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Can weakly nonlinear theory explain Faraday
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A. C. Skeldon1,† and A. M. Rucklidge2

1Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, UK
2Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

(Received 6 March 2015; revised 24 June 2015; accepted 1 July 2015;
first published online 22 July 2015)

The Faraday problem is an important pattern-forming system that provides some
middle ground between systems where the initial instability involves just a single
mode, and in which complexity then results from mode interactions or secondary
bifurcations, and cases where a system is highly turbulent and many spatial and
temporal modes are excited. It has been a rich source of novel patterns and of
theoretical work aimed at understanding how and why such patterns occur. Yet it is
particularly challenging to tie theory to experiment: the experiments are difficult to
perform; the parameter regime of interest (large box, moderate viscosity) along with
the technical difficulties of solving the free-boundary Navier–Stokes equations make
numerical solution of the problem hard; and the fact that the instabilities result in
an entire circle of unstable wavevectors presents considerable theoretical difficulties.
In principle, weakly nonlinear theory should be able to predict which patterns are
stable near pattern onset. In this paper we present the first quantitative comparison
between weakly nonlinear theory of the full Navier–Stokes equations and (previously
published) experimental results for the Faraday problem with multiple-frequency
forcing. We confirm that three-wave interactions sit at the heart of why complex
patterns are stabilised, but also highlight some discrepancies between theory and
experiment. These suggest the need for further experimental and theoretical work to
fully investigate the issues of pattern bistability and the role of bicritical/tricritical
points in determining bifurcation structure.

Key words: Faraday waves, parametric instability, pattern formation

1. Introduction

Since Faraday (1831) identified that regular patterns can appear on the surface of a
shaken container of fluid, the Faraday experiment has been an important system for
investigating pattern formation. Experiments in the 1980s, such as those conducted
by Simonelli & Gollub (1989), tended to focus on the dynamics of the interaction of
patterns in small containers excited by a sinusoidal forcing with a single frequency
component. More recently the focus has switched to larger containers with multiple
frequency components: as pointed out in Arbell & Fineberg (1998), one special
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Faraday waves 605

feature of the Faraday experiment is that by using multiple-frequency forcing
one can investigate the interaction of a small number of controllable modes with
different characteristic length scales. This provides some middle ground between
pattern-forming systems where the initial instability involves just a single mode,
and in which complexity then results from secondary bifurcations, such as in the
Bénard–Marangoni experiment or the Taylor–Couette experiment, and cases where a
system is highly turbulent and many spatial and temporal modes are excited.

Within the Faraday experiment, a rich variety of complex patterns are seen, some of
which have a complicated spatial structure but are time-periodic with the periodicity
of the drive, and some with both a complicated spatial and temporal structure.
Aside from the ubiquitous stripes, squares and hexagons, observed patterns include:
quasipatterns (Christiansen, Alström & Levinsen 1992; Edwards & Fauve 1994);
superlattice patterns (SL1) (Kudrolli, Pier & Gollub 1998; Epstein & Fineberg 2006);
spatially subharmonic superlattice states, modulated hexagonal disorder, two-mode
superlattices and unlocked states (Arbell & Fineberg 1998); oscillons (Arbell &
Fineberg 2000); and double hexagon states (Arbell & Fineberg 1998). An excellent
summary of many of the experimental results is given in Arbell & Fineberg (2002).

In parallel with the experiments, theoretical advances have resulted in an effective
numerical method for performing the linear stability analysis of the Navier–Stokes
equation that marks the transition from an unpatterned to patterned state (Kumar &
Tuckerman 1994). The challenge here is that many of the experiments are carried out
at moderate viscosity, whereas early theoretical results of Benjamin & Ursell (1954),
which help explain the underlying instability mechanism, are for an inviscid fluid.
There have also been theoretical explanations for why, unlike the Bénard–Marangoni
system, the observed patterned states include superlattice patterns (Silber & Proctor
1998; Silber & Skeldon 1999; Silber, Topaz & Skeldon 2000; Rucklidge & Silber
2009).

These theoretical mechanisms rely on three-wave resonance between critical modes
and modes close to critical and have successfully explained why particular superlattice
patterns are observed. The suggested theoretical mechanism for the appearance of
superlattice patterns is compelling, and the link between which modes are excited
and which patterns are observed has been explored in some detail experimentally (for
example, see Arbell & Fineberg (2002) and Epstein & Fineberg (2006)). However,
without carrying out a careful quantitative comparison between experiment and theory,
it is hard to know the extent to which the theoretical ideas really do explain the
experimental results (Bodenschatz, Pesch & Ahlers 2000). This is particularly true for
the Faraday experiment, where, as we will explain in greater detail below, the very
region for which the theory predicts superlattice patterns is the region for which some
of the underlying assumptions of the theory break down.

While it is not possible to write down closed-form solutions of the full Navier–
Stokes equations for the Faraday problem, quantitative predictions of the patterns
expected near the transition from non-patterned to patterned states can be made using
weakly nonlinear analysis (Skeldon & Guidoboni 2007). Weakly nonlinear analysis
centres on using an asymptotic expansion in terms of the slowly varying amplitudes
of the critical modes at onset, using ideas first developed in Malkus & Veronis (1958)
and Segel & Stuart (1962) in the context of convection experiments. Analysis of the
resulting amplitude equations leads to predictions on the relative stability of different
patterned states.

Our aim in this paper is to do a quantitative comparison between previously
published experimental results and a weakly nonlinear analysis of the Navier–Stokes
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equations for the Faraday problem, with a particular focus on multiple-frequency
forcing. A previous comparison between the theory and experiments in the Faraday
problem was carried out by Westra, Binks & van de Water (2003) for single-frequency
forcing, in which the authors declare that the excellent agreement they observe means
that the Faraday problem is essentially a ‘solved problem’. In particular, their paper
uses a Lyapunov stability argument based on the theory of Chen & Viñals (1999) to
find the ‘most stable’ pattern as a function of the key non-dimensional groups in the
problem representing non-dimensional measures of viscous, gravitational and surface
tension forces. Results from this theoretical study agree very well with the author’s
experimental results. However, the extension to multiple-frequency forcing is far from
trivial. The method used by Chen & Viñals (1999) to reduce the Navier–Stokes
equations to amplitude equations is not applicable, and the more general theory in
Skeldon & Guidoboni (2007) is needed; the addition of more frequency components
introduces more non-dimensional parameters, resulting in a much greater ability to
probe underlying three-wave mechanisms. Consequently, patterns such as superlattice
patterns, which are not observed in the single-frequency context, are found. In fact, as
we will show, for multiple-frequency excitation there remain many open questions. We
note also that Westra et al. (2003) use a Lyapunov stability argument to determine
preferred patterns. We use similar arguments, but have in addition carried out a
bifurcation analysis of the relevant amplitude equations. This has the added benefit
of not only determining the ‘most stable’ pattern, but also indicating regions where
patterns are bistable.

Specifically, in this paper we discuss to what extent the existing weakly nonlinear
theory can explain observed patterns in multiple-frequency Faraday experiments and
provide some new explanations in some cases. While agreement is very good in
many cases, we note that quantitatively linking theory with experiment is particularly
challenging after-the-fact, as the results are sensitive to precise values of viscosity
and surface tension, and even the sign of the drive term, something that is not
normally recorded. There are also places where the analysis strongly suggests that
patterns should have a subharmonic component, when no subharmonic component has
been observed. In particular, with regard to the superlattice patterns, we discuss two
methods that have been used to promote the stability of superlattice patterns: firstly
by approaching the so-called bicritical point in two-frequency forced experiments;
and, secondly, by adding a third frequency to the drive. We highlight the differences
between these two mechanisms.

Overall, we confirm that three-wave interactions sit at the heart of why complex
patterns are stabilised. However, the discrepancies between theory and experiment
suggest the need for further experimental and theoretical work to fully investigate the
issues of pattern bistability and the role of bicritical/tricritical points in determining
bifurcation structure.

2. Equations

Using a variety of container shapes, Edwards & Fauve (1994) elegantly demonstrated
that many of the patterns that occur with moderate viscosity fluids in large containers
are not strongly dependent on the lateral boundaries of the container. Consequently,
it is a reasonable modelling assumption to consider an infinite horizontal layer of
viscous incompressible fluid of finite depth that is subjected to gravity g̃ and to a
vertical periodic excitation with non-dimensional frequency components jω. At the
lower boundary the fluid is in contact with a rigid plane, while at the upper boundary
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FIGURE 1. Sketch of a cross-section through the layer of fluid.

the surface is open to the atmosphere. This means that the upper surface is a free
boundary whose shape and evolution is an unknown of the problem.

The motion of the fluid can be described by the Navier–Stokes equations, where,
to take account of the parametric excitation, a frame of reference which is moving
with the periodic excitation is considered. The z-axis is chosen perpendicular to the
rigid plane at the bottom, which lies at z = −h̃/l̃, where h̃/l̃ is the non-dimensional
depth of the layer when the fluid is at rest. A sketch of the geometry is shown in
figure 1. Assuming the free surface may be written as z= ζ (x, y; t), which excludes the
formation of droplets or breaking waves, then the fluid motion in the bulk is described
by the dimensionless incompressible Navier–Stokes equations

∇ · u= 0, (2.1)
∂tu+ u · ∇u=−∇P +C1u− (1+ f (t))e3, (2.2)

where u= (u, v, w) is the velocity field, P the pressure and for multiple-frequency
excitation,

f (t)=
∑

j

aj cos( jωt+ φj), (2.3)

where j are integers and the non-dimensional amplitudes aj and phases φj are real.
It is assumed that the bottom of the container is rigid so that at z=−h̃/l̃ the fluid

satisfies the no-slip boundary conditions

u= v =w= 0. (2.4)

At the free surface z= ζ (x, y; t) we have the kinematic condition, which says that the
surface is advected by the fluid, and two further conditions, one for the balance of
the tangential stresses and one for the balance of normal stresses. This leads to three
conditions at z= ζ (x, y; t), namely

∂tζ + u∂xζ + v∂yζ =w,
t1 · Tn= t2 · Tn= 0,

−P + 2CnD(u)n= BH − pe,

 (2.5)

where T = −P I + 2CD(u) is the stress tensor, D(u) = (∇u + ∇Tu)/2 is the rate-
of-strain tensor, and H = ∇H · (∇Hζ/

√
1+ |∇Hζ |2) is the double mean curvature.
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Note that ∇ = (∇H, ∂z) and ∇H = (∂x, ∂y). The unit normal and tangent vectors are
defined as

n(x, y; t)=
(
− ∂xζ√

1+ |∇Hζ |2
,− ∂yζ√

1+ |∇Hζ |2
,

1√
1+ |∇Hζ |2

)
, (2.6)

t1(x, y; t)=
(

1√
1+ |∂xζ |2

, 0,
∂xζ√

1+ |∂xζ |2

)
, (2.7)

t2(x, y; t)=
(

0,
1√

1+ |∂yζ |2
,

∂yζ√
1+ |∂yζ |2

)
. (2.8)

The units of length, time, velocity and pressure have been taken as l̃,
√

l̃/g̃,
√

g̃l̃ and

%̃g̃l̃, respectively, where %̃ is the density of the fluid and g̃ is the acceleration due
to gravity. The length scale l̃ is taken to be a length scale that is typical for the
problem, such as the primary wavelength of the observed patterns. Here, pe is the
dimensionless pressure of the external ambient fluid and is assumed known. There
are two non-dimensional parameters associated with the fluid, namely: C= ν̃/(g̃l̃3)

1/2
,

the square of the inverse of the Galileo number, and B = σ̃ /%̃g̃l̃2, the inverse Bond
number, where ν̃ is the kinematic viscosity and σ̃ is the surface tension. These two
non-dimensional parameters measure the relative importance of viscous and surface
tension forces compared to gravity, respectively. There are three other sets of non-
dimensional parameters of importance, all associated with the excitation. These are:
the non-dimensional amplitudes aj, frequencies jω and phases φj of the components
of the excitation. In the comparison with experiments it is frequently useful to quote
the relevant dimensional values: we have used the convention that all dimensional
variables are labelled with a tilde.

As in Kumar & Tuckerman (1994), it is convenient to define a new pressure,

p=P + (1+ f (t))z, (2.9)

which has the effect of shifting the acceleration term from the momentum equation to
the normal stress condition. In addition, we eliminate the pressure from the momentum
equation by taking −(∇ ×∇×). Using the relation ∇ ×∇ × u=∇(∇ · u)−1u and
the fact that ∇ · u= 0, the problem then becomes

∇ · u= 0, (2.10)
∂t1u−C∆1u=∇×∇× (u · ∇u), (2.11)

with boundary conditions on z=−h̃/l̃,

u= v =w= 0 (2.12)

and on z= ζ ,

∂tζ + u∂xζ + v∂yζ =w,

t1 · Tn= t2 · Tn= 0,
2CnD(u)n= BH + p− pe − (1+ f (t))ζ .

 (2.13)
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Faraday waves 609

Equations (2.11) with boundary conditions (2.12) and (2.13) have a trivial solution,

u= 0, p= pe, ζ = 0. (2.14a−c)

This solution corresponds to an unpatterned state where there is no relative motion
of the fluid with respect to the moving frame so the surface of the fluid is flat.

3. Does linear theory agree with experiments?
Understanding the linear stability of the unpatterned state is at the heart of

understanding many of the nonlinear patterns that are formed close to onset. This
is because when the unpatterned state becomes unstable to one critical mode with
a given critical wavenumber, there are often several other modes with different
wavenumbers that are themselves only weakly damped. This is particularly true
with multiple-frequency forcing. Resonant interaction of instabilities from different
critical/close to critical modes drive the selection mechanisms for the occurrence of
particular patterns (Silber et al. 2000).

Benjamin & Ursell (1954) recognised that the linear stability of the flat-surface
solution for an inviscid, infinite depth fluid driven by a single frequency reduces
to a Mathieu equation. The Mathieu equation contains two parameters, related to
the frequency ω̃ and amplitude ã of the excitation, respectively. Solutions to the
Mathieu equation divide the parameter plane into regions of bounded and regions
of unbounded solutions, where the regions of unbounded solutions form tongues
that touch the frequency axis at frequencies mω̃/2, m = 1, 2, . . . , the largest tongue
occurring for m = 1. The tongues are typically classified as either harmonic or
subharmonic, depending on whether or not they are an integer multiple of the
frequency ω̃. This picture is modified with the addition of damping: the boundaries
of the regions are perturbed and no longer touch the frequency axis, consequently,
a finite amplitude of excitation is required to excite waves; the regions of bounded
solutions become regions where the unpatterned state is locally stable; the unbounded
regions become regions where the unpatterned state is unstable.

Kumar & Tuckerman (1994) identified a numerical method to find the instability
tongues that can be used for all fluid viscosities and all depths and applied it to the
case of single-frequency excitation. This was extended to multiple-frequency excitation
by Besson, Edwards & Tuckerman (1996). A typical example of tongues computed
using (Besson et al. 1996)’s method and the corresponding bifurcation set for the
primary stability boundary is shown in figure 2.

The linear stability problem appears to be solved: the numerical method works well
and in Besson et al. (1996) the authors show that there is excellent agreement between
their linear stability calculations and experiments. However, unless experiments and
theory are carried out hand-in-hand, in practice there remain some difficulties in
obtaining really good agreement between theory and experiment even for this first
transition from patterned to unpatterned state. This is illustrated in figure 3, where
numerical linear stability results are superimposed on the experimental bifurcation
sets published in: Edwards & Fauve (1994) (panels (a,b)); Kudrolli et al. (1998)
(panel (c)); Epstein & Fineberg (2006) (panel (d)); and Ding & Umbanhowar (2006)
(panels (e, f )).

The central issue here is that the position of the curves is sensitive to the values
of the surface tension, density and viscosity, yet the values quoted in papers are often
taken from the manufacturers’ specifications for the fluids used. In order to illustrate
the issue, in each case we have plotted the linear stability curves for the quoted
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FIGURE 2. Typical tongues and linear stability region for the unpatterned state computed
using the method of Besson et al. (1996). Parameters as for Kudrolli et al. (1998): the
(dimensional) excitation is f̃ (t̃) = ã6 cos 6ω̃t̃ + ã7 cos(7ω̃t̃ + φ7), where ã6 = ã cos χ ,
ã7 = ã sin χ , φ7 = 20◦, ω̃/2π = 16.44 Hz, σ̃ = 20.6 dyn cm−1, ν̃ = 0.20 cm2 s−1, %̃ =
0.95 g cm−3, h̃= 0.3 cm. Note that the structure inherited from the Mathieu equation is
seen by the fact that the minimum of each tongue occurs at half-integer multiples of the
drive frequency. In (a) χ = 0◦, the forcing reduces to f̃ (t̃) = ã6 cos 6ω̃t̃, with a forcing
frequency of 6ω̃. The largest tongue has a minimum for wavenumber of approximately
15 cm−1 for a forcing amplitude ã of approximately 7.5g̃ and corresponds to a mode of
frequency 6ω̃/2. In (c), χ = 90◦ the forcing reduces to f̃ (t̃) = ã7 cos 7ω̃t̃ with a forcing
frequency of 7ω̃ leading to a primary instability mode with frequency 7ω̃/2. In the case
of (b), χ = 63◦, the presence of both 6ω̃ and 7ω̃ components in the forcing frequency
mean that the drive has periodicity 2π/ω̃ and is therefore of frequency ω̃. This leads
to tongues at mω̃/2, . . . , m = 1, 2, . . . . The first five tongues that are visible from left
to right correspond to: ω̃/2, 4ω̃/2, 5ω̃/2, 6ω̃/2, 7ω̃/2. The largest tongues correspond to
the 6ω̃/2 and the 7ω̃/2 modes and are driven by the two main frequency components
of the drive. There are tongues corresponding to modes with frequency 2ω̃/2 and 3ω̃/2
but these occur off the top of the region shown. This particular value of χ is close to
the ‘bicritical’ point where both harmonic modes with frequency 6ω̃/2 and subharmonic
modes with frequency 7ω̃/2 onset simultaneously. It is close to this bicritical point that
many of the exotic patterns are observed. (d) Bifurcation set showing the position of the
tongue minimum that marks the instability of the unpatterned state, as a function of ã6
and ã7.

viscosity and the quoted viscosity plus or minus 5 %, a typical quoted tolerance for the
viscosity value. From figure 3 we see that: for the experiments in Edwards & Fauve
(1994) and Ding & Umbanhowar (2006), the upper extreme for the viscosity fits the
data best (panels (a,b,e, f )); for those in Kudrolli et al. (1998), the lower extreme fits
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FIGURE 3. Comparison of the experimentally measured transition from unpatterned to
patterned state with numerically calculated linear stability curves using the method of
Besson et al. (1996). For each of the numerical calculations, three different values for
the viscosity are used. (a,b) Numerical curves overlaid on figure 12 of Edwards &
Fauve (1994). Adapted with permission from Edwards & Fauve (1994). Copyrighted
by the Journal of Fluid Mechanics. σ̃ = 65 dyn cm−1; ν̃ = 1.00 ± 0.05 cm2 s−1; %̃ =
1.22 g cm−3; h̃= 0.29 cm; ãj, j={4, 5}; φ4= 0; φ5= 75◦; ω̃/2π= 14.6 Hz. (c) Numerical
curves overlaid on figure 6(a) of Kudrolli et al. (1998) reprinted from Physica D,
Vol 123, A. Kudrolli, B. Pier and J. P. Gollub, ‘Superlattice patterns in surface waves’,
pp. 99–111, Copyright (1998), with permission from Elsevier. σ̃ = 20.6 dyn cm−1; ν̃ =
0.20 ± 0.01 cm2 s−1; %̃ = 0.95 g cm−3; h̃ = 0.3 cm; ãj, j = {4, 5}; φ4 = 0; φ5 = 16◦;
ω̃/2π= 22 Hz. (d) Numerical curves overlaid on figure 2 of Epstein & Fineberg (2006).
Adapted with permission from Epstein & Fineberg (2006). Copyrighted by the American
Physical Society. σ̃ = 20.6 dyn cm−1; ν̃ = 0.180 ± 0.009 cm2 s−1; %̃ = 0.949 g cm−3;
h̃ = 0.3 cm; ãj, j = {6, 7}; φj = 0◦; ω̃/2π = 14 Hz. (e, f ) Numerical curves overlaid on
figures 1 and 3(a) of Ding & Umbanhowar (2006). Adapted with permission from Ding &
Umbanhowar (2006). Copyrighted by the American Physical Society. σ̃ = 20.6 dyn cm−1;
ν̃ = 0.20 ± 0.01 cm2 s−1; %̃ = 0.95 g m−3; %̃ = 0.95 g cm−3; h̃ = 0.65 cm; ãj, j = {4, 5};
φ4 = 0; φ5 = 16◦; ω̃/2π= 20 Hz.
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(a) (b) (c) (d )

FIGURE 4. Possible spatial three-wave resonant interactions defined such that k1+ k2= k3.
(a) |k1| = |k2| = |k3|; (b) |k1| = |k2|> |k3|; (c) |k1| = |k2|< |k3|; (d) |k1| 6= |k2| 6= |k3|.

the subharmonic boundary best, but not the harmonic boundary (panel (c)); for the
experiments in Epstein & Fineberg (2006) the linear stability analysis suggests that
the actual viscosity of the fluid was higher than the upper value (panel (d)). We have
focused here on viscosity because, for the different fluids used in the results presented
here, errors in the viscosity have the biggest effect on the linear stability boundary.
An error in the viscosity of 5 % can result in an error in the linear stability boundary
of 5 %, whereas a 5 % error in either the surface tension or the density leading to a
5 % error in the ratio σ̃ /%̃ leads to an error in the linear stability boundary of only
around 1 %.

Our aim in this paper is to compare weakly nonlinear theory with experiments.
Since the transitions from one preferred patterns to another turn out to be quite
delicate, clearly it is only realistic to hope for agreement for nonlinear pattern
selection if there is first excellent agreement with linear theory. In making our
nonlinear comparisons below, we have therefore used values of the viscosity found
by fitting the linear theory to the published data.

4. Predicting patterns close to onset
4.1. Theoretical ideas

Once a mode with a given wavenumber has become unstable, the fact that there
is no preferred horizontal direction means that standing waves of any orientation
can occur. In the Bénard–Marangoni experiment, which has a similar orientational
invariance, this means that patterns consisting of nonlinear superpositions of modes
with wavevectors of the same wavenumber but different orientations often lead to
the observation of patterns with, for example, hexagonal symmetry. In principle,
superlattice patterns could also occur in convection experiments (Skeldon & Silber
1998), but in practice they have not been seen without the addition of a vertical
oscillation, as in Rogers et al. (2000).

The ubiquitous occurrence of hexagons is a consequence of the importance of
three-wave interactions in determining which patterned states occur: three-wave
interactions give rise to the lowest-order nonlinear (quadratic) terms in the amplitude
equations that describe behaviour close to onset. For Bénard–Marangoni convection,
where instability to a single dominant wavenumber occurs, the three-wave interaction
of importance occurs between three wavevectors with the same critical wavenumber,
as shown in figure 4(a). A distinct feature of the Faraday problem is that the
Mathieu tongue-like structure to the linear stability problem means that, although
typically there is a single mode that becomes unstable first, there are nearby modes
with different wavenumbers that are only weakly damped. This can give rise to other
three-wave interactions of relevance, such as those shown in figure 4(b–d).
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These three-wave interactions involve waves with wavevectors k1, k2 and k3 and
respective frequencies nω/2, pω/2 and qω. For the three waves to interact they must
satisfy a spatial resonance condition,

±k1 ± k2 = k3, (4.1)

and a temporal resonance condition. In the spatial resonance condition the choice
of sign arises because the waves are standing waves and so have spatial Fourier
components with both signs of wavevector. The temporal resonance condition depends
on both the frequencies of the waves and the various frequencies contained within
the forcing term f (t) and requires

±n
2
± p

2
± j= q (4.2)

where j is one of the frequency components of the drive see (2.3), cf. Topaz, Porter
& Silber (2004), and where all possible sign combinations of the different terms on
the left-hand side need to be considered because the waves are standing waves and
the forcing is real.

The fact that a temporal resonance condition needs to be satisfied is one feature that
distinguishes the Faraday problem from Swift–Hohenberg multiple-resonance problems
such as those studied in Müller (1994), Lifshitz & Petrich (1997), Rucklidge, Silber
& Skeldon (2012) and others. This means that results from Swift–Hohenberg-like
equations need to be interpreted with care when applied to the Faraday problem, a
point that we will return to in the discussion.

For the appearance of superlattice patterns the argument goes that, given three
critical modes ki as shown in figure 4(b) or (c) with amplitudes Ai, then using a
multiple time scale expansion near onset would lead to equations for the evolution
of the amplitudes on a slow time scale of the form

Ȧ1 = λ1A1 + α1A2A3 + A1(a|A1|2 + b0|A2|2 + c|A3|2)+ · · ·
Ȧ2 = λ1A2 + α1A1A3 + A2(b0|A1|2 + a|A2|2 + c|A3|2)+ · · ·
Ȧ3 = λ2A3 + α2A1A2 + A3(d|A1|2 + d|A2|2 + e|A3|2)+ · · · ,

 (4.3)

where λ1 and λ2 are the linear growth rates of the respective modes, and α1, α2, a, b0,
c, d and e are all real-valued constants. The quadratic coefficients, α1 and α2 are non-
zero only if the temporal resonance condition is met. Note that there is no assumption
of weak forcing/damping and so terms such as A1 do not appear (Alnahdi, Niesen &
Rucklidge 2014).

Now, the mode with wavevector k3 is not at its critical point but is weakly damped,
so λ2 < 0 and, close to onset (i.e. |λ1| small enough), it is therefore slaved by the
critical modes. Consequently, one can perform a centre manifold reduction on (4.3),
resulting in

A3 =−α2

λ2
A1A2 + · · · , (4.4)

and

Ȧ1 = λ1A1 + A1(a|A1|2 + b(θres)|A2|2)+ · · · (4.5)

Ȧ2 = λ1A2 + A2(b(θres)|A1|2 + a|A2|2)+ · · · , (4.6)
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where
b(θres)= b0 + bres, bres =−α1α2

λ2
. (4.7)

The presence of the weakly damped mode therefore changes the value of the cross-
coupling coefficient b(θres) between modes with wavevectors k1 and k2, offset at an
angle θres. The value of θres is determined by the ratio of critical and weakly damped
wavenumbers, but the same idea holds for any three-wave interaction between any k1
and k2 on the critical circle. This results in a function b(θ) with either a distinctive
peak or dip at θ = θres, depending on the sign of α1α2 and on the weakness of the
damping for the weakly damped mode.

Analysing the amplitude equations (4.6) shows that there are two types of solutions
that bifurcate from the trivial solution A1 = A2 = 0, namely stripes (A1 6= 0, A2 = 0
or vice versa) and rectangles (A1 = A2). The relative stability of rectangles to stripe
perturbations is dependent on the relative size of the self-coupling coefficient a in (4.6)
and b(θres) where, if bres> 0 (α1α2> 0), then the stability of rectangles is enhanced by
the three-wave interaction, and if bres < 0 (α1α2 < 0), then the stability of rectangles
is suppressed.

Of course, in the Faraday problem there are not just two modes and there are
many interactions and several weakly damped circles, but this idea that three-wave
resonances can promote patterns associated with the angle θres is powerful (Silber
et al. 2000). The idea is that the dispersion relation determines which wavenumbers
are critical or close to critical; allowed three-wave resonant interactions then select out
particular wavevectors; the allowed wavevectors are necessarily oriented at particular
angles as determined by the ratios of available wavenumbers, leading to specific
values for θres. Superlattice patterns essentially consist of a nonlinear superposition
of two sets of hexagons offset at an angle to each other. There is a whole family of
different superlattice patterns (Dionne, Silber & Skeldon 1997), each corresponding
to a different angle, but the particular superlattice that will be promoted will be that
with an angle given by θres.

The superlattice patterns observed by Kudrolli et al. (1998) for {6, 7} excitation
exemplify the idea and motivated the early theoretical work. The superlattice patterns
that they observe are spatially periodic, and a spatial Fourier transform of the pattern
indicates that they consist of essentially two sets of hexagonal modes offset by an
angle of 22◦. In this case, the particular three-wave resonance of relevance is of
the type illustrated in figure 4(b) and is between a harmonic mode that is weakly
damped of frequency 2ω̃/2, related to the 2ω̃/2 tongue, and two wavevectors with
wavenumbers corresponding to the 6ω̃/2 tongue (Silber et al. 2000). This was
surprising because the superlattice state appears near the bicritical point where both
6ω̃/2 and 7ω̃/2 onset simultaneously, and naively, from inspection of the linear
stability diagram (see figure 2b), one would assume that it was a result of the
interaction of 6ω̃/2 and 7ω̃/2 modes – the 2ω̃/2 tongue onsets at an amplitude of
approximately 50g̃, so is not even visible on the scale shown.

This argument not only explains the presence of the 22◦ superlattice patterns but
also why patterns with angles close to 30◦ are seen in j = {4, 5} forcing (Skeldon
& Guidoboni 2007). Extensions of this basic idea have been used to suggest ways
to design forcing frequencies to promote particular patterns in both Faraday waves
(Porter, Topaz & Silber 2004) and in a model partial differential equation (Rucklidge
& Silber 2009).

The results of Kudrolli et al. (1998) and the theoretical results of Silber et al.
(2000) showed how modes visible in the spatial Fourier transform of the experimentally
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FIGURE 5. Linear stability curves and Floquet multipliers calculated from the finite depth
Navier–Stokes equations (a,c) h̃ = 0.3 cm (b,d) h̃ = 0.2 cm. Parameter values are taken
from Epstein & Fineberg (2006) and are σ̃ = 20.6 dyn cm−1; ν̃ = 0.18 cm2 s−1; %̃ =
0.949 g cm−3; ãj, j= {6, 7, 2}, where ã6 = 3.4, ã7 = 6.4, ã2 = 0.5; φj = 0◦; ω̃/2π= 14 Hz.

observed pattern can be linked to critical/weakly damped modes and three-wave
resonant interactions. It follows that given an experimentally observed pattern it
should be possible to confirm whether or not it is a result of a particular interaction
by establishing which modes are present in the pattern. However, identifying precisely
which modes are involved can be tricky, as we illustrate in the following section.

4.2. Practical identification of relevant modes
In Epstein & Fineberg (2006) a detailed comparison of different patterns, referred to
as ‘grid’ states and labelled as 3:2, 4:3 and 5:3 respectively, is presented. The spatial
Fourier transform of the patterns enables the identification of the wavenumbers that are
present in these patterns: in each case they appear to be dominated by modes sitting
on two different circles, one on the primary harmonic instability with wavenumber
k̃c and a second circle with respective wavenumbers k̃3:2 = 0.38k̃c, k̃4:3 = 0.55k̃c and
k̃5:3= 0.23k̃c. These ratios are fixed by the fact that the observed grid states consist of
modes that fit on to a hexagonal lattice. This suggests that they are strong candidates
for superlattice patterns that occur as a result of the mechanism discussed in § 4.1.
Epstein & Fineberg (2006) computed the linear stability curves, and their linear
stability diagrams are recomputed in figure 5(a,b). We note that the linear stability
curves are similar, but not identical, to those given in Epstein & Fineberg (2006),
particularly at small k̃. This is because we have made a different choice in the sign
of the forcing term to that made by Epstein & Fineberg (2006). This is explained
further in § 6. As stated by Epstein & Fineberg (2006), and as can be seen in this
figure, the k̃3:2 wavenumber lines up with the first harmonic tongue (2ω̃/2), strongly
suggesting that it is the same mechanism that produces the familiar 22◦ superlattice
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patterns, seen by Kudrolli et al. (1998), that produces the k̃3:2 grid state. For the two
other states the situation is less clear. Epstein & Fineberg (2006) state that k̃4:3 lines
up with the second harmonic tongue (4ω̃/2), but this is not clear from figure 5 (the
position of the line drawn in figure 5 of Epstein & Fineberg (2006) is not consistent
with the value of 0.55k̃c given). Epstein & Fineberg (2006) observe that the k̃5:3 mode
does not appear to be aligned with any tongue and that the 5:3 pattern occurs in a
wedge-shaped region of parameter space that emerges from the bicritical point, unlike
the 3:2 and the 4:3 state that occur at a short distance from this point.

The difficulty here is that the linear stability diagram indicates that at an amplitude
of excitation of approximately 7.5g̃ the mode with wavenumber k̃c and frequency
6ω̃/2 becomes unstable, and that there are five other damped modes with smaller
wavenumber. But the position of the tongues for these modes only gives a rough idea
of the precise wavenumber and damping associated with each mode at the pattern
onset amplitude of 7.5g̃.

More accurate information on the damped modes can be obtained by calculating
the most critical Floquet multipliers, as detailed in appendix A. The results for the
parameter values used by Epstein & Fineberg (2006) are shown in figure 5(c,d). We
note that with either possible sign for the forcing, the Floquet multipliers look very
similar. As identified by Epstein & Fineberg (2006), the k̃3:2 mode is aligned with
the harmonic tongue associated with frequency 2ω̃/2 for h̃ = 0.3 cm, but not for
h̃ = 0.2 cm, and supports their observation that the k3:2 grid state will be seen for
h̃= 0.3 cm and not for h̃= 0.2 cm. The remaining two wavenumbers k̃5:3 and k̃4:3 are
very close to the subharmonic waves of frequencies ω̃/2 and 3ω̃/2, respectively. This
clarifies the issue that the k̃5:3 mode in Epstein & Fineberg (2006) did not appear
to align with any mode on the linear stability graphs, and strongly suggests that the
k̃4:3 mode was misidentified as harmonic. However, it also presents a problem in that
temporal constraints mean that it is not possible for two harmonic wavevectors to
form a three-wave resonance with a single subharmonic wavevector. Consequently,
α1 = α2 = 0 in (4.3), so the discussion in § 4.1 does not hold as it stands and there
is no special angle θres.

Epstein & Fineberg (2006) point out that the k̃5:3 case could be a result of a three-
wave resonance between modes with frequencies ω̃/2, 6ω̃/2 and 7ω̃/2, and this is
strongly supported by our Floquet multiplier calculation and is a permitted resonance
in that it satisfies both spatial and temporal constraints. Such a resonance appears to
be consistent with the spatial Fourier transform in figure 3(c) of Epstein & Fineberg
(2006) and is similar in structure to previous states identified in figure 20(c) of Arbell
& Fineberg (2002) as 2MS states. This would make it a three-wave resonance of the
form shown in figure 4(d). This kind of resonance was discussed briefly by Porter &
Silber (2002) and results in patterns that occur in a wedge that emerges from the
bicritical point. This is consistent with the bifurcation sets shown by Epstein and
Fineberg. The only remaining conundrum for this particular pattern is that Epstein
and Fineberg state that, although all the evidence points to subharmonic modes being
important, no subharmonic component was found.

5. Observed patterns near onset: theoretical bifurcation sets compared with
experiment
In spite of the difficulties in identifying modes, nevertheless, in experiments with

dominant forcing frequencies j = {4, 5} or j = {6, 7} there is a coherent picture:
in the {6, 7} case, observed superlattice patterns near onset have an angle of 22◦;
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for j = {4, 5}, observed patterns near onset are quasipatterns with an angle of 30◦.
Although there are technical difficulties with considering quasipatterns in the same
way as superlattice patterns (Rucklidge & Rucklidge 2003; Rucklidge & Silber
2009; Iooss & Rucklidge 2010), nevertheless they appear to fit within the same
framework with resonant interactions with weakly damped modes associated with
2ω̃/2 contributing to bres and explaining the appearance of the appropriate angle.
The different angle seen in the {4, 5} case as compared with the {6, 7} case is
because of differences in the wavenumbers of the interacting modes. In both cases,
superlattice/quasipatterns are only seen near the bicritical point where the two modes
driven by the two main components of the forcing onset simultaneously.

Here, we aim to carry out a careful comparison of the results of weakly nonlinear
theory and experimental results to explore to what extent there is quantitative
agreement between experiments and theory as the bicritical point is approached.
We present results from the experiments of Ding & Umbanhowar (2006) because we
have excellent agreement for the linear stability curves with ν̃ = 0.21 cm2 s−1, as
shown in figure 3(e, f ), and this set of experiments includes the most comprehensive
study of how multiple frequencies interact via the superlattice mechanism outlined
above. Specifically, acknowledging the importance of the 2ω̃/2 tongue, Ding &
Umbanhowar (2006) carry out a series of experiments that systematically explore the
effect of adding a third frequency that promotes this mode.

The weakly nonlinear theory is carried out using the method given in Skeldon &
Guidoboni (2007) for analysing (2.11)–(2.13). For all details of how weakly nonlinear
analysis is used to derive coefficients for the relevant amplitude equations we refer
the reader to Skeldon & Guidoboni (2007). In order to examine the relative stability
of superlattice patterns a minimal set of twelve amplitude equations corresponding
to twelve vectors on the critical circle are needed. However, the stability of the
planforms that bifurcate from the non-patterned state can be found by calculating the
coefficients on three one-dimensional subspaces of this twelve-dimensional problem:
one describing stripes, one for hexagons and one for rectangles generated from
wavevectors separated by an angle θ , as detailed in Skeldon & Silber (1998). By
varying θ , this formulation then results in determining the stability of stripes to
any perturbation of the same wavenumber; the stability of hexagons to (i) stripes
arbitrarily close to any given orientation, (ii) rectangles arbitrarily close to any given
aspect ratio, (iii) to superlattice patterns of any angle; the stability of rectangles to (i)
stripes of any orientation, (ii) superlattice patterns on the same lattice; the stability of
superlattice patterns to hexagons, stripes or rectangles that are made up of a subset
of the superlattice wavevectors.

Since the weakly nonlinear stability analysis indicates that for many parameter
values there is more than one stable pattern, results are presented in two ways:
firstly, showing the regions of stability for individual patterns – only those that have
some region of stability are shown – and secondly, showing the bifurcation set for
the most stable state, as computed from the weakly nonlinear coefficients using the
Lyapunov functional given in Skeldon & Guidoboni (2007). The most stable states
are superimposed on the experimental results of Ding & Umbanhowar (2006). In
the case of superlattice patterns, the resonant interactions mean that it is always the
particular pattern associated with θres that has the largest region of stability, and it is
perturbations associated with this angle that first destabilise hexagons. Consequently,
where superlattice patterns are shown it is always the superlattice pattern associated
with θres that is relevant.

Ding and Umbanhowar consider the two sets of frequency components most
widely used by other experimental groups – namely j = {4, 5} and j = {6, 7} – and
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FIGURE 6. Comparison with figure 1 from Ding & Umbanhowar (2006). ãj = {4, 5},
(φ4, φ5) = (0, 16◦), ω̃/2π = 20 Hz. The fluid parameters are as in the caption to
figure 3(e, f ) with ν̃ = 0.21 cm2 s−1. (a,b) Stability regions for different planforms.
(a) Stable squares in green; unstable squares in grey; (b) stable hexagons in blue; unstable
hexagons in grey. Note that for ã5 > 0, there are quadratic terms in the amplitude
equations which mean that hexagons bifurcate transcritically. The unstable solutions that
are produced in this transcritical bifurcation are stabilised in a saddle–node bifurcation,
resulting in a small region of stable, subcritical hexagons. This region of stable subcritical
hexagons is only visible on the scale of the figure close to the bicritical point. (c) ‘Most
stable’ state using a Lyapunov energy argument: + squares; ∗ hexagons;@ quasipatterns.
The theoretical results are overlaid on figure 1 from Ding & Umbanhowar (2006). Adapted
with permission from Ding & Umbanhowar (2006). Copyrighted by the American Physical
Society.

then systematically investigate the inclusion of a third mode, so considering the
combinations j= {4, 5, 2} and j= {6, 7, 2}. We have carried out the weakly nonlinear
stability analysis for each of their parameter studies, and the results are presented in
figures 6–12, where the principal parameters considered and the corresponding figures
in Ding & Umbanhowar (2006) are summarised in table 1.

In each case the weakly nonlinear results are superimposed on the experimental
results. The parameters have been chosen to match those quoted in the paper of Ding
& Umbanhowar (2006), with the exception of the viscosity, where, as seen in figure 3,
the linear stability curves fitted best with a viscosity of ν̃ = 0.21 cm2 s−1 rather than
ν̃ = 0.20 cm2 s−1 quoted in their paper (or the value of ν̃ = 0.204 cm2 s−1 quoted in
Ding (2006)).
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Figure j ãj, φj Parameters
varied

Figure from Ding &
Umbanhowar (2006)

6 {4, 5} (φ4, φ5)= (0, 16◦) ã4 and ã5 1
7 {4, 5, 2} ã2 = 0.8g̃, (φ4, φ5, φ2)= (0◦, 16◦, 32◦) a4 and a5 3(b)
8 {4, 5, 2} ã5 = 5g̃, (φ4, φ5, φ2)= (0◦, 5◦, 32◦) ã4 and ã2 4(a)
9 {4, 5, 2} (ã4, ã5, ã2)= (3.8, 5.8, 0.8)g, φ4 = 0◦ φ5 and φ2 4(b)
10 {6, 7} (φ6, φ7)= (0◦, 40◦) ã6 and ã7 2
11 {6, 7, 2} ã7 = 7g̃, (φ6, φ7, φ2)= (0◦, 40◦, 80◦) ã6 and ã2 6(a)
12 {6, 7, 2} (ã6, ã7, ã2)= (5.2, 7.8, 0.6)g̃, φ6 = 0◦ φ7 and φ2 6(b)

TABLE 1. Summary information for figures comparing weakly nonlinear analysis with
the experiments of Ding & Umbanhowar (2006).

5.1. Results for {4, 5} and {4, 5, 2}
In figure 6 we see that the weakly nonlinear theory predicts bistability between
squares and hexagons for low values of ã5, with squares losing stability as the
bicritical point is approached. There is good agreement between the point at which
squares become unstable (approximately ã5 = 2.2g̃, figure 6a), and the transition
between squares and hexagons in the experiment. However, before squares become
unstable, the theory suggests that there is a region of bistability between hexagons and
squares, and that in this region hexagons and not squares, as seen in the experiment,
are the most stable state. Of course, in this region, the particular pattern observed
experimentally will depend to some extent on the way in which the experiments were
carried out. For example, if the experimental procedure was to fix ã4 and to increase
ã5 from zero in small steps, one would expect to see squares until the limit of their
stability. Regions of quasipatterns are also predicted by the weakly nonlinear theory
(almost off the scale of the figure 6) and observed in the experiment, but since they
do not occur close to onset it is perhaps not surprising that the theory and experiment
do not agree.

In figure 7, we see that by adding in a forcing component that excites the 2ω̃/2
mode directly Ding & Umbanhowar (2006) showed that they could increase the
region of quasipatterns, to the extent that they become the first pattern observed
after the unpatterned state becomes unstable. Our theoretical results for the same
parameter values also show an enhanced region for the superlattice patterns – but not
as enhanced as for the experiment. Two possible reasons for this are (i) the nearby
presence of the bicritical point where both the 2ω̃/2 and the 4ω̃/2 tongue onset
simultaneously, which means that our weakly nonlinear calculations would need to
be extended; (ii) the sensitivity of the results to phase. We discuss both of these in
more detail below.

Figure 8 shows excellent agreement between the theoretical results and the
experimental results for the pattern at onset for increasing ã2, with agreement
diminishing with distance from onset.

There is surprisingly good agreement for the variation with phase shown in figure 9.
In the experimental results, black indicates low correlation at an angle of 30◦. This
lines up well with areas where the theory indicates competition between squares
and hexagons. White areas, where there is high correlation at 30◦, line up well with
stable quasipatterns. In the regions where there are no coloured symbols, the weakly
nonlinear analysis indicates no stable states. This region is mostly mid-grey in the
experiment, indicating some correlation at 30◦.
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FIGURE 7. Comparison with Ding & Umbanhowar (2006) figure 3(b), j = {4, 5, 2},
(φ4, φ5, φ2) = (0, 16◦, 32◦). (a,b) Stability regions for different planforms. (a) Stable
hexagons in blue, unstable hexagons in grey; (b) stable quasipatterns in red, unstable
quasipatterns in grey. Both quasipatterns and hexagons bifurcate transcritically and
may be stabilised in a saddle–node bifurcation. This can result in stable subcritical
quasipatterns/hexagons. (c) ‘Most stable’ planform using a Lyapunov energy argument
superimposed on figure 3(b) from Ding & Umbanhowar (2006). Adapted with permission
from Ding & Umbanhowar (2006). Copyrighted by the American Physical Society.
∗ hexagons; � quasipatterns, u disordered states, where the coloured symbols are the
theoretical results and the black symbols the experimental results. The red line is the
linear instability curve for the harmonic 2ω̃/2 tongue. The black cross indicates the point
at which the experiment shown in figure 9(c) was carried out.

The agreement in figure 9 is surprising because the results correspond to a point
with ã4 = 3.8g̃, ã5 = 5.9g̃ and ã2 = 0.8g̃, which according to the theory is close to
a transition from quasipatterns to hexagons in a region where both hexagons and
quasipatterns are stable, whereas in the experiment it is firmly in the quasipattern
region. (In order to help cross-reference between the two figures, a black cross has
been marked on both figure 7c and figure 9.) Figure 9 highlights the sensitivity of
the results to phase and, in fact, with our weakly nonlinear analysis we find that the
size of the region of quasipatterns changes significantly depending on the phase. This
sensitivity to the precise value of the phase could be part of the difficulty in obtaining
agreement for the onset of quasipatterns in figure 7.

The results are, of course, also sensitive to the viscosity. Away from the bicritical
point, changing the viscosity tends to translate the nonlinear bifurcation lines as one
might expect: upwards if the viscosity is increased, downwards if the viscosity is
decreased, in line with the changes to the transition from unpatterned to patterned
state seen in figure 3. Close to the bicritical point the effects are more pronounced,
with small changes in viscosity sometimes leading to large changes in the regions in
which particular patterns dominate.
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FIGURE 8. Comparison with Ding & Umbanhowar (2006) figure 4(a). j = {4, 5, 2},
ã5 = 5g̃, (φ4, φ5, φ2) = (0, 16◦, 32◦). (a) and (b) Stability regions for hexagons
and quasipatterns, respectively. Coloured symbols stable; grey unstable. Hexagons and
quasipatterns both bifurcate from the unpatterned state at a transcritical bifurcation, where
the unstable bifurcating branch changes direction at a saddle–node bifurcation. This leads
to regions of stable hexagons and quasipatterns that are subcritical. (c) ‘Most stable’
planform: ∗ hexagons;@ quasipatterns, overlaid on figure 4(a) from Ding & Umbanhowar
(2006). Adapted with permission from Ding & Umbanhowar (2006). Copyrighted by the
American Physical Society. The coloured symbols are the theoretical results and the black
symbols the experimental results. The black dots indicate disordered states. Note that the
linear stability boundary for the 2ω̃/2 mode is just off this diagram, and is approximately
parallel to the a4 axis through a value of a2≈ 1. The bicritical point where the 2ω̃/2 and
the 4ω̃/2 modes onset simultaneously occurs when (ã2, ã4)= (1.05, 3.80)g̃.

5.2. Results for {6, 7} and {6, 7, 2}
In figure 10 the weakly nonlinear theory predicts bistability between squares and
hexagons for low values of ã7, with squares losing stability as the bicritical point is
approached. As for figure 6, although there is good agreement between the point at
which squares become unstable (approximately ã7= 4.5g̃), and the transition between
squares and hexagons in the experiment, this agrees less well with the results of the
energy argument.
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(a) (b)

(c) (d )

FIGURE 9. Comparison with Ding & Umbanhowar (2006) figure 4(b). Phase diagram
for j = {4, 5, 2} with (ã4, ã5, ã2) = (3.8, 5.8, 0.8)g̃. (The position of this point for
(φ5, φ2)= (16◦, 32◦) is shown in figure 7c.) (a–c) Stability regions for squares, hexagons
and quasipatterns, respectively. Coloured symbols stable; grey unstable. (d) ‘Most stable’
planforms: + squares; ∗ hexagons;@ quasipatterns. The results are overlaid on figure 4(b)
of Ding & Umbanhowar (2006). Adapted with permission from Ding & Umbanhowar
(2006). Copyrighted by the American Physical Society. The cross indicates the point which
corresponds to the cross in figure 7.

In figure 11 both theory and experiment agree that for low and moderate values
of ã2 hexagons are the preferred pattern. As ã2 increases, hexagons are replaced by
superlattice patterns, although the transition observed experimentally occurs slightly
earlier than in the weakly nonlinear calculations. Away from onset, the agreement
is qualitative rather than quantitative: in the experiments superlattice patterns are
observed for a much larger region than predicted by the weakly nonlinear theory and
hexagons are observed in regions where the theory predicts bistability of rectangles
and hexagons, with rectangles being the most stable state. For large values of ã2 and
ã6, the experiments see disordered states. The weakly nonlinear theory cannot predict
such states, but note that none of the planforms considered are found to be stable
for large ã2 and ã6 (there are no symbols from the theoretical calculations in the top
right of figure 11).

The results shown in figure 12 again show that the theoretical results have the same
diagonal dependency as seen in the experiments, a consequence of a phase invariant,
as discussed further below. For the experimental results, white indicates a high
correlation with the angle of 22◦ and this does seem to align with where superlattice
patterns occur, although for much of the lighter regions the weakly nonlinear analysis
predicts no stable pattern. The black regions correspond to a low correlation at 22◦
and Ding & Umbanhowar (2006) state that this region contains ‘disordered’ patterns:
our theoretical results suggest that both rectangles and hexagons are stable for much
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FIGURE 10. Comparison with Ding & Umbanhowar (2006), figure 2. j={6, 7}, (φ6, φ7)=
(0, 40◦), ω̃/2π = 16.5 Hz. (a,b) Stability regions for rectangles and hexagons. Coloured
symbols stable; grey unstable. (c) ‘Most stable’ planform: + rectangles; ∗ hexagons,
overlaid on figure 2 of Ding & Umbanhowar (2006). Adapted with permission from Ding
& Umbanhowar (2006). Copyrighted by the American Physical Society.

of this region, each having a similar Lyapunov energy. Consequently, one might
expect competition between these two states, resulting in the observed disorder.

5.3. Common themes
From our comparison, a number of themes emerge:

(a) There is excellent agreement with theory at onset in some cases (figure 8).
(b) In other cases, figures 6 and 10, bistability of patterns makes it difficult to

compare theory and experiment. The experimental results for the pattern at
onset are consistent with the theory, but sometimes the pattern at onset is not
that predicted by considering the Lyapunov argument. This is one difficulty in
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FIGURE 11. Comparison with Ding & Umbanhowar (2006), figure 6(a). j={6, 7, 2}, ã7=
7g̃, (φ6, φ7, φ2) = (0, 40◦, 80◦), ω̃/2π = 16.5 Hz. (a–c) Stability regions for rectangles,
hexagons and superlattice patterns, respectively. Coloured symbols stable; grey unstable.
(d) ‘Most stable’ planforms superimposed on figure 6(a) from Ding & Umbanhowar
(2006). Adapted with permission from Ding & Umbanhowar (2006). Copyrighted by the
American Physical Society. The same symbol styles are used for both experiments and
theory (A superlattice; ∗ hexagons; + rectangles;u disordered states). Coloured symbols
represent theoretical results and black symbols are the experimental results.

comparing with experiment post festum, since in regions of bistability, which
pattern is observed can depend on the way that the experiments are performed.

(c) When the additional forcing component (ã2 6= 0) is included that promotes
the mode with frequency 2ω̃/2, then in both theory and experiments patterns
associated with the resonant angle are promoted and consequently appear for a
larger region of parameter space.

(d) In the experimental results, the additional forcing causes regions where both
hexagonal states and superlattice patterns occur close to onset. This is also true
in the weakly nonlinear analysis, but to a lesser extent, see figures 7 and 11.
There are two possible causes here: firstly, the theoretical results are sensitive
to the phase, so changing the phase can expand the region of stable superlattice
patterns. Secondly, the presence of the weakly damped 2ω̃/2 mode means that
the results are in a region that is close to a bicritical point where both 2ω̃/2 and
4ω̃/2 modes onset simultaneously. In the neighbourhood of this bicritical point,
one would expect the regions of stability as predicted from a codimension one
analysis, at best, be perturbed, and, at worst, be inaccurate. We will return to
this point in the discussion and note for now the red line in figure 7 that marks
the onset of this mode.

(e) Quantitative agreement in most cases only occurs close to onset.

In addition, in all cases, close to the subharmonic instability boundary the theory
predicts squares (not shown in the figures), as seen in the experiments.
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(a) (b) (c)

(d )

FIGURE 12. Comparison with Ding & Umbanhowar (2006), figure 6(b). Phase diagram
for j= {6, 7, 2}, (ã6, ã7, ã2)= (5.2, 7.8, 0.6)g̃, ω̃/2π= 16.5 Hz. (a–c) Stability regions for
rectangles, hexagons and superlattice patterns, respectively. Coloured symbols stable; grey
unstable. (d) ‘Most stable’ planform, superimposed on figure 6(b), Ding & Umbanhowar
(2006).A Superlattice; ∗ hexagons; + rectangles. Coloured symbols represent theoretical
results and black symbols are the experimental results. Note that in (d) hexagons are
rarely the ‘most stable’ planform: whenever hexagons are stable, rectangles usually are
too. Although the Lyapunov energy for hexagons is often similar to that for rectangles,
rectangles nearly always have the lowest value.

6. Discussion
The Faraday problem is an important pattern-forming system, yet it is particularly

challenging to tie theory to experiment. The experiments are difficult to perform;
the parameter regime of interest (large box, moderate viscosity) along with the
technical difficulties of solving the free-boundary Navier–Stokes equations make
numerical solution of the problem hard, to the extent that although there has been
some progress (see Périnet, Juric & Tuckerman 2009, 2012) it is only very recently
that any fully three-dimensional calculations of superlattice patterns in the Faraday
problem have been reported (Kahouadji et al. 2015). The fact that the instabilities
result in an entire circle of unstable wavenumbers presents considerable theoretical
difficulties (see Melbourne 1999) and has meant that theory is, by necessity, restricted
to a finite number of modes – the finite number normally chosen as the minimal
set which will allow for the existence of the experimental pattern of most interest.
Furthermore, by its nature, weakly nonlinear theory cannot be expected to capture
behaviour that is inherently strongly nonlinear: so a weakly nonlinear analysis of the
transition from non-patterned to patterned state can only be expected to agree with
experiment close to onset.

Nevertheless, our detailed comparison with Ding & Umbanhowar (2006) shows very
good agreement between experiment and weakly nonlinear results at onset, with the
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FIGURE 13. Linear stability curves and Floquet multipliers for j= {4, 5} and j= {4, 5, 2}
excitation using parameter values as in Ding & Umbanhowar (2006). (a,b) Linear stability
curves for f̃ (t̃)= ã(cosχ cos 4ω̃t̃+ sinχ cos 5ω̃t̃), where (a) has χ = 0 and (b) has χ = 63◦.
(c) The corresponding Floquet multipliers, where the solid line is for χ =0 and the dashed
line is for χ = 63◦. The Floquet multipliers are calculated for ã fixed at the value for the
minimum of the 4ω/2 tongue. So, for χ =0, ã=4.35g̃, for χ =63◦, ã=7.19g̃. (d,e) Linear
stability curves for f̃ (t̃)= ã(cosχcos 4ω̃t̃+ sinχ cos 5ω̃t̃+ â2 cos 2ω̃t̃) where (d) has χ = 0,
ã2 = ãâ2 = 0.8g and (e) has χ = 62◦, ã2 = ãâ2 = 0.8g̃. (f ) The corresponding Floquet
multipliers where the solid line is for case (d), where ã5 = 0, and the dashed line is for
(e), where ã5 6= 0. The Floquet multipliers are calculated for ã fixed at the value for the
minimum of the 4ω̃/2 tongue. So, for χ = 0, ã= 4.40g̃, for χ = 63◦, ã= 7.27g̃.

caveat that the theory often predicts bistability of patterns. Where there is bistability,
the observed pattern will be dependent on the path taken through parameter space and
might consist of competition between the different possible stable states. Consequently,
in some cases it is only possible to say that the weakly nonlinear theory is consistent
with experiments.

The results suggest that the qualitative idea that the three-wave resonances
determine the angles that appear in the patterns does indeed explain many of the
patterns observed close to onset.

The results also highlight the particular aspects of the Faraday problem that lead to
an amplification of bres. Equation (4.7),

b(θres)= b0 + bres, bres =−α1α2

λ2
, (6.1)

suggests that there are two main contributions, one from the quadratic coupling
coefficients (α1 and α2) and one from the linear damping of the weakly damped
mode (λ2). Promotion of patterns with angle θres requires the quadratic coefficients
to be sufficiently large and/or the damping to be sufficiently small. As illustrated in
figure 13(a,b) for j= {4, 5} and in (d,e) for j= {4, 5, 2}, although increasing a5 and
heading towards the bicritical point would appear to change the value of the linear
damping for the 2ω̃/2 tongue, this is in fact not the dominant effect. This can be
seen in figure 13(c) and also in (f ), where the Floquet multipliers are plotted for both
ã5 = 0 and a value of ã5 near the bicritical point. It can be seen that increasing the
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FIGURE 14. The value of bres for j = {4, 5} (crosses) and for j = {4, 5, 2} (dots) for
increasing ã5. The solid lines are proportional to ã2

5. Parameter values as in Ding &
Umbanhowar (2006) but with ν̃ = 0.21 cm2 s−1.

amplitude of the j = 5 mode in the forcing promotes the 5ω̃/2 tongue, as expected,
but has little impact on the damping of the other modes. In contrast, now comparing
figure 13(c) with (f ), we see that the addition of the j= 2 mode does have the effect
of reducing the damping of the mode associated with the 2ω̃/2 tongue, as seen by
an increase in the Floquet multiplier from approximately 0.5 for ã2 = 0 to 0.9 for
ã2 = 0.8g̃.

Rather than changing the damping of the weakly damped mode, increasing the
amplitude of the j= 5 mode, so heading towards the bicritical point, has the effect of
increasing the quadratic coefficients α1 and α2: in the limit when ã5= 0 the quadratic
coefficients are zero. This is because the temporal resonance condition discussed in
§ 4.1 is not met when ã5 = 0, so there can be no coupling between the 2ω̃/2 mode
and the 4ω̃/2 mode.

Topaz et al. (2004) consider a weak viscosity limit and show that in the case of
j = {m, n} forcing the temporal resonance condition results in possible three-wave
interactions with an (n−m) mode, where one expects

bres = α|an|2
|λ2| , (6.2)

where λ2 is the linear damping of the weakly damped mode and α is a coefficient.
Although this cannot necessarily be expected to apply to the moderate viscosity case
of the experiments in Ding & Umbanhowar (2006), we see in figure 14 that the
calculated values for bres for the j= {4, 5} case have a close to quadratic dependence
on a5, as suggested by (6.2). For j={m, n, p} frequency forcing that has a three-wave
resonance with an (n−m) mode, as for the case j={4, 5, 2}, Topaz et al. (2004) find
that the dominant contribution to bres is given by

bres = α|an|2P2(Φ), (6.3)

where Φ = φp + 2φm − 2φn and P2 is given by

P2 = |λ2| +µa2 sinΦ
|λ2|2 −µ2a2

2
, (6.4)
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FIGURE 15. Surfaces for the onset of modes with frequencies 4ω̃/2, 5ω̃/2 and 2ω̃/2.
Parameter values as in Ding & Umbanhowar (2006) but with ν̃ = 0.21 cm2 s−1.

where µ is a coefficient. As a2 → 0, (6.3) reduces to (6.2). However, for a2 non-
zero, the effect of P2 is to make the leading-order dependence of bres on a2 not
purely quadratic, so it is not surprising that, for this case, an assumption of quadratic
dependence fits less well.

Note that the Φ dependence, which comes from a parameter symmetry, does
explain the strong diagonal structure to the figures showing the pattern dependence
as a function of two of the phases, see figures 9 and 12.

There is a further issue to consider. Increasing the amplitude of the j = 2 mode
brings the location of the bicritical point where both the 4ω̃/2 and the 2ω̃/2 mode
onset simultaneously closer to the pattern onset point. This is seen in figure 7,
which shows both the linear stability boundaries for both 4ω̃/2 and 2ω̃/2 modes.
The proximity of the linear stability boundary means that, in order to quantitatively
predict the regions of quasipatterns, it is likely that one would need to consider the
tricritical problem where 4ω̃/2, 5ω̃/2 and 2ω̃/2 modes all occur simultaneously. The
onset boundaries for the three modes for j = {4, 5, 2} are shown in figure 15: the
position of the tricritical point is at approximately (ã4, ã5, ã2)= (3.5, 6.4, 1.0)g̃. The
situation for j = {6, 7, 2} forcing is similar, and one explanation for discrepancies
between the weakly nonlinear theory and experimental results may be that they are a
consequence of the proximity of the codimension three point. This kind of discrepancy
was previously demonstrated by Riyapan (2012) in a comparison of a codimension
one and a codimension two analysis of superlattice patterns in a model PDE.

Another important feature of the analysis considered here is that the codimension
one description of the problem results in amplitude equations that are variational.
This variational structure is useful and enables us to construct a Lyapunov functional
to predict the ‘most stable’ pattern. However, this variational framework also means
that all predicted patterns repeat with either the period or half the period of the drive,
but cannot exhibit more complicated time dependence. As discussed in Rucklidge
et al. (2012), in the vicinity of the bicritical point, and depending on the signs of
the quadratic terms, an infinite sequence of resonances can take place, leading to
spatiotemporal chaos. This may explain some of the disordered states seen close to
onset in the experiments in Epstein & Fineberg (2004) and Ding & Umbanhowar
(2006). The difficulties of analysing and numerically solving the time-dependent
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Navier–Stokes equations leave a clear role for reduced models here. For example, the
model of Zhang & Viñals (1997) is derived from the Navier–Stokes equations under
the assumptions of infinite depth and weak viscosity, but, as was shown in Skeldon
& Porter (2011), weakly nonlinear analysis of the Zhang–Viñals equations agrees
surprisingly well with weakly nonlinear analysis of the full Navier–Stokes equations,
even for the moderate viscosity values used in many Faraday experiments.

Finally, our results suggest that weakly nonlinear theory is a useful tool to
understand the pattern transitions near onset, but there are some caveats. Ideally
experiments and theory would be done hand-in-hand, otherwise it may be hard to get
agreement even in the linear theory, as we saw in § 3; or establish which modes are
present in patterns, as we saw in § 4; or establish if there is bistability, as we saw
in § 5. There are even problems at the basic level of the definition of the forcing in
(2.2). In single-frequency experiments, changing the sign of f (t) is equivalent to a
phase shift in time, so the sign of the forcing is not important. However, for multiple
frequencies the analogous result is perhaps less transparent: changing the sign requires
not just a translation in time but requires an altered definition for the phases. The
particular sign convention used by any one experimental group will depend on how
the accelerometer is wired up to the experiment. Specifically, it will depend on
whether or not the accelerometer records its maximum value when the oscillator is
at its highest point or at its lowest. This level of detail is not normally recorded –
perhaps because an assumption is made that it does not matter. However, this can
lead to some confusion: for example, the phase invariant Φ discussed in Porter et al.
(2004) is derived with one particular choice of sign for f (t), and thus one specific
definition of the phases for the forcing components. Ding & Umbanhowar (2006) note
that they find a difference between the position of the maximum value of the phase
invariant and the theory of Porter et al. (2004), and between their results and those
of Epstein & Fineberg (2006), but in both cases these differences can be explained
by a different convention for the sign of the forcing f (t). Based on the observations
in Ding & Umbanhowar (2006), we have used the same sign convention as Porter
et al. (2004) for our comparison with the work of Epstein & Fineberg (2006) and
the opposite sign convention for Ding & Umbanhowar (2006).
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Appendix A. Calculating Floquet multipliers
The Floquet multipliers can be calculated by considering the linear stability of the

trivial solution (2.14) of (2.11) and associated boundary conditions to perturbations of
the divergence-free form

u=
(

i
k
∂zW(z, t), 0,W(z, t)

)
eikx. (A 1)

This leads to a fourth-order equation for W(z, t) for −h̃/l̃< z< 0

(∂t −C(−k2 + ∂zz))(−k2 + ∂zz)W = 0, (A 2)
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with boundary conditions at z=−h̃/l̃,

W(−h̃/l̃, t)= ∂zW|−h̃/l̃ = 0 (A 3)

and at z= 0,

∂tZ =W, (A 4)
(k2 + ∂zz)W = 0, (A 5)

(∂t +C(3k2 − ∂zz))∂zW =−((1+ f (t))k2 + Bk4)Z. (A 6)

A finite difference discretisation of (A 2) and its boundary conditions is then carried
out by letting Wn

j =W(zj, tn), j= 0, . . . , J, zj=−h̃/l̃+ h̃j/l̃J and tn= nδt and Zn=Z(tn).
The resulting map is of the general form

A



Wn+1
1

Wn+1
2

...

Wn+1
J−1

Wn+1
J

Zn+1


= B(tn)



Wn
1

Wn
2

...

Wn
J−1

Wn
J

Zn


, (A 7)

where A and B are (J + 1)× (J + 1) matrices given by

A=



r 1 0
1 r 1 0
0 1 r 1 0
...

. . .
...

0 1 r 1 0
0 2 r 0

0 1


(A 8)

and

B=



c+Cδt/δz2 b Cδt/δz2 0

b c b Cδt/δz2 0

Cδt/δz2 b c b Cδt/δz2 0

0 Cδt/δz2 b c b Cδt/δz2 0
...

. . .
...

0 Cδt/δz2 b c b Cδt/δz2 0

Cδt/δz2 b c−Cδt/δz2 b+ d 0

2Cδt/δz2 b+ e c+ g f̃ n

0 δt 1


.

(A 9)
where

r=−(2+ k2δz2) (A 10)
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b= 1− 2Ck2δt− 4C
δt
δz2

(A 11)

c=−(2+ k2δz2)+C
δt
δz2
(6+ 4k2δz2 + k4δz4) (A 12)

d=C
δt
δz2
(2− k2δz2) (A 13)

e= 1− 4Ck2δt (A 14)
f n = 2δtδz((1+ f (tn))k2 + Bk4) (A 15)

g=−C
δt
δz2
(2− k2δz2)2. (A 16)

The matrix B contains time dependence through the term f n(tn).
The map (A 7) is iterated through one period, T , of the drive, resulting in a

map WN =DW0 that takes W0 to WN , where N= T/δt. The eigenvalues of the matrix
D then give the required Floquet multipliers.
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