364, 211–220.

[37] Vanden-Broeck, J.-M. (1980) Nonlinear stern waves. J. Fluid Mech. 96, 603–611.

[38] Vanden-Broeck, J.-M., Schwartz, L. W. & Tuck, E. O. (1978) Divergent low-Froude-number

series expansion of nonlinear free-surface flow problems. Proc. R. Soc. Lond. A 361, 207–224.

[39] Vanden-Broeck, J.-M. & Tuck, E. O. (1977) Computation of near-bow or stern flows using

series expansion in the Froude number. In: 2nd International Conference on Numerical Ship

Hydrodynamics, University of California, Berkeley, CA.

[40] Vanden-Broeck, J.-M. & Tuck, E. O. (1985) Waveless free-surface pressure distributions. J.

Ship Res. 29, 151–158.

[41] Wehausen, J. V. & Laitone, E. V. (1960) Surface waves. In: Handbuch der Physik, Springer,

pp. 446–778.

[42] Zhang, Y. & Zhu, S. (1996) A comparison of nonlinear waves generated behind a semicircular

trench. Proc. Roy. Soc. Lond. A 452, 1563–1584.

[43] Zhang, Y. & Zhu, S. (1996) Open channel flow past a bottom obstruction. J. Eng. Math. 30,

487–499.

https://doi.org/10.1017/S0956792512000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000022

