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For fixed integers p and q, let f (n, p,q) denote the minimum number of colours needed to colour all
of the edges of the complete graph Kn such that no clique of p vertices spans fewer than q distinct
colours. Any edge-colouring with this property is known as a (p,q)-colouring. We construct an
explicit (5,5)-colouring that shows that f (n,5,5) � n1/3+o(1) as n → ∞. This improves upon the
best known probabilistic upper bound of O(n1/2) given by Erdős and Gyárfás, and comes close to
matching the best known lower bound Ω(n1/3).

2010 Mathematics subject classification: Primary 05C55
Secondary 05C35, 05C25, 05D10

1. Introduction

Let Kn denote the complete graph on n vertices. Fix positive integers p and q such that 1 � q �(p
2

)
. A (p,q)-colouring of Kn is any edge-colouring such that every copy of Kp contains edges of

at least q distinct colours. Let f (n, p,q) denote the minimum number of colours needed to give a
(p,q)-colouring of Kn.

This function generalizes the classical Ramsey problem. The diagonal Ramsey number rk(p) is
the minimum number of vertices n for which any edge-colouring of Kn with at most k colours will
contain a monochromatic copy of Kp. So rk(p) = n implies that f (n−1, p,2) � k and f (n, p,2) �
k + 1. Similarly, f (n, p,2) = k implies that rk(p) > n and rk−1(p) � n. Therefore, determining
f (n, p,2) is equivalent to determining rk(p) which is well known to be very difficult in general.

Erdős and Shelah originally introduced the function f (n, p,q) in 1975 [5, 6], but it was not
studied systematically until 1997 when Erdős and Gyárfás [7] looked at the growth rate of
f (n, p,q) as n → ∞ for fixed values of p and q. In particular, they determined the threshold values
for q as a function of p for which f (n, p,q) becomes linear in n, quadratic in n, and asymptotically
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equivalent to
(n

2

)
. They also used the Lovász Local Lemma to give a general upper bound,

f (n, p,q) = O(n(p−2)/(1−q+(p
2))).

Additionally, they found specific upper and lower bounds for f (n, p,q) for various values of
q when p = 4,5. Work on these small cases has continued. For instance, in 2000 Axenovich [1]
gave an explicit (5,9)-colouring based on sets of integers containing no arithmetic progressions
of length 3. This construction uses only n1+o(1) colours which comes close to matching the known
linear lower bound on f (n,5,9). Axenovich also worked on improving the coefficient for this
linear lower bound, and further improvements have come more recently from E. Krop and I. Krop
[8]. We will now discuss in more detail the work done on the cases where q = p−1, p since these
are closely connected to the main result of this paper.

1.1. Determining f (n, p, p−1) = no(1)

One of the main questions left open by Erdős and Gyárfás [7] was the determination of a
threshold value of q in terms of p for which the function f (n, p,q) becomes polynomial in n.
They point out a simple induction argument which shows that

f (n, p, p) � n1/(p−2) −1,

but could not determine if f (n, p, p− 1) = no(1) even when p = 4, a problem they called ‘the
most annoying’ of all the small cases.

In 1998, Mubayi [9] verified that this is indeed the case when p = 4 by giving an explicit
(4,3)-colouring of Kn to show f (n,4,3) � eO(

√
logn). Eichhorn and Mubayi [4] later used a slight

variation of this construction to show that f (n, p,2�log p�−2) � eO(
√

logn) for all p � 5 as well.
In particular, this showed that f (n,5,4) is also subpolynomial.

Recently, this problem was solved in general when Conlon, Fox, Lee and Sudakov [3] provided
an explicit colouring which showed that

f (n, p, p−1) � 216p(logn)1−1/(p−2) log logn.

This construction is a generalization of the original (4,3)-colouring given by Mubayi [9], and we
will use a simplified version of it as part of our (5,5)-colouring.

1.2. Determining f (n, p, p)
As previously stated, we know in general that f (n, p, p) � Ω(n1/(p−2)). However, the Local
Lemma gives the best general upper bound,

f (n, p, p) � O(n2/(p−1)).

Only for p = 3,4 do we know of a better upper bound.
A (3,3)-colouring is equivalent to a proper edge colouring, one in which no two incident edges

can have the same colour. Therefore, it is well known that

f (n,3,3) =

{
n n is odd,

n−1 n is even.
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In 2004, Mubayi [10] provided an explicit (4,4)-colouring of Kn with only n1/2eO(
√

logn)

colours. This closed the gap for p = 4 to

n1/2 −1 � f (n,4,4) � n1/2+o(1).

His construction was the product of two colourings. The first was his earlier (4,3)-colouring
which used no(1) colours. The second was an ‘algebraic’ colouring that assigned to each vertex
a vector from a two-dimensional vector space over a finite field, and then coloured each edge
with an element from the base field, giving n1/2 colours. Some complicating factors needed to
be addressed by splitting each of these colours a constant number of times so that ultimately the
algebraic part of his colouring used only O(n1/2) colours.

One such complication was the need to avoid what Mubayi called a ‘striped K4’, four vertices
with three distinct edge colours where each colour is a matching. Interestingly, this particular
arrangement can actually be avoided with only 2O(

√
logn) colours, as we will show in Section 2.

1.3. Summary of the (5,5)-colouring
Our (5,5)-colouring extends Mubayi’s idea of combining a small (p, p− 1)-colouring with an
algebraic colouring to obtain the following result.

Theorem 1.1. As n → ∞,

f (n,5,5) � n1/32O(
√

logn log logn).

We begin in Section 2 by considering a particular instance of the general (p, p−1)-colouring
of Conlon, Fox, Lee and Sudakov [3], which we will refer to as the CFLS colouring. We show that
with few colours this construction avoids certain ‘bad’ configurations. We then modify it slightly
so that it also avoids the striped K4 configuration. By forbidding these specific configurations,
we are able to show that there are only three possible edge-colourings of K5 (up to isomorphism)
with at most four colours that could still occur with this modified CFLS colouring.

In Section 3, we define the first part of an algebraic colouring which we call the Modified
Inner Product (MIP) colouring. Under this construction, each vertex is associated with a vector
in a three-dimensional space over a finite field. As in Mubayi’s construction [10], each edge
is coloured with a specific element in the base field. Some slight modifications are needed for
special cases, but these will only split each colour a constant number of times, ultimately giving
O(n1/3) colours used in the MIP construction.

In Section 4, we will take the product of the modified CFLS colouring and the first part of
the MIP to get a construction that uses n1/3+o(1) colours and eliminates the first two of the three
remaining bad configurations. Finally, in Section 5 we define the rest of the MIP colouring to
eliminate the third configuration.

2. The CFLS colouring

We will not define the CFLS [3] colouring in full generality since only a simple case is needed.
We borrow part of the notation used in [3], but change it somewhat for clarity in this particular
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instance. Let n = 2β 2
for some positive integer β . Associate each vertex of Kn with a unique

binary string of length β 2. That is, we may assume that our vertex set is

V = {0,1}β 2
.

For any vertex v ∈V , let v(i) denote the ith block of bits of length β in v so that

v = (v(1), . . . ,v(β ))

where each v(i) ∈ {0,1}β .
Between two vertices x,y ∈V , the CFLS colouring is defined by

ϕ1(x,y) = ((i,{x(i),y(i)}), i1, . . . , iβ ),

where i is the first index for which x(i) �= y(i), and for each k = 1, . . . ,β , ik = 0 if x(k) = y(k) and
otherwise is the first index at which a bit of x(k) differs from the corresponding bit in y(k).

For convenience, when discussing any edge colour α , we will let α0 denote the first coordinate
of the colour (of the form (i,{x(i),y(i)})) and let αk denote the index of the first bit difference of
the kth block for k = 1, . . . ,β . Furthermore, throughout this section, we will say that two vertices
x and y agree at i if x(i) = y(i) and that x and y differ at i if x(i) �= y(i).

2.1. Avoided configurations
We will show through the following series of lemmas that the CFLS colouring avoids certain
specified arrangements of edge colours.

Lemma 2.1. The CFLS colouring forbids monochromatic odd cycles.

Proof. Suppose there exists a sequence of distinct vertices, v1, . . . ,vk, for which k is odd and

ϕ1(v1,v2) = ϕ1(v2,v3) = · · · = ϕ1(vk−1,vk) = ϕ1(vk,v1) = α.

Let α0 = (i,{x,y}). Without loss of generality we may assume that v(i)
1

= x and v(i)
2

= y. It follows
that

y = v(i)
2 = v(i)

4 = · · · = v(i)
k−1

= v(i)
1 = x,

a contradiction.

Lemma 2.2. The CFLS colouring forbids four distinct vertices a,b,c,d ∈V for which

ϕ1(a,b) = ϕ1(c,d) and ϕ1(a,c) = ϕ1(a,d).

See Figure 1(a).

Proof. Assume towards a contradiction that ϕ1(a,b) = ϕ1(c,d) = α and ϕ1(a,c) = ϕ1(a,d) =
γ . Let α0 = (i,{x,y}). Without loss of generality, a(i) = c(i) = x and b(i) = d(i) = y. Then γi = 0
since a and c agree at i, but γi �= 0 as a and d differ at i, a contradiction.
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Figure 1. Four configurations avoided by the CFLS colouring.

Lemma 2.3. The CFLS colouring forbids four distinct vertices a,b,c,d ∈V for which

ϕ1(a,b) = ϕ1(a,c), ϕ1(b,d) = ϕ1(b,c) and ϕ1(a,d) = ϕ1(c,d).

See Figure 1(b).

Proof. Assume towards a contradiction that ϕ1(a,b) = ϕ1(a,c) = α , ϕ1(b,d) = ϕ1(b,c) = γ
and ϕ1(a,d) = ϕ1(c,d) = π. Let α0 = (i,{x,y}), γ0 = ( j,{s, t}) and π0 = (k,{w,v}). Without
loss of generality we may assume that a(i) = x and b(i) = c(i) = y. Since b and c differ at j, then
i �= j. Without loss of generality we may assume that b( j) = s and c( j) = d( j) = t. So π j = 0, and

hence a( j) = t since ϕ1(a,d) = π . Therefore α j = 0, which implies that b( j) = t, a contradiction
since s �= t.

Lemma 2.4. The CFLS colouring forbids five distinct vertices a,b,c,d,e ∈V that contain two
monochromatic paths of three edges each that share endpoints:

ϕ1(a,b) = ϕ1(b,c) = ϕ1(c,d) and ϕ1(a,c) = ϕ1(c,e) = ϕ1(e,d).

See Figure 1(c).

Proof. Assume towards a contradiction that

ϕ1(a,b) = ϕ1(b,c) = ϕ1(c,d) = α

and

ϕ1(a,c) = ϕ1(c,e) = ϕ1(e,d) = γ.

Let α0 = (i,{x,y}) and γ0 = ( j,{s, t}). Without loss of generality we may assume that a(i) = c(i) =
x and b(i) = d(i) = y. Note that ϕ1(a,c) = γ implies γi = 0. Then e(i) = d(i) = y and e(i) = c(i) = x.
So x = y, a contradiction.

Lemma 2.5. The CFLS colouring forbids five distinct vertices a,b,c,d,e ∈V for which

ϕ1(a,b) = ϕ1(a,e) = ϕ1(e,c) and ϕ1(a,d) = ϕ1(d,e) = ϕ1(b,c).

See Figure 1(d).
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Figure 2. A striped K4.

Proof. Assume towards a contradiction that ϕ1(a,b) = ϕ1(a,e) = ϕ1(e,c) = α and ϕ1(a,d) =
ϕ1(d,e) = ϕ1(b,c) = γ . Let α0 = (i,{x,y}). We may assume without loss of generality that
b(i) = e(i) = x and a(i) = c(i) = y. We also know that b(k) = a(k) = e(k) = c(k) for all k < i. Since
ϕ1(b,c) = γ , then γ0 = (i,{x,y}). So either d(i) = x or d(i) = y. Therefore, d must agree with
either a or e at i, a contradiction.

2.2. Modified CFLS
We will now add to the CFLS colouring to avoid the striped K4, an edge-colouring of four distinct
vertices a,b,c,d such that every pair of non-incident edges have the same colour (see Figure 2).
The CFLS colouring alone will not avoid such arrangements, but the product of ϕ1 with another
small edge-colouring, ϕ2, will.

We will define the colouring ϕ2 on the same set of vertices as the CFLS colouring, V =
{0,1}β 2

. However, we will also need to consider the vertices as an ordered set. Consider each
vertex to be an integer represented in binary. Then order the vertices by the standard ordering of
the integers. That is, x < y if and only if the first bit at which x and y differ is zero in x and one
in y. This ordering plays a large role in a recent construction by Mubayi [11] for a small case
of the hypergraph version of the (p,q)-colouring problem. Note that each β -block is a binary
representation of an integer from 0 to 2β − 1, so these blocks can be considered ordered in the
same way. Moreover, note that if x < y and if the first β -block at which x and y differ is i, then it
must be the case that x(i) < y(i).

Let x,y ∈V such that x < y. We define the second colouring as

ϕ2(x,y) = (δ1(x,y), . . . ,δβ (x,y))

where, for each i,

δi(x,y) =

{
−1 x(i) > y(i),

+1 x(i) � y(i).

This construction uses 2β colours. Therefore, the modified CFLS colouring, ϕ = ϕ1×ϕ2, uses

β β+123β =
√

logn
√

logn+1
23

√
logn = 2O(

√
logn log logn)

colours.

Lemma 2.6. The modified CFLS colouring ϕ forbids four distinct vertices a,b,c,d ∈V with

ϕ(a,b) = ϕ(c,d), ϕ(a,c) = ϕ(b,d) and ϕ(a,d) = ϕ(b,c).

See Figure 2.
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Figure 3. Three configurations not avoided by the modified CFLS colouring.

Proof. Assume towards a contradiction that a striped K4 can occur. Then, ϕ1(a,b) = ϕ1(c,d) =
α , ϕ1(a,c) = ϕ1(b,d) = γ and ϕ1(a,d) = ϕ1(b,c) = π . Let α0 = (i,{x,y}), γ0 = ( j,{s, t}) and
π0 =(k,{v,w}). Without loss of generality, assume that i = min{i, j,k}. Since ϕ1(a,b)= ϕ1(c,d),
exactly one of d(i) and c(i) equals a(i). Say d(i) = a(i) without loss of generality. Then, by the
minimality of i, it must be the case that j = i and that i < k.

Let a(i) = d(i) = x, b(i) = c(i) = y, a(k) = b(k) = v and c(k) = d(k) = w. Without loss of generality
we may assume that x < y. This implies that a,d < b,c in the ordering of V as integers represented
in binary. If v < w, then δk(a,c) = +1 and δk(d,b) = −1. Therefore, ϕ2(a,c) �= ϕ2(b,d), a
contradiction. So, it must be the case that w < v. But then δk(a,c) = −1 and δk(b,d) = +1,
which yields the same contradiction.

Note that to eliminate the striped K4 configuration we needed just

β23β =
√

logn23
√

logn = 2O(
√

logn)

colours since only the first coordinate of the CFLS colouring was needed in the proof.
We can now systematically look at all edge-colourings of a K5 up to isomorphism that use no

more than four colours and do not contain any of these configurations to get a list of possible ‘bad’
colourings of a K5 that could survive the modified CFLS colouring. A careful mathematician with
a free day could work through these cases by hand. A simple computer program like the inelegant
one detailed in the Appendix is easier to verify. However this process is executed, we end up with
three possible bad colourings of K5 (see Figure 3). Avoiding these will require both the CFLS
colouring and the MIP colouring defined in Section 3.

Before we move on from discussing the modified CFLS colouring, we need to point out one
nice fact that will be used in Section 4.

Lemma 2.7. If a < b < c, then ϕ(a,b) �= ϕ(b,c).

Proof. Suppose ϕ1(a,b) = ϕ1(b,c) = α and that α0 = (i,{x,y}) for x < y. Then a(i) = x and
b(i) = y. But then c(i) = x. Therefore, c < b, a contradiction.

3. The Modified Inner Product colouring

Let q be some odd prime power, and let F
*
q denote the non-zero elements of the finite field with

q elements. The vertices of our graph will be the three-dimensional vectors over this set:

V = (F*
q)

3.
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Fq

Fq

Fq

a

Figure 4. The geometric visualization can be misleading since we are working over a finite field, but monochromatic
neighbourhoods are contained in affine planes.

All algebraic operations used in defining the MIP colouring are the standard ones from the
underlying field, and · will denote the standard inner product of two vectors,

x · y = x1y1 + x2y2 + x3y3,

where x = (x1,x2,x3) and y = (y1,y2,y3). Additionally, let < be any linear order on the elements
of Fq, and extend this to a linear order on the vectors so that

x < y ⇐⇒ xi < yi,

where i ∈ {1,2,3} is the first position at which xi �= yi.
The MIP colouring will be broken up into two parts, χ = χ1×χ2. The first part χ1 uses at most

12n1/3 colours. The second part χ2 uses only four colours and is used to split up colours from
χ1 in order to avoid one particularly difficult configuration. In this section, we will first define
χ1. Then, after a brief review of the necessary linear algebra concepts, we will prove some key
properties of χ1. The second part χ2 will be defined in Section 5.

3.1. Motivation
The MIP colouring should be viewed as colouring each edge with the inner product of the two
vectors with some adjustments for special cases. As motivation for this colouring, note that each
of the three configurations with four colours that survive the modified CFLS colouring (see Fig-
ure 3) contains at least one pair of vertices in the intersection of monochromatic neighbourhoods
of the other three vertices.

For instance, vertices d and e in Figure 3(a) are in the same monochromatic neighbourhood
with respect to vertices a, b and c. Under the MIP colouring, the monochromatic neighbourhood
of any vertex is contained in an affine plane of F

3
q. So, if a, b and c are linearly independent, then

these planes intersect in one point, not two. Therefore, the Figure 3(a) configuration could only
happen under an inner product colouring if the span of a, b and c has dimension at most 2.

This same idea applies to the other two configurations, and the adjustments to colouring with
the inner product are all dedicated to handling the cases for which the five vectors are not in
general position. In these cases we frequently end up with three vectors that must all lie on the
same affine line, and the offending configurations would be destroyed if the colouring could be
modified to give a proper colouring on every affine line.
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Fq

Fq

Fq

Figure 5. ‘Most’ of the time the intersection of two monochromatic neighbourhoods defines a subset of an affine line.

3.2. The colouring χ1

In Lemma 3.6 we will show that χ1 induces a proper edge colouring on every line, not just one-
dimensional linear spaces but affine lines as well. This will be one of the key lemmas in showing
that our construction avoids the remaining configurations. By itself, the inner product almost
accomplishes this goal. However, a problem arises when one vector on a given line is orthogonal
to the direction of the line. In this case, that particular vector has the same inner product with
all other vectors on the line, so we must give these edges new colours. We accomplish this by
replacing the inner product with another function.

The first part of χ1 labels the type of edge-colouring we will have. For two distinct vectors,
x,y ∈V , let T (x,y) be a function defined by

T (x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UP1 x · y = x · x and x1 < y1,

UP2 x · y = x · x,x1 = y1, and x < y,

DOWN1 x · y �= x · x,x · y = y · y, and x1 < y1,

DOWN2 x · y �= x · x,x · y = y · y,x1 = y1, and x < y

ZERO x · y �∈ {x · x,y · y} and x · y = 0,

DOT otherwise.

Here, the categories UPi and DOWNi let us know that at least one of the two vectors is orthogonal
to the direction of the line between the two, and therefore this edge will need to receive something
other than the inner product in the next part of the colour. The words UP and DOWN describe the
edge from the perspective of the ‘special’ vertex. For instance, if x is orthogonal to the direction
of the line it makes with y and x < y, then x looks up the edge to y. The need for different
categories when x1 = y1 is a technical point. The category DOT stands for the inner product (or
the ‘dot’ product), and ZERO is the special case where the inner product is zero. The need to
split the colours with zero inner product is also a technical point.

Let fT (x,y) : F
3
q → Fq be a function defined by

fT (x,y) =

⎧⎪⎪⎨
⎪⎪⎩

x1 + y1 T ∈ {UP1,DOWN1,ZERO},
x2 + y2 T ∈ {UP2,DOWN2},
x · y T = DOT.
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One final technical point is to differentiate colours based on whether the two vectors are linearly
dependent or independent. Let

δ (x,y) =

{
0 {x,y} is linearly dependent,

1 {x,y} is linearly independent.

This is enough to define the colouring. For vertices x < y, let T = T (x,y), and set

χ1(x,y) = (T, fT (x,y),δ (x,y)).

3.3. Algebraic definitions and facts
We assume that the reader has some familiarity with basic linear algebra notions such as dimen-
sion, linear independence, linear combination and span. The following definitions and facts are
perhaps less familiar. All are reproduced from definitions and propositions in Chapter 2 of the
great Linear Algebra Methods in Combinatorics book by László Babai and Péter Frankl [2].

Definition. Let F
n be a vector space, and let S ⊆ F

n be a set of vectors. The rank of S is the
dimension of the linear space spanned by S.

Fact 3.1. Let F be a field, and let A be a k×n matrix over F. Then the rank of the set of column
vectors as vectors in F

k is equal to the rank of the set of row vectors as vectors in F
n. We know

this value as the rank of the matrix A, rk(A).

Definition. Let F
n be a vector space. An affine combination of vectors v1, . . . ,vk ∈ F

n is a linear
combination λ1v1 + · · ·+ λkvk for λ1, . . . ,λk ∈ F such that λ1 + · · ·+ λk = 1. An affine subspace
is a subset of vectors that is closed under affine combinations.

Fact 3.2. Any affine subspace U is either empty or the translation of some linear subspace V .
That is, each vector u ∈U can be written in the form u = v+ t where v is some vector in V and t
is a fixed translation vector.

Definition. The dimension dim(U) of an affine subspace U is the dimension of the unique linear
subspace of which U is a translate.

Definition. Let F
n be a vector space. Let v1, . . . ,vk ∈ F

n. We say that these vectors are affine
independent if

λ1v1 + · · ·+λkvk = 0

implies that

λ1 = · · · = λk = 0

for any λ1, . . . ,λk ∈ F for which λ1 + · · ·+λk = 0. Otherwise, these vectors are affine dependent.
We say that a set of vectors S is a basis for an affine subspace if they are affine independent and
every vector in the subspace is an affine combination of vectors in S.
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Fact 3.3. A basis of an affine subspace U contains exactly dim(U)+1 elements.

Fact 3.4. Let F
n be some vector space. Let A be a k× n matrix over F and b ∈ F

n. Then the
solution set to Ax = b is an affine subspace of dimension n− rk(A).

Definition. A vector x ∈ F
n is isotropic if x ·x = 0. A linear subspace U ⊆ F

n is totally isotropic
if x,y ∈U implies that x · y = 0.

Fact 3.5. For any non-zero vector x ∈ F
n, the set of vectors {y : x · y = 0} is a linear subspace

of F
n with dimension n−1.

3.4. Properties of χ1

Lemma 3.6. The colouring χ1 induces a proper edge colouring on every one-dimensional
affine subspace.

Proof. Let a,b,c ∈ F
3
q be three distinct vectors in a one-dimensional affine subspace. Then

there exists some λ ∈ Fq such that c = λa + (1− λ )b. Suppose towards a contradiction that
χ1(a,b) = χ1(a,c), and let T = T (a,b) = T (a,c). If T ∈ {ZERO,DOT}, then

a ·b = a · (λa+(1−λ )b).

So λa · (a−b) = 0. Since c �= b, then λ �= 0. Therefore, a · (a−b) = 0. But this contradicts the
assumption that T ∈ {ZERO,DOT}.

If T ∈ {UP1,DOWN1}, then fT (a,b) = fT (a,c) gives

a1 +b1 = a1 +λa1 +(1−λ )b1.

So b1 = a1, a contradiction since T ∈ {UP1,DOWN1} implies that a1 �= b1. Similarly, if T ∈
{UP2,DOWN2}, then a2 = b2 by the same argument and a1 = b1 by definition. But then either
a3(a3 −b3) = 0 or b3(b3 −a3) = 0. Both cases imply that a3 = b3. So a = b, a contradiction.

Definition. Given a vertex a ∈V and an edge-colour A, let

NA(a) = {x : χ1(a,x) = A}

be the A-neighbourhood of a

Observation 3.7. Given a vector a ∈ V and a colour A = (T,α, i), the vectors in NA(a) all
belong to the two-dimensional affine subspace defined by {x : fT (a,x) = α}. In particular, this
plane can be defined as the solution space to either a ·x = α when T = DOT, (1,0,0) ·x = α −a1

when T ∈ {ZERO,UP1,DOWN1}, and (0,1,0) · x = α −a2 when T ∈ {UP2,DOWN2}.

In certain cases, we can actually say something a little stronger. First, note that if T (a,x) ∈
{UP1,DOWN1}, then we will have a1 < x1 if and only if a < x. Therefore, if fT (a,x) = α , since
fT (a,x) = a1 + x1, we will have a1 < α = a1 if and only if a < x.
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Lemma 3.8. Given a vector a ∈ V , and a colour A = (T,α, i), the vectors of NA(a) all belong
to a one-dimensional affine subspace if one of the following three cases holds for all x ∈ NA(a):

(1) T ∈ {ZERO,UP2,DOWN2},
(2) T = UP1 and a < x,
(3) T = DOWN1 and a > x.

Proof. In the first case, if T = ZERO, then every x ∈ NA(a) must satisfy the system of linear
equations

a · x = 0,

(1,0,0) · x = α −a1.

Since a contains no zero components, then the rank of {a,(1,0,0)} is two. Therefore, the solution
space must be a one-dimensional affine subspace. If T ∈ {UP2,DOWN2}, then every x ∈ NA(a)
must satisfy the system

(1,0,0) · x = a1,

(0,1,0) · x = α −a2.

Since (1,0,0) and (0,1,0) are linearly independent, then, as before, the set of solutions is a
one-dimensional affine subspace.

In each of the other two cases, we see that every x ∈ NA(a) must satisfy the system

a · x = a ·a,

(1,0,0) · x = α −a1.

As before, the solution space must be a one-dimensional affine subspace.

Therefore, we immediately get the following corollary by Lemma 3.6.

Corollary 3.9. Let a,b,c,d ∈V be four distinct vertices such that

χ1(a,b) = χ1(a,c) = χ1(a,d) = (T,α, i).

The set of vertices {b,c,d} span three distinct edge colours under χ1 if any of the following are
true:

(1) T ∈ {ZERO,UP2,DOWN2},
(2) T = UP1 and a < b,c,d,
(3) T = DOWN1 and a > b,c,d.

Lemma 3.10. Let a,b,c,d,e ∈V be vectors such that {a,b} is linearly independent, χ1(a,c) =
χ1(a,d) = χ1(a,e), and χ1(b,c) = χ1(b,d) = χ1(b,e) (see Figure 6). Then the set {c,d,e} spans
three distinct edge colours.

Proof. Let χ1(a,c) = χ1(a,d) = χ1(a,e) = A and χ1(b,c) = χ1(b,d) = χ1(b,e) = B. The result
is immediate if either pair (a,A) or (b,B) satisfies the conditions listed in Corollary 3.9. So
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a

b

c

d

e

Figure 6.

assume not. If A = (Ta,α, i), then by Observation 3.7 we know that c, d and e must either satisfy
a · x = α or (1,0,0) · x = α − a1. Similarly, if B = (Tb,β , j), then c, d and e must either satisfy
b · x = β or (1,0,0) · x = β −b1.

Since the sets {a,b}, {a,(1,0,0)} and {(1,0,0),b} are all linearly independent, then every
case gives us the result immediately except when Ta,Tb ∈ {UP1,DOWN1}. Since we assume
that none of the cases from Corollary 3.9 hold, then this can only happen when x · (x− a) =
x · (x−b) = 0 for x = c,d,e. In this case, c, d and e all satisfy the two linear equations,

(a−b) · x = 0,

(1,0,0) · x = α −a1.

Hence, c, d and e are affine independent, and the result follows from Lemma 3.6 unless

a2 −b2 = a3 −b3 = 0.

But if this is true, then c · (c−a) = c · (c−b) implies that a = b, a contradiction.

4. Combining the colourings

Let n = (q−1)3 where q is an odd prime power. To each α ∈ Fq we associate the unique element
α ′ ∈ {0,1}�logq� which represents in binary the rank of α under the linear order given to the
elements of Fq in Section 3. Let β be the minimum positive integer for which

3�logq� � β 2.

We associate each of the n vertices of Kn with a unique vector in (F*
q)

3 as in Section 3. To each

vertex (x1,x2,x3), we associate (x′1,x
′
2,x

′
3,0) ∈ {0,1}β 2

as well, where for each i, x′i is the binary
representation of the rank of xi, and 0 denotes a string of β 2 −3�logq� zeros. Let

C = ϕ ×χ1.

Since

β = Θ(
√

3logq) = Θ(
√

logn),

it follows that the number of colours used in this combined colouring is at most

12qβ23β = n1/32O(
√

logn log logn)

colours. This bound on the number of colours generalizes to all n by the standard density of
primes argument [12].
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4.1. The first two configurations
Lemma 4.1. Any distinct vertices a,b,c,d,e ∈V for which

C(a,c) = C(a,d) = C(a,e), C(b,c) = C(b,d) = C(b,e) and C(a,c) �= C(b,c)

(see Figure 6) span at least five distinct edge colours.

Proof. Lemma 2.1 implies that neither colour between {a,b} and {c,d,e} can be repeated
on the edges spanned by {c,d,e}. Therefore, if {a,b} is linearly independent it follows from
Lemma 3.10 that {a,b,c,d,e} span at least five colours.

Otherwise, b = λa for some λ ∈ Fq. If C(a,b) repeats one of the colours from the edges
spanned by {c,d,e}, then this gives us the configuration forbidden by Lemma 2.2. If C(a,b) =
C(a,c) or C(a,b) = C(b,c), then all five vectors belong to a one-dimensional linear subspace
spanned by a which must be properly edge-coloured by Lemma 3.6. Therefore, the set of vertices
{a,b,c,d,e} spans at least five colours.

This immediately shows that the first configuration will not appear under the combined col-
ouring.

Corollary 4.2. Let a,b,c,d,e ∈V be five distinct vertices. It cannot be the case that

C(a,b) = C(a,c) = C(a,d) = C(a,e), C(b,c) = C(b,d) = C(b,e) and C(c,d) = C(c,e)

as in Figure 3(a).

The second configuration also will not appear under the combined colouring.

Lemma 4.3. Let a,b,c,d,e ∈V be five distinct vertices. It cannot be the case that

C(a,c) = C(a,d) = C(a,e) = C(b,c) = C(b,d) = C(b,e) and C(c,d) = C(c,e)

as in Figure 3(b).

Proof. By Lemma 3.10, this can happen only if there exists some λ ∈ Fq such that b = λa. In
this case,

χ1(a,c) = χ1(a,d) = χ1(a,e) = χ1(λa,c) = χ1(λa,d) = χ1(λa,e).

If this colour is in DOT, then c · a = c · λa. So either λ = 1, a contradiction, or c · a = 0, a
contradiction that the colour is in DOT. If the colour is not in DOT, then it must be the case that
a1 = λa1. Since a1 �= 0, then this forces λ = 1, a contradiction.

5. Splitting the colouring

Now we will split the colours of C to make a new colouring C′ = C×χ2, where χ2 is the second
part of the MIP colouring.
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Let U ⊆ F
3
q be a two-dimensional linear subspace. Let GU be an auxiliary graph where V (GU)

is the set of non-isotropic vectors in U , and

xy ∈ E(GU) ⇐⇒ x · y = 0.

We wish to show that GU is bipartite. Note that x · y = 0 implies that αx · βy = 0 for any
α,β ∈ Fq. Suppose that x · z = 0 for some z ∈V (GU) such that z �= βy for any β ∈ Fq. Then the
intersection between U and the two-dimensional linear subspace orthogonal to x must also be a
two-dimensional linear subspace. Therefore, x is contained in its own orthogonal linear subspace.
So x is isotropic, a contradiction. Hence, GU is comprised of disjoint complete bipartite graphs
and so is itself bipartite.

For each two-dimensional linear subspace U , we label the vertices of GU with AU and BU

depending on their part in the bipartition, and then label all isotropic vectors in U with AU as
well.

For any two-dimensional linear subspace U ⊆ F
3
q and any x ∈U we define

S(x,U) =

{
A x ∈ AU ,

B x ∈ BU .

For a given vector a ∈V , and a given colour type T , define

aT =

⎧⎪⎪⎨
⎪⎪⎩

a T = DOT,

(1,0,0) T ∈ {UP1,DOWN1,ZERO},
(0,1,0) T ∈ {UP2,DOWN2},

and let

Ua,T = {x : aT · x = 0}.

For convenience, let

ab =

{
0 aT ·aT = 0,

(aT ·b)(aT ·aT )−1aT aT ·aT �= 0,

for any vectors a and b where T = T (a,b).
Now we can define the second part of the MIP colouring. For any two vectors, a < b with

T = T (a,b), let

χ2(a,b) = (S(a−ba,Ub,T ),S(b−ab,Ua,T )).

5.1. The third configuration
Let a,b,c,d,e ∈V be five distinct vertices such that

C′(a,b) = C′(a,c) = C′(a,d) = C′(a,e) = Black,

and let

C′(b,c) = C′(c,d) = C′(d,e) = C′(e,b) = Red
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as shown in Figure 3(c). By Lemma 2.7 we know that either b,d < c,e or c,e < b,d. Similarly,
we know that either a < b,c,d,e or b,c,d,e < a. So without loss of generality, we can say that
either a < b,d < c,e or b,d < c,e < a. In either case,

S(b−ab,Ua,T ) = S(c−ac,Ua,T )

where T = T (a,b) = T (a,c).
By Corollary 3.9 we know that one of the following three cases must be true:

(1) Black ∈ DOT,
(2) Black ∈ UP1 such that b,d < c,e < a, or
(3) Black ∈ DOWN1 such that a < b,d < c,e.

This abuses our notation slightly, but the meaning is hopefully clear. For example, Black ∈ DOT
means that the first component of the χ1 part of the colour Black is DOT.

We will show that none of these cases are possible through the following series of lemmas.

Lemma 5.1. If Black ∈ DOT and RED ∈ DOT, then the configuration in Figure 3(c) is not
possible under the colouring C′.

Proof. Let the inner product part of colour Black be α and the inner product part of Red be
β . Note that if either Black or Red encodes linear independence, then b, c, d and e would all
belong to the same one-dimensional linear subspace, a contradiction of Lemma 3.6. Also, since
c− e satisfies the three linear equations, a · x = 0, b · x = 0 and d · x = 0, then {a,b,d} cannot be
linearly independent since then c = e, a contradiction. So there exist non-zero λ1,λ2 ∈ Fq such
that d = λ1a+λ2b.

Note that a ·a �= 0 since otherwise

a ·d = a · (λ1a+λ2b),

α = λ2α

implies that λ2 = 1 since α �= 0. If λ2 = 1, then we would reach a contradiction by taking the
inner product of both sides of d = λ1a+b with c to get that β = λ1α +β , a contradiction since
d �= b.

So ab = ac = α(a ·a)−1a, then

d = λ ′
1ab +λ2b,

where λ ′
1 = λ1α−1(a ·a). Taking the inner product of both sides of this with a gives that

α = (λ ′
1 +λ2)α.

So it follows that ab, b and d are affine dependent. By the same arguments we can conclude that
ab, c and e are also affine dependent.

Note that (b−d) · (c− e) = 0. Therefore, (b−ab) · (c−ac) = 0. Since

S(b−ab,Ua,DOT) = S(c−ac,Ua,DOT),

then b−ab and c−ac are contained in the same part of the bipartition of the auxiliary graph on
Ua,DOT. Therefore, either b−ab or c−ac must be isotropic since otherwise the fact that they are
orthogonal would have made them adjacent in the auxiliary graph.
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Assume without loss of generality that b−ab is isotropic. Since

(b−ab) · (b−ab) = 0,

then b ·b = α2(a ·a)−1. Since (b−ab) · (c−ac) = 0, then β = α2(a ·a)−1. Therefore, b ·b = β .
Hence

b · (b− c) = 0.

This contradicts our assumption that Red ∈ DOT.

Note in what follows that if Red �∈ DOT, then b1 = d1 and c1 = e1.

Lemma 5.2. If Black ∈ DOT and RED ∈ ZERO, then the configuration in Figure 3(c) is not
possible under the colouring C′.

Proof. If Red ∈ ZERO, then

b · (c− e) = d · (c− e) = 0.

Also, recall that

a · (c− e) = 0.

If a,b,d are linearly independent, then c = e, a contradiction. So we must assume that a,b,d are
linearly dependent.

If either b or d depends on a, then δ (a,x) = 0 for x = b,c,d,e, which implies that all five
vectors belong to a one-dimensional linear subspace spanned by a, contradicting Lemma 3.6. If
d = λb for some λ ∈ Fq, then b1 = d1 = λb1. So either b1 = 0 or λ = 1, both contradictions. So
we must assume that d = λ1a+λ2b for non-zero λ1,λ2 ∈ Fq. But then

d · c = λ1(a · c)+λ2(b · c),
0 = λ1(a · c).

Since λ1 �= 0, then a · c = 0, which implies that Black �∈ DOT, a contradiction.

Lemma 5.3. If Black ∈ DOT and RED /∈ {DOT,ZERO}, then the configuration in Figure 3(c)
is not possible under the colouring C′.

Proof. If Red ∈ UP2 ∪DOWN2, then b1 = c1 = d1 = e1. So all four vectors b,c,d,e satisfy
the linear equations a · x = α and (1,0,0) · x = b1. Therefore, b, c, d and e all belong to a one-
dimensional affine subspace, a contradiction of Lemma 3.6.

If Red ∈ UP1, then

b · (b− c) = b · (b− e) = d · (d − c) = d · (d − e) = 0

since we assume that b,d < c,e. Therefore,

b · (c− e) = b · c−b · e = b ·b−b ·b = 0.
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Similarly, d · (c− e) = 0. Since c1 = e1, then it follows that⎛
⎝a1 a2 a3

b1 b2 b3

b1 d2 d3

⎞
⎠

⎛
⎝ 0

c2 − e2

c3 − e3

⎞
⎠ = 0.

Therefore, if any two of (a2,a3), (b2,b3) and (d2,d3) are linearly independent as vectors in F
2
q,

then c = e, a contradiction. Hence, there must exist λ1,λ2 ∈ Fq such that (a2,a3) = λ1(b2,b3) and
(d2,d3) = λ2(b2,b3).

From the equations of the form x · (x− c) = 0 for x = b,d we get

b1(b1 − c1)+b2
2 +b2

3 −b2c2 −b3c3 = 0,

b1(b1 − c1)+λ 2
2 b2

2 +λ 2
2 b2

3 −λ2b2c2 −λ2b3c3 = 0.

So it follows that

c3 = b−1
3 (b1(b1 − c1)+b2

2 +b2
3 −b2c2),

which in turn gives that

(1−λ2)b1(b1 − c1) = λ2(1−λ2)(b
2
2 +b2

3).

Since λ2 �= 1, then

b1(b1 − c1) = λ2(b
2
2 +b2

3).

Since b1 �= 0 and b1 �= c1, then b2
2 +b2

3 �= 0.
Now, since Black ∈ DOT, we get

a ·b = a ·d,

a1b1 +λ1b2
2 +λ1b2

3 = a1b1 +λ1λ2b2
2 +λ1λ2b2

3,

λ1(1−λ2)(b
2
2 +b2

3) = 0.

But this is a contradiction, since none of these three terms are zero.
If Red ∈ DOWN1, then we swap b,d and e,c in the previous argument to obtain the same

contradiction.

Lemma 5.4. If Black �∈ DOT, then the configuration in Figure 3(c) is not possible under the
colouring C′.

Proof. In this case, either b,d < c,e < a and Black ∈ UP1, or c,e > b,d > a and Black ∈
DOWN1. In both cases,

b · (b−a) = c · (c−a) = d · (d −a) = e · (e−a) = 0.

Moreover, b1 = c1 = d1 = e1, which implies that

Red ∈ ZERO∪UP2 ∪DOWN2 ∪DOT.

If Red ∈ ZERO, then

b · (c− e) = d · (c− e) = 0.
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Therefore, (
b2 b3

d2 d3

)(
c2 − e2

c3 − e3

)
= 0.

So (d2,d3) = γ(b2,b3) for some γ ∈ Fq, and b · c = d · c gives

b2
1 + c2b2 + c3b3 = b2

1 + γc2b2 + γc3b3.

Thus, (1− γ)(c2b2 + c3b3) = 0. Therefore, either γ = 1, a contradiction since b �= d, or c2b2 +
c3b3 = 0, also a contradiction since this implies that b · c = b2

1 �= 0.
If Red ∈ UP2 ∪DOWN2, then we have b2 = d2, c2 = e2 and either b · (b− c) = b · (b− e) = 0

or c · (c− b) = c · (c− d) = 0. In the first case, b · (e− c) = 0 so b3(e3 − c3) = 0. So either
b3 = 0 or e3 = c3, both contradictions. Similarly, in the second case, c · (b− d) = 0 means that
c3(b3 −d3) = 0, which gives the same contradictions.

Finally, if Red ∈ DOT, then b · (c− e) = 0 and d · (c− e) = 0. So(
b2 b3

d2 d3

)(
c2 − e2

c3 − e3

)
= 0.

Therefore, either c = e, a contradiction, or (d2,d3) = λ (b2,b3) for some non-zero λ ∈ Fq.
If β is the inner product represented by Red, then we get that

β = b2
1 +b2c2 +b3c3,

β = b2
1 +λb2c2 +λb3c3.

So,

(1−λ )(b2c2 +b3c3) = 0.

Therefore, either λ = 1 or b2c2 + b3c3 = 0. If λ = 1, then b = d, a contradiction. So we must
assume that b2c2 +b3c3 = 0. But then

(b− (b1,0,0)) · (c− (b1,0,0)) = 0.

Since ab = ac = (b1,0,0) we know that

(b−ab) · (c−ac) = 0.

Therefore, since

S(b−ab,Ua,T ) = S(c−ac,Ua,T ),

it must be that either (0,b2,b3) or (0,c2,c3) is isotropic.
First, assume that (0,b2,b3) and (0,c2,c3) are linearly independent. Then they must span the

linear subspace Ua,T . Without loss of generality assume that (0,b2,b3) is isotropic. Therefore, it
is orthogonal to every vector in the subspace Ua,T . Since this space is defined to be orthogonal to
(1,0,0), then this means that (0,b2,b3) is linearly dependent on (1,0,0), a contradiction.

So we must assume that (0,b2,b3) and (0,c2,c3) are linearly dependent. Since at least one
of them is isotropic, then they belong to a totally isotropic one-dimensional linear subspace. So
b2

2 + b2
3 = 0 and c = (b1,λb2,λb3) for some λ ∈ Fq. But then b · (b− c) = 0, a contradiction of

the assumption that Red ∈ DOT.
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Since these lemmas show that the third and final configuration does not appear, the colouring
C′ is a (5,5)-colouring of Kn.

6. Conclusion

This construction provides additional evidence that a general strategy of combining a (p, p−
1)-colouring with a F

p−2
q → Fq algebraic colouring might show that f (n, p, p) � n1/(p−2)+o(1).

However, both Mubayi’s proof for his (4,4)-colouring [10] and our proof for the (5,5)-colouring
require case-checking. Already in this paper we found it far easier to appeal to an algorithm rather
than present a logical elimination of all cases, but this problem will quickly become intractable
as p increases. Some general principles will need to be identified before we can demonstrate that
the analogous constructions work for all p.

Even if this type of construction were to demonstrate such a bound in general, a subpolynomial
yet significant gap between the lower and upper bounds persists even for p = 4. It would be nice
to find a way to avoid including the CFLS colouring and tighten the upper bound, or, perhaps
more interestingly, show that the lower bound can be increased.
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Appendix: Algorithm for reducing cases

The following algorithm is not difficult to verify, so we present it here without proof. The
specific implementation we rely on is a Python script that can be found (with comments) at
http://homepages.math.uic.edu/˜acamer4/EdgeColors.py.

Suppose we want to find every edge-colouring, up to isomorphism, of Kn that uses at most m
colours and does not contain a copy of any F ∈ F , a list of edge-coloured complete graphs on n
or fewer vertices. The algorithm takes F , n and m as input and returns a list R of edge-colourings
of Kn satisfying these requirements.

For each k = 3, . . . ,n, the algorithm creates a list Lk of acceptable edge-colourings of Kk by
adding a new vertex to each Kk−1 listed in Lk−1 (where L2 is the list of exactly one K2 with its
single edge given colour 1), and then colouring the k−1 new edges in all possible ways from the
colour set [m]. For each graph in Lk−1 and each way to colour the new edges, we test the resulting
graph to see if it contains any of the forbidden edge-colourings. If it does, then we move on. If
not, then we test it against the new list Lk to see if it is isomorphic to any of the colourings of Kk
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already on the list. If it is, then we move on. Otherwise, we add it to the list Lk. The algorithm
terminates when it has tested all colourings of Kn.

Algorithm 1: List all edge-colourings with no forbidden subcolouring
Data: number of vertices n; maximum number of colours m; list of forbidden colourings F
initialize L2 as list containing one K2 with its edges coloured 1;
for k = 3, . . . ,n do

initialize empty list Lk;
for H ∈ Lk−1 do

for each function f : [k−1] → [m] do
let G be Kk with edge-colours same as H on the first k−1 vertices and colour
f (i) on edge ki for i = 1, . . . ,k−1;
if G contains no element of F and is isomorphic to no element of Lk then

add G to the list Lk

end
end

end
end
return Ln

References

[1] Axenovich, M. (2000) A generalized Ramsey problem. Discrete Math. 222 247–249.
[2] Babai, L. and Frankl, P. (1992) Linear Algebra Methods in Combinatorics: With Applications to

Geometry and Computer Science, Department of Computer Science, University of Chicago.
[3] Conlon, D., Fox, J., Lee, C. and Sudakov, B. (2015) The Erdős–Gyárfás problem on generalized
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