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Abstract. We introduce the notion of balanced strong shift equivalence between square
non-negative integer matrices, and show that two finite graphs with no sinks are one-sided
eventually conjugate if and only if their adjacency matrices are conjugate to balanced
strong shift equivalent matrices. Moreover, we show that such graphs are eventually
conjugate if and only if one can be reached by the other via a sequence of out-splits and
balanced in-splits, the latter move being a variation of the classical in-split move introduced
by Williams in his study of shifts of finite type. We also relate one-sided eventual
conjugacies to certain block maps on the finite paths of the graphs. These characterizations
emphasize that eventual conjugacy is the one-sided analog of two-sided conjugacy.
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1. Introduction
Shifts of finite type are accurately represented as finite essential directed graphs with asso-
ciated adjacency matrices, and Williams’ seminal paper [17] was a deep investigation into
two-sided conjugacy of shifts of finite type. He successfully characterized conjugacy in
terms of an equivalence relation on non-negative integer matrices, strong shift equivalence:
a pair of non-negative integer matrices A and B are elementary equivalent if there is a pair
of rectangular non-negative matrices (R, S) satisfying

A = RS, SR = B,

and strong shift equivalence is the transitive closure of elementary equivalence. Two shifts
of finite type are then two-sided conjugate if and only if their corresponding matrices are
strong shift equivalent. This algebraic point of view is intimately related to the notion of
shift equivalence (though the two relations are distinct by work of Kim and Roush [9]).
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20 K. A. Brix

While shift equivalence is decidable [10], it is arguably the biggest open problem in
symbolic dynamics to determine whether strong shift equivalence is a decidable relation.

An important tool in Williams’ work, and one which is central to this paper, is that of
state splittings. In the coordinate-free approach to symbolic dynamics, shifts of finite type
are maps on compact metric spaces satisfying a certain Markov condition with respect to a
partition of the space. A state splitting then amounts to refining the partition in a way which
is compatible with the map. Such a procedure produces different matrix representations
of the same map which are strong shift equivalent. At the level of graphs, this amounts
to splitting vertices and appropriately distributing the out-going edges (out-splits) or the
in-going edges (in-splits). Williams then showed that any conjugacy can be decomposed
into a finite sequence of state splittings. One formidable consequence was the classification
of one-sided shifts of finite type in terms of only out-splits.

Motivated by equivalences of graph C∗-algebras, Bates and Pask [1] generalized
these graphical constructions of state splittings—which we now call moves—to arbitrary
directed graphs and showed that whereas out-splits (Move (O)) produce ∗-isomorphic
graph C∗-algebras, the in-split (Move (I)) only preserves the Morita equivalence class
of the graph C∗-algebras. The coarser relation of flow equivalence of the dynamical
systems was shown by Parry and Sullivan [16] to be generated by conjugacies and symbol
expansions. This expansion or stretching of time corresponds to a delay move on the
graphs which again preserves the Morita equivalence class of the C∗-algebra. In fact, it was
known since the inception of the graph C∗-algebras of finite essential graphs (irreducible
and not just a cycle)—the Cuntz–Krieger algebras—that the stabilized graph C∗-algebra
together with its canonical diagonal subalgebra is invariant under flow equivalence of the
underlying dynamical systems [7].

Only much later with a remarkable use of groupoid techniques did Matsumoto and
Matui [15] finally prove the converse statement: The stable isomorphism class of simple
Cuntz–Krieger algebras together with their diagonal subalgebra (suitably stabilized)
completely remembers the flow class of the underlying shift of finite type. It follows that
the stable Cuntz–Krieger algebras are diagonally ∗-isomorphic if and only if the underlying
graphs can be connected by a finite sequence of splittings and stretchings. This was later
generalized to all finite essential graphs [5].

Moreover, Carlsen and Rout [6] showed that two finite essential graphs E and F are
two-sided conjugate if and only if there is a ∗-isomorphism � : C∗(E)⊗ K −→ C∗(F )⊗
K which respects the diagonal subalgebras �(D(E)⊗ c0) = D(F )⊗ c0 and intertwines
the gauge actions � ◦ (γ E ⊗ id) = (γ F ⊗ id) ◦�. Here, K is the C∗-algebra of compact
operators on separable Hilbert space and c0 is the C∗-subalgebra of diagonal operators.
Hence this kind of equivalence of graph C∗-algebras is implemented by out-splits and
in-splits of the underlying graphs by Williams’ result. A general program for determining
which moves on the graphs capture structure-preserving ∗-isomorphisms of the graph
C∗-algebras was recently initiated by Eilers and Ruiz [8].

The present paper addresses one-sided eventual conjugacy as studied by Matsumoto and
its relation to two-sided conjugacy. The motivation is three-fold.

Firstly, work of Matsumoto [13, 14] and Carlsen and Rout [6] showed that a pair of
graphs E and F are one-sided eventually conjugate if and only if there is a ∗-isomorphism
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� : C∗(E) −→ C∗(F ) which respects the diagonal�(D(E)) = D(F ) and intertwines the
gauge actions � ◦ γ E = γ F ◦�. This leads us to the observation that one-sided eventual
conjugacy is structurally related to two-sided conjugacy. We may also say that eventual
conjugacy is the one-sided analog of two-sided conjugacy. A fortiori, one-sided conjugacy
is not the one-sided analog of two-sided conjugacy in this sense, cf. work of the author and
Carlsen [3].

From a dynamical perspective, two-sided conjugacies are sliding block codes with a
finite ‘window’ (with memory and anticipation) arising from block maps on finite paths of
the graphs. Similarly, one-sided conjugacies are sliding block codes with anticipation but
no memory. It is possible to make sense of one-sided sliding block codes with both antic-
ipation and memory and, in fact, such sliding block codes induce all eventual conjugacies.

THEOREM. (Corollary 3.9) Let E and F be finite graphs with no sinks. There is a
one-to-one correspondence between eventual conjugacies h : E∞ −→ F∞ and (�, c)-block
maps ψ : E1+�+c −→ F 1+� satisfying a bijectivity condition.

The connection between two-sided conjugacy and one-sided eventual conjugacy it
seems is present before passing to infinite sequences.

The second motivation is connected to Eilers and Ruiz’ recent program of understanding
the relationship between moves on graphs and structure-preserving ∗-isomorphisms of
graph C∗-algebras [8]. We study their variation of Williams’ classical in-split called the
balanced in-split (Move (I+)) and show that it induces eventually conjugate graphs. This
new move introduces sources in the graphs which is why we consider finite graphs with no
sinks but potentially with sources. We arrive at the following result.

THEOREM. (Theorem 4.12) One-sided eventual conjugacy of finite graphs with no sinks
is generated by out-splits and balanced in-splits.

The presence of sources is an essential part of the proof even if the graphs we start
with do not have sources. It also follows from the proof that one-sided conjugacy is
generated by out-splits alone, cf. [2, 11, 17]. Since work of Carlsen and Rout [6] shows
that eventual conjugacy of the graphs is equivalent to diagonal-preserving ∗-isomorphism
of the graph algebras which intertwines the gauge actions—this is a 111-isomorphism
in the terminology of [8]—the result characterizes this particular structure-preserving
∗-isomorphism in terms of Move (O) and Move (I+).

Thirdly, we introduce balanced strong shift equivalence of non-negative integer matri-
ces which is akin to strong shift equivalence. A pair of matrices A and B are balanced
elementary equivalent if there is a triple of rectangular non-negative integer matrices
(RA, S, RB) satisfying

A = SRA, RAS = RBS, B = SRB,

and balanced strong shift equivalence is the transitive closure of balanced elementary
equivalence. It is an interesting question whether balanced strong shift equivalence is a
decidable relation. As an analog of Williams’ algebraic description of conjugacy, we find
the following result.
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THEOREM. (Theorem 5.6) A pair of finite graphs E and F with no sinks are eventually
conjugate if and only if they are conjugate to graphs E′ and F ′, respectively, whose
adjacency matrices are balanced strong shift equivalent.

Even if the present work is in part motivated by operator algebraic questions, the
approach is purely dynamical. Hopefully, a thorough investigation of one-sided eventual
conjugacy can also shed light on questions concerning two-sided conjugacy as well.

2. Preliminaries
We recall the relevant concepts of finite graphs and the dynamics on their path spaces
and fix notation. Let Z, N = {0, 1, 2, . . .} and N+ = {1, 2, . . .} denote the integers, the
non-negative integers and the positive integers, respectively.

A directed graph (or just a graph) is a quadruple E = (E0, E1, rE , sE) where E0 is the
set of vertices, E1 is the set of edges and sE , rE : E1 −→ E0 are the source and range
maps, respectively. We shall omit the subscripts to simplify notation when the graph is
understood. A vertex v ∈ E0 is a source if r−1(v) = ∅ and a sink if s−1(v) = ∅.

Assumption. In this paper we consider only finite graphs with no sinks.

A finite path is a string μ = μ1 · · · μn of edges where n ∈ N+ and r(μi) = s(μi+1)

for i = 1, . . . n− 1. The length of μ is |μ| = n. By convention, the length of a vertex is
zero. Let En be all finite paths of length n and let E∗ = ⋃

n∈N En be the collection of
all finite paths. The source and range maps naturally extend to E∗ by s(μ) = s(μ1) and
r(μ) = r(μ|μ|). The path space of E is the set

E∞ = {x ∈ (E1)
N | r(xi) = s(xi+1), i ∈ N}

of all infinite paths of edges on the graph. The path space E∞ is compact and Hausdorff
in the subspace topology of the product topology on (E1)

N where E1 is discrete. The
source map extends to E∞ by putting s(x) = s(x0) for x ∈ E∞. Given x ∈ E∞ we write
x[i,j ] = xixi+1 · · · xj for 0 � i � j , and put x[i,j) = x[i,j−1] and x(i,j ] = x[i+1,j ] when
i < j . Note that any finite path μ ∈ E∗ is of the form x[i,i+|μ|) for some x ∈ E∞ and
i ∈ N. The cylinder set of a finite path μ is the compact open set

Z(μ) = {x ∈ E∞ | x[0,|μ|) = μ},
and the collection of cylinder sets constitutes a basis for the topology of E∞.

Define a shift operation σE : E∞ −→ E∞ by σE(x)i = xi+1 for x ∈ E∞ and i ∈ N.
This is a local homeomorphism, and it is surjective if and only if E contains no sources.
The dynamical system (E∞, σE) is the edge shift of E. Two edge shifts (E∞, σE) and
(F∞, σF ) are conjugate if there exists a homeomorphism h : E∞ −→ F∞ such that
h ◦ σE = σF ◦ h. In this case we say the graphs E and F are conjugate and that h is a
conjugacy. Edge shifts are examples of shifts of finite type and, in fact, every shift of finite
type is (conjugate to) an edge shift of a finite graph [12, §2].

Let E be a graph. TheN’th higher block graph of E is the graph E[N] with edge set EN

and vertex set EN−1. The source and range of μ = μ1 · · · μN ∈ EN is sN(μ) = μ[1,N)
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and rN(μ) = μ(1,N]. Note thatE[1] = E, and that for anyN there is a canonical conjugacy
ϕ : E∞ −→ (E[N])

∞ given by ϕ(x) = x[0,N)x[1,N+1)x[2,N+2) · · · for x ∈ E∞.

3. Eventual conjugacy and block maps
Let us fix two finite graphs with no sinks E and F and let E∞ and F∞ be their infinite
path spaces, respectively.

3.1. Eventual conjugacy. A sliding block code ϕ : E∞ −→ F∞ is a continuous map
which intertwines the shift operations in the sense that ϕ ◦ σE = σF ◦ ϕ. A conjugacy is
a bijective sliding block code. In order to describe eventual conjugacies on graphs we first
modify the notion of sliding block codes slightly.

Definition 3.1. Let � ∈ N. An �-sliding block code is a continuous map ϕ : E∞ −→ F∞
such that σ�E ◦ ϕ is a sliding block code, that is,

σ�+1
F (ϕ(x)) = σ�F (ϕ(σE(x))),

for every x ∈ E∞. If � = 0, then ϕ is a sliding block code in the usual sense. An
�-conjugacy is a bijective �-sliding block code.

An �-conjugacy is simply one half of an eventual conjugacy.

Definition 3.2. [13] Two finite graphs with no sinks E and F are eventually conjugate if
there exist a homeomorphism h : E∞ −→ F∞ and �, �′ ∈ N such that h and h−1 are �-
and �′-conjugacies, respectively. That is,

σ�+1
F (h(x)) = σ�F (h(σE(x))),

σ�
′+1
E (h−1(y)) = σ�

′
E (h

−1(σF (y))),

for x ∈ E∞ and y ∈ F∞. We say that h is an eventual conjugacy.

If h : E∞ −→ F∞ is an �-conjugacy, then h is an (�+ i)-conjugacy for all i ∈ N, and
if h′ : F∞ −→ G∞ is an �′-conjugacy, then h′ ◦ h is an (�+ �′)-conjugacy. Furthermore,
if h is an eventual conjugacy, then there is an � ∈ N such that h and h−1 are �-conjugacies.

Let � ∈ N and suppose h : E∞ −→ F∞ is an �-sliding block code. Then there is a
c ∈ N such that

h(ZE(x[0,k+c])) ⊆ ZF (h(x)[0,k]) (3.1)

for k � � and x ∈ E∞. We shall refer to c as a continuity constant for h (relative to �).
Note that if c is a continuity constant for h (relative to �), then c + i is a continuity

constant for h for any i ∈ N. Moreover, if h and h−1 are �- and �′-conjugacies, then we can
choose a continuity constant relative to max{�, �′}.
Definition 3.3. An (�, c)-sliding block code is an �-sliding block code ϕ : E∞ −→ F∞
with continuity constant c relative to �. An (�, c)-conjugacy is a bijective (�, c)-sliding
block code.
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The following lemma shows that we can always reduce the continuity complexity of an
�-conjugacy, at the expense of increasing the continuity complexity of the inverse.

LEMMA 3.4. Let E and F be finite graphs with no sinks and let h : E∞ −→ F∞ be
an (�, c)-conjugacy. There exists a graph Ē with a conjugacy ϕ : E∞ −→ Ē

∞ and an
(�, 0)-conjugacy h̄ : Ē∞ −→ F∞ satisfying h̄ ◦ ϕ = h.

Proof. Consider the higher block graph Ē = E[c] and let ϕ : E∞ −→ Ē
∞ be the

canonical conjugacy. Define h̄ : Ē∞ −→ F∞ as h̄ = h ◦ ϕ−1, that is,

h̄(x[0,c]x[1,c+1] · · · ) = h(x),

for x ∈ E∞. Then h̄ is an �-conjugacy. Since h̄ = h ◦ ϕ−1 and c is a continuity constant
for h, we have

h̄(ZĒ(x̄[0,�])) = h(ZE(x[0,�+c])) ⊆ ZF (h(x)[0,�])

for x̄ ∈ Ē∞ with ϕ−1(x̄) = x ∈ E∞. Hence h̄ is an (�, 0)-conjugacy.

3.2. Block maps.

Definition 3.5. LetE and F be finite graphs with no sinks and let �, c ∈ N. An (�, c)-block
map is a map ψ : E1+�+c −→ F 1+� which is compatible with E and F in the sense that

ψ(x[0,�+c])�ψ(x[1,1+�+c])� ∈ F 2,

for x ∈ E∞.

Let ψ : E1+�+c −→ F 1+� be an (�, c)-block map. The compatibility condition ensures
that there is an extension ψ : E1+�+c+i −→ F 1+�+i given by

ψ(x[0,�+c+i]) = ψ(x[0,�+c])ψ(x[1,�+c+1])� · · · ψ(x[i,�+c+i])�,

whenever x ∈ E∞ and i ∈ N. We shall use the same symbol ψ for the block map and its
extension; this should cause no confusion. Iterating this process ad infinitum, ψ extends to
a map on the infinite path spaces h = hψ : E∞ −→ F∞ by

h(x) = ψ(x[0,�+c])ψ(x[1,�+c+1])� · · · ψ(x[i,�+c+i])� · · · ,

for x ∈ E∞. In order to see that h is continuous, suppose x(n) −→ x in E∞ as n −→ ∞.
Given i ∈ N there exists N ∈ N such that x(n) ∈ ZE(x[0,�+c+i]) whenever n � N . Then

h(x(n))[0,�+i] = ψ(x(n)[0,�+c+i]) = ψ(x[0,�+c+i]) = h(x)[0,�+i],

so h(x(n)) −→ h(x) in F∞ as n −→ ∞. In particular, c is a continuity constant for h
relative to �. We would now like to find conditions on the block maps which ensure that
the induced map on the path spaces is bijective.

Definition 3.6. An (�, c)-block mapψ : E1+�+c −→ F 1+� satisfies the surjectivity condi-
tion if for every k � � and every β ∈ F 1+k , there exists α ∈ E1+k+c such that ψ(α) = β.
On the other hand, ψ satisfies the injectivity condition if for every k � � there is K ∈ N

https://doi.org/10.1017/etds.2020.126 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.126


Eventual conjugacy 25

such that

ψ(x[0,k+K]) = ψ(x′
[0,k+K]) ⇒⇒⇒ x[0,k] = x′

[0,k],

for every x, x′ ∈ E∞. We say that ψ satisfies the bijectivity condition if it satisfies both
the injectivity and the surjectivity conditions.

Remark 3.7. Note that for the case c = 0, the surjectivity condition reduces to surjectivity
of the block map while the injectivity condition is, in general, weaker than injectivity of the
block map. The term bijectivity condition is only meant to reflect the fact that the induced
map on the infinite path spaces is bijective (see the proof below). If ψ : E1+� −→ F 1+�
is in fact a bijective block map, then the inverse homeomorphism hψ

−1 : E∞ −→ F∞ is
induced by ψ−1 and has vanishing continuity constant.

We now arrive at the main result of this section.

THEOREM 3.8. Let E and F be finite graphs with no sinks and let �, c ∈ N. There is a
one-to-one correspondence between the collection of (�, c)-block maps ψ : E1+�+c −→
F 1+� and the collection of (�, c)-sliding block codes h : E∞ −→ F∞. In addition, ψ
satisfies the injectivity condition or the surjectivity condition if and only if h is injective or
surjective, respectively.

Proof. Supposeψ : E1+�+c −→ F 1+� is an (�, c)-block map. Let h = hψ : E∞ −→ F∞
be the continuous extension to the infinite path spaces given by

h(x)[0,k] = ψ(x[0,k+c]),

for x ∈ E∞ and k � �. Note that c is a continuity constant for h relative to �. If ax ∈ E∞,
then

σ�+1
F (h(ax)) = σ�+1

F (ψ((ax)[0,�+c])ψ((ax)[1,�+c+1])� · · · ψ((ax)[i,�+c+i])� · · · )
= ψ((ax)[1,1+�+c])� · · · ψ((ax)[i,�+c+i])� · · ·
= ψ(x[0,�+c])� · · · ψ(x[i,�+c+i])� · · ·
= σ�F (ψ(x[0,�+c]) · · · ψ(x[i,�+c+i])� · · · )
= σ�F (h(x)).

Hence h is an (�, c)-sliding block code.
Suppose ψ satisfies the surjectivity condition and let y ∈ F∞. For each k � � choose

α(k) ∈ E1+k+c such that ψ(α(k)) = y[0,k]. Pick x(k) ∈ ZE(α(k)). Since E∞ is compact the
sequence (x(k))k has a convergent subsequence; let x ∈ E∞ be its limit. Then h(x) = y

and h is surjective.
Next, assume ψ satisfies the injectivity condition and suppose h(x) = h(x ′) for some

x, x′ ∈ E∞. Let k � � and choose K � c in accordance with the injectivity condition.
Then

ψ(x[0,k+K]) = h(x)[0,k+K−c] = h(x′)[0,k+K−c] = ψ(x′
[0,k+K]),

from which it follows that x[0,k] = x′
[0,k]. As this is the case for every k � �, we see that

x = x′ and that h is injective.
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For the other direction, let h : E∞ −→ F∞ be an (�, c)-sliding block code. Define
ψ : E1+�+c −→ F 1+� by

ψ(x[0,�+c]) = h(x)[0,�],

for x ∈ E∞. This is well defined by the choice of c, and ψ is compatible with E and F .
Hence ψ is an (�, c)-block map. Furthermore, the (�, c)-sliding block code hψ induced by
ψ coincides with h.

Fix β ∈ F 1+k for some k � � and let βy ∈ ZF (β). If h is surjective, we may choose
x ∈ E∞ such that h(x) = βy. Note that ψ(x[0,k+c]) = h(x)[0,k] = β. Hence ψ satisfies
the surjectivity condition.

If h is injective, then it is a homeomorphism onto its image; let φ : h(E∞) −→ E∞
be the inverse homeomorphism. Fix k � �. Since φ is continuous there is cφ ∈ N

such that φ(h(x)[0,k+cφ ]) = φ(h(x′)[0,k+cφ ]) implies x[0,k] = x′
[0,k] for x, x′ ∈ E∞. If

ψ(x[0,k+c+cφ ]) = ψ(x′
[0,k+c+cφ ]), for some x, x′ ∈ E∞, then

h(x)[0,k+cφ ] = h(x′)[0,k+cφ ]

by the choice of c and

x[0,k] = (φh(x))[0,k] = (φh(x′))[0,k] = x′
[0,k]

by the choice of cφ . Hence ψ satisfies the injectivity condition.
Finally, it is straightforward to verify that if ψ : E1+�+c −→ F 1+� is an (�, c)-block

map and h is the (�, c)-sliding block code induced from ψ , then the (�, c)-block map ψh
induced from h coincides with ψ .

We record the following immediate corollary.

COROLLARY 3.9. Let �, c ∈ N. There is a one-to-one correspondence between the
collection of (�, c)-block maps ψ : E1+�+c −→ F 1+� satisfying the bijectivity condi-
tion and the collection of (�, c)-conjugacies h : E∞ −→ F∞. For c = 0, there is a
one-to-one correspondence between the collection of bijective block maps ψ : E1+� −→
F 1+� and the collection of (�, 0)-conjugacies h : E∞ −→ F∞ whose inverses are also
(�, 0)-conjugacies.

Remark 3.10. At the level of block maps, the index (�, c) can be interpreted as memory
and anticipation, respectively. For one-sided conjugacies, memory is not allowed (cf. [12,
§13.8]); however, we have seen that memory of the block map exactly corresponds to
eventual conjugacies. At the level of path spaces, the � indicates the lag of the eventual
conjugacy while c indicates the continuity complexity of the associated homeomorphism.

4. Moves on graphs
In this section, we relate eventual conjugacies with moves on the graph. We first recall
the definition of the out-split and in-split of [17] modified for graphs (cf. [1, 12]). For
simplicity, we only define these moves for finite graphs with no sinks.
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Definition 4.1. (Move (O)) LetG = (G0, G1, rG, sG) be a finite graph with no sinks. Let
v ∈ G0 be a vertex, let n ∈ N+ and partition s−1

G (v) into finitely many non-empty sets

s−1
G (v) = E1

v � · · · � Env . (4.1)

The out-split graph E of G at v with respect to the partition (4.1) is given by

E0 = {v1, . . . , vn} ∪ {w1 | w ∈ G0 \ {v}},
E1 = {e1, . . . , en | rG(e) = v} ∪ {f1 | rG(f ) �= v},

with source and range maps rE , sE : E1 −→ E0 given by

rE(ei) =
{
rG(e)1 if sG(e) �= v,

vi if sG(e) = v

sE(ei) =
{
sG(e)1 if sG(e) �= v,

vj if sG(e) = v, e ∈ Ejv ,

for ei ∈ E1.

A directed graph is conjugate to its out-split graph, see [4, Corollary 6.2].

Example 4.2. Let us consider an example of the out-splitting process. More examples can
be found in [12, §2.4]. The graph

.v .

e
f

g

encodes (a conjugate copy of) the golden mean shift, cf. e.g. [12, Example 1.2.3]. The
vertex v emits two edges, so we can out-split it with respect to the partition

s−1(v) = {e} � {f }.
The resulting graph is

.v1 .

.v2

e1

e2

f1

g1

g2

and this is again a conjugate copy of the golden mean shift.

Next, we introduce a slight modification of the classical in-split graph, cf. [8].

Definition 4.3. (Move (I-)) Let G = (G0, G1, rG, sG) be a finite graph with no sinks.
Let v ∈ G0 be a vertex and partition r−1

G (v) into n ∈ N+ possibly empty sets

Ev : r−1(v) = Ev1 � · · · � Evn . (4.2)
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The in-split graph E of G at v with respect to the partition E is given by

E0 = {v1, . . . , vn} ∪ {w1 | w ∈ G0 \ {v}},
E1 = {e1, . . . , en | sG(e) = v} ∪ {f 1 | sG(f ) �= v}

with source and range maps sE , rE : E1 −→ E0 given by

sE(e
i) =

{
sG(e)

1 if sG(e) �= v,

vi if sG(e) = v,

rE(e
i) =

{
rG(e)

1 if rG(e) �= v,

vj if rG(e) = v, e ∈ Evj ,

for ei ∈ E1.

Remark 4.4. The above definition is a modification of [1, §5] in that we allow the partition
sets to be empty, this is called Move (I-) in [8, Definition 3.3]. Note that this in-split
introduces new sources, one for each empty partition set. The out-split introduces no new
sources.

Example 4.5. Consider again the graph of Example 4.2 which encodes the golden mean
shift. The left-most vertex v has two in-going edges, and we can perform an in-split with
respect to the partitions r−1(v) = {e} � {g} and r−1(v) = {e, g} � ∅. This produces the
two graphs

. .

.

e1

e2

g1

f 1

f 2

. .

.

e1

e2

g1

f 1

f 2

respectively. Note that the second in-split, which used an empty partition set, produced a
source in the right-most graph.

The next definition is from [8, Definition 3.6].

Definition 4.6. (Move (I+)) Let G be a finite graph with no sinks. An elementary
balanced in-split of G is a pair of in-split graphs E and F of G at the same vertex using
the same number of partition sets.

Suppose E and F are elementary balanced in-split graphs of G at v ∈ G0. We shall
see in Proposition 4.8 that E and F are eventually conjugate. The labelings on the
vertices and edges (as in Definition 4.3) define canonical bijections φ : E0 −→ F 0 and
ψ(0) : E1 −→ F 1 given by φ(viE) = viF for viE ∈ E0 and ψ(0)(eiE) = eiF for eiE ∈ E1,
respectively. In general, ψ(0) is not a block map since it is not compatible with E and F .
We shall identify the vertices and edges of E and F via these bijections.
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Given viE ∈ E0 we can perform an in-split of E at viE using n partition elements to
obtain a graph E(2). Similarly, we obtain a graph F(2) as an in-split of F at viF ∈ F 0 using
n partition elements. Again there is a canonical identification of the vertices and edges in
the two graphs. Proposition 4.8 below shows that E(2) and F(2) are eventually conjugate
and we say that they are a 2-step balanced in-split of G. Iterating this process, we define
an �-step balanced in-split recursively.

Definition 4.7. (Iterated (I+)) Let G be a finite graph with no sinks and let � ∈ N. For
� � 2, two graphs E(�) and F(�) are �-step balanced in-split graphs of G if the following
holds:
• there are graphs E(�−1) and F(�−1) which are (�− 1)-step balanced in-splits of G;
• E(�) is the in-split graph of E(�−1) at a vertex viE(�−1)

∈ E0
(�−1) using m partition

elements; and
• F(�) is the in-split graph of F(�−1) at the identified vertex viF(�−1)

∈ F 0
(�−1) using m

partition elements.
For � = 0, we require that E(0) = G = F(0) and for � = 1 the graphs E(1) and F(1) should
be elementary balanced in-splits of G.

For � = 2, we depict this as

G

E(1) F(1)

E(2) F(2)

PROPOSITION 4.8. Let G be a finite graph with no sinks and let � ∈ N. If E(�) and F(�)
are �-step balanced in-split graphs ofG, then E(�) and F(�) are �-conjugate. In particular,
if E and F are elementary balanced in-split graphs of G, then E and F are 1-conjugate.

Proof. Step 1. Suppose E and F are in-split graphs of G at v ∈ G0 using n sets in the
partitions

Ev : r−1
G (v) = Ev1 � · · · � Evn , Fv : r−1

G (v) = Fv
1 � · · · � Fv

n .

There is a canonical surjection qE : E2 −→ G2 given by

qE(e
if j ) = ef ,

for eif j ∈ E2. The map simply forgets the indices of the edges. Similarly, there is
a canonical surjection qF : F 2 −→ G2. We will construct a map ψ(1) : E2 −→ F 2

satisfying qE = qF ◦ ψ(1).
If ef ∈ G2 and s(e) = v then there is a unique bijection θ : q−1

E (ef ) −→ q−1
F (ef )

which preserves the label of the first edge, that is,

θ(eif j ) = eif j
′
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for eif j ∈ q−1
E (ef ). If instead s(e) �= v, then the preimage of ef under qE is a singleton.

We may therefore define ψ(1) : E2 −→ F 2 as

ψ(1)(eif j ) =
{
q−1
F (ef ) if s(e) �= v,

θ(eif j ) if s(e) = v,

for eif j ∈ E2. This is bijective and compatible and satisfies qE = qF ◦ ψ(1). It therefore
induces a 1-conjugacy between E∞ and F∞.

Step 2. Set E(1) = E and F(1) = F and suppose E(2) is an in-split graph of E(1) at
wE ∈ E0

(1) while F(2) is an in-split graph of F(1) at an identified vertex wF ∈ F 0
(1) usingm

sets in the partitions

Ew : r−1
E (w) = Ew1 � · · · � Ewm , Fw : r−1

F (w) = Fw
1 � · · · � Fw

m .

We will use the block map ψ(1) : E2
(1) −→ F 2

(1) constructed in Step 1 to define a 2-block
map ψ(2) : E3

(2) −→ F 3
(2). As before there is a canonical surjection qE(2) : E3

(2) −→ E3
(1)

given by

qE(2) (e
if jgk) = efg,

for eif jgk ∈ E(2). The map simply forgets the indices of the edges. Similarly, there is a
canonical surjection qF(2) : F 3

(2) −→ F 3
(1). Since ψ(1) is compatible, we can extend it to

a 2-block map ψ̄(1) : E3
(1) −→ F 3

(1). We will define a map ψ(2) : E3
(2) −→ F 3

(2) such that
ψ̄(1) ◦ qE(2) = qF(2) ◦ ψ(2).

If eif jgk ∈ E3
(2) and s(e) = wE , then there is a unique bijection θ : q−1

E(2)
(efg) −→

q−1
F(2)
(ψ̄(1)(efg)) which preserves the label of the first index, that is,

θ(eif jgk) = eif j
′
gk

′
,

for eif jgk ∈ E3
(2). If instead s(e) �= wE , then s(ψ̄(1))(efg) �= wF , and the preimage of

efg ∈ E(1) under qE(2) is a singleton, and the preimage of ψ̄(1)(efg) under qF(2) is a
singleton. We may therefore define ψ(2) : E3

(2) −→ F 3
(2) by

ψ(2)(eif jgk) =
⎧⎨
⎩
q−1
F(2)
(ψ̄(1)(efg)) if s(e) �= wE ,

θ(eif jgk) if s(e) = wE ,

for eif jgk ∈ E3
(2). Then ψ(2) is bijective and compatible and satisfies ψ̄(1) ◦ qE(2) =

qF(2) ◦ ψ(2). It induces a 2-conjugacy between E∞
(2) and F∞

(2).
Step �: Assume now that E(�) and F(�) are �-step balanced in-split graphs of G.

In particular, there is an (�− 1)-block map ψ(�−1) : E�(�−1) −→ F�(�−1). This may be

extended to a block map ψ̄(�−1) : E�+1
(�−1) −→ F�+1

(�−1), and there are canonical surjections

qE(�) : E�+1
(�) −→ E�+1

(�−1) and qF(�) : F�+1
(�) −→ F�+1

(�−1) as in Step 2. Using the same strategy

as above, we can define a block map ψ(�) : E�+1
(�) −→ F�+1

(�) which is bijective and
compatible and satisfies ψ̄(�−1) ◦ qE(�) = qF(�) ◦ ψ(�). It therefore induces an �-conjugacy
between E∞

(�) and F∞
(�).
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Example 4.9. It is well known that one-sided conjugacy is strictly stronger than eventual
conjugacy, cf. e.g. [3, Example 3.6]. This example shows that the two relations can
be distinguished among graphs with finite path spaces. Consider the graphs

E : . .
a

. F : . . .
α

The adjacency matrices of the graphs have different total column amalgamations, so they
are not conjugate. However, we can construct E and F as a balanced in-split of the graph

. . v

at the vertex v. Hence E and F are 1-conjugate by Proposition 4.8. In fact, any bijection
of the path spaces which maps the loop in E to the loop in F is an explicit 1-conjugacy.

Next, we prove a converse to Proposition 4.8. The proof uses ideas from [2, §2] (see
also [11, Ch. 2]).

THEOREM 4.10. Let E and F be finite directed graphs with no sinks. Then E and F are
eventually conjugate if and only if there exists a graphG such that E and F are (conjugate
to) the iterated balanced in-split graphs of G.

Proof. If E and F are the iterated balanced in-split graphs of G, then they are eventually
conjugate by Proposition 4.8. For the converse implication suppose that E and F are
eventually conjugate. We may assume that there is a homeomorphism h : E∞ −→ F∞
which is an �-conjugacy and whose inverse h−1 : F∞ −→ E∞ is also an �-conjugacy and
that c ∈ N is a continuity constant for h and h−1.

We start by constructing the graph G as follows: The set of vertices is given by

G0 = {(x[�,�+2c], y[�,�+2c]) | x ∈ E∞, y ∈ F∞, h(x) = y}
with the following transition rule: There is an edge from (x[�,�+c], y[�,�+c]) to (z[�,�+c],
w[�,�+c]) if and only if x(�,�+c] = z[�,�+c) and y(�,�+c] = w[�,�+c).

For each j = 0, . . . , �, define the graph E(j) with the following set of vertices

E0
(j) = {(x[�−j ,�+2c], y[�,�+2c]) | x ∈ E∞, y ∈ F∞, h(x) = y}

and a transition rule similar to the above. Define also the graph F(j) with vertices

F 0
(j) = {(x[�,�+2c], y[�−j ,�+2c]) | x ∈ E∞, y ∈ F∞, h(x) = y}

and a similar transition rule. Then E(0) = G = F(0). We will show that E(�) and F(�) are
iterated balanced in-splits of G.

Whenever (x[�−j ,�+2c], y[�,�+2c]) is a vertex in E( j) and

(ax[�−j ,�+2c], y[�,�+2c]), (a′x[�−j ,�+2c], y[�,�+2c]),

https://doi.org/10.1017/etds.2020.126 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.126


32 K. A. Brix

are distinct vertices in E(j+1), then the vertices have the same future and distinct pasts.
It follows that E(j+1) in an in-split graph of E(j) for j = 0, . . . , �− 1. Fix a vertex
(x[�,�+2c], y[�,�+2c]) ∈ G0 and consider the set

A = {z ∈ E∞ | z[�,�+2c] = x[�,�+2c], h(z)[�,�+2c] = y[�,�+2c]}.
It follows from the choice of c ∈ N that if z, z′ ∈ A and h(z)[0,�) = h(z′)[0,�) then z[0,�) =
z′[0,�). By a symmetric argument using h−1, there is a bijection between the words of length
� which can be appended to x[�,�+2c] and the words of length � which can be appended to
y[�,�+2c]. In particular, if � = 1 then E(1) and F(1) are balanced in-splits of G.

Assume now that � > 0 and take z, z′ ∈ A with z ∈ ZE(a[0,�)) and z′ ∈ ZE(a[0,�)),
for some words a[0,�), a′

[0,�) ∈ E� with a[1,�) �= a′
[1,�). By the choice of c, we see that

h(σE(z))[0,�) �= h(σE(z
′))[0,�). It follows that there is a bijection between the set of words

of length �− 1 which can be appended to x[�,�+2c] and the set of words of length �− 1
which can be appended to y[�,�+2c]. Continuing this process we see that for each j =
0, . . . , �, the graphs E(�−j) and F(�−j) are iterated balanced in-splits of G. In particular,
E(�) and F(�) are �-step balanced in-splits of G.

It remains to verify that E(�) can be reached from E by a finite sequence of out-splits,
and that F(�) can be reached from F by a finite sequence of out-splits.

For each i = 0, . . . , 2c, consider the graph E(�+i) with the set of vertices

(E(�+i))0 = {(x[0,�+2c], y[�,�+i]) | h(x) = y}
and an overlapping transition rule similar to the one described above. Then E(�) and
E[�+2c+1] are graph isomorphic, and it is well known that E[�+2c+1] is conjugate to E via
a sequence of out-splits, see, e.g., [12, §2.4]. Furthermore, E(�+(i+1)) is constructed from
E(�+i) by a sequence of out-splits. Indeed, if (x(0,�+2c]z, w[�,�+i]) and (x(0,�+2c]z

′, w′
[�,�+i])

are distinct vertices which follow (x[0,�+2c], y[�,�+i]) in E(�), then the latter vertex splits
into distinct vertices (x[0,�+2c]z, y[�,�+i]w�+i ) and (x[0,�+2c], y[�,�+i]w′

�+i ) in E(�+1) with
identical pasts but distinct futures. A similar argument shows that F(�) can be reached from
F via a sequence of out-splits.

Hence E and F are conjugate to graphs which are the iterated balanced in-split of the
graph G.

For � = 0, we have an immediate consequence.

COROLLARY 4.11. One-sided conjugacy among finite graphs with no sinks is generated
by out-splits (Move (O)).

Finally, we will show that �-step balanced in-split graphs can be connected by a
sequence of elementary balanced in-splits.

THEOREM 4.12. Eventual conjugacy of finite graphs with no sinks is generated by
out-splits (Move (O)) and elementary balanced in-splits (Move (I+)).

Proof. Suppose E and F are eventually conjugate graphs. We know from Theorem 4.10
that E and F are conjugate (via a sequence of out-splits) to graphs which are �-step
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balanced in-splits of a graphG. We may assume that � � 2. IfE and F are �-step balanced
in-splits of G, we will show that they can be connected by a finite sequence of elementary
balanced in-splits.

Let (E(1), . . . , E(�)) and (F(1), . . . , F(�)) be an �-step balanced in-split connecting
E(�) = E and F(�) = F . More specifically, for i = 0, . . . , �− 1, the graph E(i+1) is an
in-split of E(i) at the vertex v(i) using n(i) sets. By a slight abuse of notation, we use the
same symbol v(i) for the vertex in F(i) which is being in-split using n(i) sets to construct
F(i+1). We let qE(i+1) : E0

(i+1) −→ E0
(i) denote the canonical surjection of vertices which

simply forgets the labeling.
Construct a graph E(�−1,�−2) as an in-split of E(�−1) at v(�−1) using n(�−1) sets where

every edge is placed in the first partition set. This introduces n(�−1) − 1 sources

{v2
(�−1), . . . , v

n(�−1)
(�−1) } ⊆ E0

(�−1,�−2),

and the graphs E(�−1,�−2) and E(�) are elementary balanced in-splits of E(�−1), by
construction. Next we construct a graph E′

(�−2) as E(�−2) with sources attached. More
precisely,

(E′
(�−2))

0 = E0
(�−2) ∪ {vj(�−1) | j = 2, . . . , n(�−1)},

(E′
(�−2))

1 = E1
(�−2) ∪ {ej | j = 2, . . . , n(�−2), e ∈ s−1

E(�−1)
(v(�−1))},

with sE′
(�−2)

(ej ) = v
j

(�−1) and rE′
(�−2)

(ej ) = qE(�−1) (rE(�−1) (e)). The notation reflects the
fact that E(�−1,�−2) is an in-split of E(�−1) (at v(�−1)) and an in-split of E′

(�−2) (at v(�−2)).
If � = 2, we apply a similar procedure to F(�) to obtain a graph F(�−2,�−1) = F(0,1), and

F(0,1) and F(2) are elementary balanced in-splits of F(1). Furthermore, E(1,0) and F(0,1) are
elementary balanced in-splits of G′ = E′

(0) = F ′
(0) at v(0) using n(0) sets.

If � > 2, construct the graph E(�−2,�−3) as the in-split of E′
(�−2) at v(�−2) using n(�−2)

sets where every edge is placed in the first partition set. This introduces n(�−2) − 1 sources,
and E(�−1,�−2) and E(�−2,�−3) are elementary balanced in-splits of E′

(�−2). Next construct
the graph E′

(�−3) as E(�−3) with additional sources attached as follows:

(E′
�−3)

0 = E0
�−3 ∪ {vj�−1 | j = 2, . . . , n(�−1)} ∪ {vk(�−2) | k = 2, . . . , n(�−2)},

E(�−3)′
1 = E1

(�−3) ∪ {ej | j = 2, . . . , n(�−1), e ∈ s−1
E(�−1)

(v(�−1))}
∪ {f k | k = 2, . . . , n(�−2), f ∈ s−1

E(�−2)
(v(�−2))}

with s(ej ) = v
j

(�−1) and s(f k) = vk(�−2), and

r(ej ) = qE(�−2) ◦ qE(�−1) (rE(�−1) (e)), r(f k) = qE(�−2) (rE(�−2) (f )).

Note that E(�−2,�−3) is an in-split of E′
(�−3) (at v(�−3)).

Applying the same procedure starting in F(�) and iterating the process, we finally obtain
a graph G′ = E′

(0) = F ′
(0) with

∑�−1
i=0 (n(i) − 1) sources attached, and graphs E(1,0) and

F(0,1) which are elementary balanced in-splits ofG′. Therefore,E(�) and F(�) are connected
by 2�− 1 elementary balanced in-splits.
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Remark 4.13. For � = 2, the procedure in the proof above looks like this:

G

G′ F(1)E(1)

E(2) E(1,0) F(2)F(0,1)

We illustrate this in Example 4.15 below.

Remark 4.14. In the proof of Theorem 4.12 it is crucial to make use of graphs with sources
in order to connect �-step balanced in-split graphs by elementary balanced in-splits. This
indicated the usefulness of considering the class of finite graphs with no sources instead
of the smaller class of essential finite graphs. We do not know if it is possible to prove this
result circumventing graphs with sources.

Example 4.15. In this example we generate �-conjugate graphs. Consider the graph

G : .w .

.
v

e

where e is a path of length �− 1. If we perform balanced in-splits along the vertices of
the path e ending at w we will obtain �-conjugate graphs. The case with � = 1 and v = w

appeared in [3, Example 3.6].
We illustrate the procedure when � = 2 and e is a path of length one. A balanced in-split

at v is given by

E(1) : .w
1

..
v1

.
v2

e1 e2

F(1) : .w
1

..
v1

.
v2

e1 e2

Next, we perform a balanced in-split at w1 to get

E(2) : .w
1,1

.w
1,2

..
v1,1

.
v2,1

e1,1 e2,1

F(2) : .w
1,1

.w
1,2

..
v1,1

.
v2,1

e1,1 e2,1

and the graphs E(2) and F(2) are 2-conjugate.
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Finally, we use the procedure of the proof of Theorem 4.12 for this example; see the
picture of Remark 4.13. Observe that the graphs E(1,0) and F(0,1)

E(1,0) : .w
1,1

.w
1,2

..
v1,1

.
v2,1

e1,1 e2,1

F(0,1) : .w
1,1

.w
1,2

..
v1,1

.
v2,1

e1,1 e2,1

are elementary balanced in-splits of

G′ : .w .

.
v

.

e

Hence E(2) and F(2) are connected by three elementary balanced in-splits.

5. Balanced strong shift equivalence
Williams introduced the notion of strong shift equivalence of non-negative integer matrices
and showed that a pair of shifts of finite type are two-sided conjugate if and only if their
defining matrices are strong shift equivalent. In this section, we introduce balanced strong
shift equivalence of non-negative integer matrices and show that a pair of finite graphs
with no sinks are eventually conjugate if and only if they are conjugate to graphs whose
adjacency matrices are balanced strong shift equivalent.

Definition 5.1. A division matrix is a finite rectangular {0, 1}-matrix in which every
column contains exactly one non-zero entry and every row contains at least one non-zero
entry. The transpose of a division matrix is called an amalgamation matrix.

Given a graph E, its adjacency matrix is a non-negative E0 × E0-matrix AE whose
(i, j)-entry is the number of edges in E from i to j . The adjacency matrix of a graph
is unique up to a permutation of vertices. A classical result relates an out-splitting of a
graph to their adjacency matrices. The theorem below is stated in [12, Theorem 2.4.14] for
essential graphs but the proof carries through with the existence of sources.

THEOREM 5.2. Let E and F be finite graphs with no sinks. Then F is an out-split of E
if and only if there exist a division matrix D and a non-negative rectangular matrix E
such that

AE = DE, AF = ED.
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Similarly, F is an in-split of E if and only if there exist a division matrix D and a
non-negative rectangular matrix E such that

AE = EDt , AF = DtE.

Here, AE and AF are the adjacency matrices of E and F , respectively.

Let G be a finite graph with no sinks and suppose E is an in-split graph of G. Fix
an ordering of E0 and F 0, and let |E0| and |F 0| denote the number of vertices in the
graphs, respectively. We can construct a division matrix D as the |E0| × |F 0| {0, 1}-matrix
subject to the condition that D(v, w) = 1 if and only if w ∈ E0 is one of the split vertices
of v ∈ G0. The matrix E is the |E0| × |F 0| non-negative integer matrix (with the same
ordering of the vertices in E and F as for D) for which E(v, w) is the number of edges
in G which are emitted from i ∈ G0 and contained in the partition set corresponding to
w ∈ E0. In [12], the matrix E is called the edge matrix of the split.

The fact that we allow empty partition sets for in-splits, Move (I-), is reflected in E
as zero columns, and it has no effect on D. From this description we also see that if F is
another in-split graph of G, then E and F are balanced in-splits if and only if the division
matrices agree (up to permutation of vertices).

PROPOSITION 5.3. Let E and F be finite graphs with no sinks. Then E and F are
elementary balanced in-splits of a graph G if and only if there exist an amalgamation
matrix S and non-negative rectangular matrices RE and RF such that

AE = SRE , AF = SRF , RES = RFS,

where AE and AF are the adjacency matrices of E and F , respectively.

Proof. The graph E is an in-split ofG if and only if there exist a division matrix DE and a
non-negative rectangular matrix RE such that AE = DtERE and AG = REDtE . Similarly,
F is an in-split of G if and only if there exist a division matrix DF and a non-negative
rectangular matrix RF such that AF = DtFRF and AG = RFDtF . By the observation
above, the in-splittings are balanced exactly when DE = DF . Putting S := DtE = DtF
finishes the proof.

The proposition above is a balanced analog of Theorem 5.2 and this motivates the next
definition.

Definition 5.4. A pair of non-negative integer matrices A and B are balanced elementary
equivalent if there exist non-negative rectangular matrices S, RA and RB such that

(i) A = SRA,
(ii) B = SRB,

(iii) RAS = RBS,
in which case the triple (RA, S, RB) is a balanced elementary equivalence from A to B.
The matrices A and B are balanced strong shift equivalent if there is a finite sequence of
balanced elementary equivalences connecting A to B.
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Let us discuss some immediate consequences of this definition.
• If A and B are balanced elementary equivalent via (RA, S, RB), then A and B are

necessarily square with the same dimensions and this allows us to identify the vertices
of the graphs determined by A and B. The matrices RA and RB also have the same
dimensions. For this reason, balanced strong shift equivalence is too rigid to capture
one-sided conjugacy (out-splits) of the graphs.

• A zero row in S produces zero rows in A and B. This corresponds to sinks in the
corresponding graphs so we do not allow this in the context of this paper. However, it
might be relevant for a similar description encompassing a broader class of graphs.

• In spite of its name, elementary equivalence is not an equivalence relation because
it fails to be transitive, and strong shift equivalence is exactly its transitive closure.
Similarly, balanced elementary equivalence is reflexive and symmetric but not transi-
tive, see Example 5.5, and we have defined balanced strong shift equivalence to be its
transitivification.

• If A and B are balanced elementary equivalent matrices, then det(A) = det(B).
Moreover, An+1 = BnA and Bn+1 = AnB, for all n ∈ N+.

• Given a pair of graphs E and F with adjacency matrices A and B, respectively, we can
ask whether they are balanced elementary equivalent via some graph with adjacency
matrix C whose dimensions must be bounded by the dimensions of A and B. This puts
a natural bound on the dimensions and entries of a balanced elementary equivalence
(RA, S, RB). There are only finitely many choices of such matrices so this relation is
decidable. It would be interesting to know whether balanced strong shift equivalence
is a decidable relation.

Example 5.5. This example shows that the elementary balanced in-split relation is not
transitive. Consider the graphs

E : . .

.

F : . .

.

G : . . .

Then E and F are elementary balanced in-splits, and F andG are elementary balanced
in-splits. However, if A and B are the adjacency matrices of E and G, respectively, then
A2 �= BA, so E and G are not elementary balanced in-splits.

THEOREM 5.6. Let E and F be finite graphs with no sinks. Then E and F are eventually
conjugate if and only if there are graphs E′ and F ′ which are conjugate to E and F ,
respectively, whose adjacency matrices are balanced strong shift equivalent.

Proof. If E and F are eventually conjugate, then there are graphs E′ and F ′ which are
conjugate to E and F , respectively, such that E′ and F ′ are balanced in-splits of a graph
G. Then the adjacency matrices of E′ and F ′ are balanced strong shift equivalent by
Theorem 4.12 and Proposition 5.3.
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For the other direction, it suffices to show that if the adjacency matrices A and
B of E and F , respectively, are balanced elementary equivalent, then the graphs are
eventually conjugate. We use ideas of [12, §7.2]. Let (RE , S, RF ) be a balanced elementary
equivalence from A to B. Then RES = RF is a non-negative integer matrix so it defines a
finite graph G.

We construct a new graph as follows. Start by considering the disjoint union of the
graphs E, F and G. The edges in E are called E-edges and, similarly, the edges in F and
G are called F -edges and G-edges, respectively. For each vertex k ∈ G0 and i ∈ E0 we
add RE(k, i) edges from k to i called RE-edges, and for each vertex k ∈ G0 and j ∈ F 0

we add RF (k, j) edges from k to j called RF -edges. Similarly, for vertices i ∈ E0, j ∈ F 0

and k ∈ G0, we add S(i, k) edges from i to k and S(j , k) edges from j to k called S-edges.
This finishes the construction of the graph. An S, RE-path is an S-edge followed by an
RE-edge forming a path in the graph. We define S, RF -paths, RE , S-paths and RF , S-paths
analogously.

Observe that we may identify the vertices of E and F , and if i ∈ E0 is paired
with j ∈ F 0 then S(i, k) = S(j , k) for all k ∈ G0. Moreover, since A = SRE , there is
a bijection between E-edges and S, RE-paths from vertices i to i′ in E0, and since
B = SRF there is a bijection between F -edges and S, RE-edges from vertices j to
j ′ in F 0. Similarly, the relation RES = RFS defines a bijection between edges in G
and RE , S-paths, and RE , S-paths, respectively, from vertices k to k′ in G0. Fix such
bijections.

A 2-path in E now corresponds to an S, RE-path followed by another S, RE-path, and
the middle two edges of these four edges are an RE , S-path which in turn corresponds to
a single edge in G. As explained in [12, §7.2] this defines a 2-block map from E to G.
Similarly, there is a 2-block map from G to F . Extending the first map and composing
it with the second, we obtain a map E3 −→ F 1 which is compatible with E and F .
Moreover, if x0x1x2 ∈ E3 is mapped to an edge y ∈ F 1 via this map and i = s(x0), then
the S-edge emitted from i ∈ E0 (with some range k ∈ G0) corresponds to a paired S-edge
emitted from the vertex j ∈ F 0 paired with i (also landing in k ∈ G0). Since there is an
RF -edge emitted from k ∈ G0 and landing in s(y) ∈ F 0, this defines an edge from j to
s(y), say y0. Therefore, we actually obtain a (1, 1)-block map ψ : E3 −→ F 2 sending
x0x1x2 ∈ E3 to y0y ∈ F 2.

The block map ψ extends to a (1, 1)-sliding block code h : E∞ −→ F∞ on the path
spaces. An inverse is constructed by applying the same procedure from F to E, so h is a
homeomorphism. This shows that E and F are eventually conjugate.
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