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Abstract Using the `-invariant constructed in our previous paper we prove a Mazur–Tate–Teitelbaum-

style formula for derivatives of p-adic L-functions of modular forms at trivial zeros. The novelty of this
result is to cover the near-central point case. In the central point case our formula coincides with the
Mazur–Tate–Teitelbaum conjecture proved by Greenberg and Stevens and by Kato, Kurihara and Tsuji

at the end of the 1990s.
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0. Introduction

0.1. Trivial zeros of modular forms

In this paper we prove a Mazur–Tate–Teitelbaum-style formula for the values of
derivatives of p-adic L-functions of modular forms at near-central points. Together
with the results of Kato, Kurihara and Tsuji and of Greenberg and Stevens on the
Mazur–Tate–Teitelbaum conjecture this gives a complete proof of the trivial zero
conjecture formulated in [7] for elliptic modular forms. Namely, let f =∑∞n=1 anqn be
a normalized newform on Γ0(N) of weight k > 2 and character ε and let L(f , s) =∑∞

n=1 ann−s be the complex L-function associated with f . It is well known that L(f , s)
converges for Re(s) > k+1

2 and decomposes into an Euler product

L(f , s)=
∏

l

El(f , l−s)−1

where l runs over all primes and El(f ,X) = 1 − alX + ε(l)lk−1X2. Moreover L(f , s) has an
analytic continuation on the whole complex plane and satisfies the functional equation

(2π)−s Γ (s) L(f , s)= ikcNk/2−s(2π)s−k Γ (k − s) L(f ∗, k − s)

where f ∗ =∑∞n=1 ānqn is the dual cusp form and c is some constant (see for example
[56, Theorems 4.3.12 and 4.6.15]). More generally, with any Dirichlet character η we can
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associate the L-function

L(f , η, s)=
∞∑

n=1

η(n) an

ns .

The theory of modular symbols implies that there exist non-zero complex numbers Ω+f
and Ω−f such that for any Dirichlet character η one has

L̃(f , η, j)= Γ (j)

(2π i)j−1Ω±f
L(f , η, j) ∈Q, 16 j6 k − 1, (1)

where ± = (−1)j−1η(−1). Fix a prime number p > 2 such that the Euler factor Ep(f ,X)
is not equal to 1. Let α be a root of the polynomial X2 − apX + ε(p)pk−1 in Qp. Denote
by vp the p-adic valuation on Qp normalized such that vp(p) = 1. Assume that α is not
critical, i.e. that vp(α) < k − 1. Let ω : (Z/pZ)∗→ Q∗p denote the Teichmüller character.
Manin [53], Vishik [76] and independently Amice and Vélu [1] constructed analytic
p-adic L-functions Lp,α(f , ωm, s) which interpolate algebraic parts of special values of
L(f , s).1 Namely, the interpolation property reads

Lp,α(f , ω
m, j)= Eα(f , ωm, j) L̃(f , ωj−m, j), 16 j6 k − 1

where Eα(f , ωm, j) is an explicit Euler-like factor. One says that Lp,α(f , ωm, s) has a trivial
zero at s = j if Eα(f , ωm, j) = 0 and L̃(f , ωj−m, j) 6= 0. This phenomenon was first studied
by Mazur et al. in [55] where the following cases were distinguished:

• The semistable case: p ‖ N, k is even and α = ap = pk/2−1. The p-adic L-function
Lp,α(f , ωk/2, s) has a trivial zero at the central point s= k/2;

• The crystalline case: p - N, k is odd and either α = p
k−1
2 or α = ε(p) p

k−1
2 . The

p-adic L-function Lp,α(f , ω
k+1
2 , s) (respectively Lp,α(f , ω

k−1
2 , s)) has a trivial zero at

the near-central point s= k+1
2 (respectively s= k−1

2 ).

• The potentially crystalline case: p|N, k is odd and α = ap = p
k−1
2 . The p-adic

L-function Lp,α(f , ω
k+1
2 , s) has a trivial zero at the near-central point s= k+1

2 .

Let

ρf :Gal(Q/Q)→GL(Wf )

be the p-adic Galois representation associated with f by Deligne [26]. We remark that
in the semistable (resp. crystalline, potentially crystalline) case the restriction of ρf to
the decomposition group at p is semistable non-crystalline (resp. crystalline, potentially
crystalline) in the sense of Fontaine [33].

0.2. The semistable case

Assume that k is even, p ‖ N and ap = pk/2−1. Then the associated filtered (ϕ,N)-module
Dst(Wf ) has a basis eα, eβ such that eα = Neβ , ϕ(eα) = apeα and ϕ(eβ) = p apeβ .

1 This construction was recently generalized to the critical case by Pollack and Stevens [69] and by
Bellaiche [3].
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The jumps of the canonical decreasing filtration of Dst(Wf ) are 0 and k − 1 and the
L -invariant of Fontaine and Mazur is defined to be the unique element LFM(f ) ∈ Qp

such that Filk−1Dst(Vf ) is generated by eβ +LFM(f )eα. In [55] Mazur et al. conjectured
that

L′p,α(f , ωk/2, k/2)=LFM(f ) L̃(f , k/2). (2)

We remark that L(f , k/2) can vanish. The conjecture (2) was proved in [37] in the weight
2 case and in [74] in general using the theory of p-adic families of modular forms.
Another proof, based on the theory of Euler systems was found by Kato, Kurihara
and Tsuji (unpublished, but see [46, 67, 21]). Note that in [74], Stevens uses another
definition of the L -invariant proposed by Coleman [17]. We refer the reader to [18] and
to the survey article [22] for further information and references.

0.3. The general case

Our main aim in this paper is to prove an analogue of the formula (2) in the crystalline
and potentially crystalline cases. In fact, we will treat all three cases simultaneously.
Let f be a newform of weight k. Fix an odd prime p and assume that the p-adic
L-function Lp,α(f , ωk0 , s) has a trivial zero at s = k0. Assume further that k0 > k/2.
Note that the last assumption holds automatically in the semistable and potentially
crystalline cases and in the crystalline case it is not restrictive because we can use
the functional equation (see remark (3) below). Let Dcris(Wf ) denote the crystalline
module associated with Wf . By Saito’s theorem [73] the vanishing of the Euler-like factor

Eα(f , ωk0 , k0) implies that Dcris
(
Wf (k0)

)ϕ=p−1 is a one-dimensional vector space which
we denote by Dα (see Lemma 4.2.2 below). The main construction of [7] associates
with Dα an element `

(
Wf (k0),Dα

) ∈ Qp which can be viewed as a direct generalization
of Greenberg’s `-invariant [35] to the non-ordinary case.2 To simplify notation we set
`α(f )= `

(
Wf (k0),Dα

)
. The main result of this paper can be stated as follows.

Theorem. Let f be a newform on Γ0(N) of character ε and weight k and let p be
an odd prime. Assume that the p-adic L-function Lp,α

(
f , ωk0 , s

)
has a trivial zero at

s= k0 > k/2. Then

L′p,α
(

f , ωk0 , k0

)
= `α(f )

(
1− ε(p)

p

)
L̃ (f , k0) .

Remarks. (1) In the semistable case `α(f ) = LFM(f ) (see [7, Proposition 2.3.7]),
ε(p) = 0 and we recover the Mazur–Tate–Teitelbaum conjecture. Our proof in this
case can be seen as an interpretation of Kato, Kurihara and Tsuji’s approach in
terms of (ϕ, Γ )-modules. For the crystalline case some version of our formula was
proved by Orton [61] (unpublished). She does not use (ϕ, Γ )-modules and works

2 Strictly speaking, in [7] we define the `-invariant for p-adic representations which are semistable at
p. In our setting this covers the semistable and crystalline cases, but the definition can be extended to
include the potentially crystalline case too (see ğ 2.1 below).
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with an ad hoc definition of the `-invariant in terms of the Bloch–Kato exponential
map in the spirit of [66].

(2) In the crystalline and potentially crystalline cases L̃ (f , k0) does not vanish, by the
theorem of Jacquet and Shalika [44].

(3) In the crystalline case, trivial zeros at the symmetric point s = k−1
2 can be easily

studied using the functional equation for p-adic L-functions [55, §17]. If α = p(k−1)/2

and therefore Lp,α(f , ω
k+1
2 , s) has a trivial zero at s = k+1

2 , then α∗ = ε−1(p) α is a
root of the Hecke polynomial associated with the dual form f ∗ =∑∞n=1 ānqn and
Lp,α∗(f ∗, ω

k−1
2 , s) has a trivial zero at s = k−1

2 . Using the compatibility of the trivial
zero conjecture with the functional equation [7, §2.3.5] (or just repeating the proof
of the main theorem with obvious modifications), we obtain a trivial zero formula for
L′p,α∗

(
f ∗, ω

k−1
2 , k−1

2

)
.

(4) The L -invariant of Fontaine and Mazur which appears in semistable case (2) is
local, i.e. it depends only on the restriction of the p-adic representation ρf to the
decomposition group at p. However, in the crystalline and potentially crystalline
cases our `-invariant is global and contains information about the localization
map H1(Q,Wf (

k+1
2 ))→ H1(Qp,Wf (

k+1
2 )). We remark that in the semistable case

the p-adic L-function has a zero at the central point and in the crystalline and
potentially crystalline cases it has a zero at a near-central point.

(5) Let η be a Dirichlet character of conductor M with (p,M) = 1. The study of trivial
zeros of Lp,α

(
f , ηω

k+1
2 , s

)
reduces to our situation on considering the newform f ⊗ η

associated with fη =∑∞n=1 η(n) anqn (see § 4.1.3).

Our theorem follows from a formula for the derivative of the Perrin-Riou exponential
map [63] in terms of the `-invariant which we prove in Propositions 1.3.7 and 2.2.2
below, applied to the Euler system constructed by Kato [46].

0.4. Trivial zeros of Dirichlet L-functions

Let η be a primitive Dirichlet character modulo N and let p - N be a fixed prime. The
p-adic L-function of Kubota and Leopoldt, Lp(ηω, s), satisfies the interpolation property

Lp(ηω,−j)= (1− (ηω−j)(p) pj) L(ηω−j,−j), j> 0.

Assume that η is odd and η(p) = 1. Then L(η, 0) 6= 0 but the Euler-like factor
1 − (ηω−j) (p)pj vanishes at j = 0 and Lp(ηω, s) has a trivial zero at s = 0. Fix a finite
extension L/Qp containing the values of η. Let χ denote the cyclotomic character and
let ordp : Gal(Qur

p /Qp)→ L be the character defined by ordp(Frp) = −1 where Frp is the
geometric Frobenius. Then H1(Qp,L) = Hom(Gal(Qab

p /Qp),L) is the two-dimensional
L-vector space generated by log χ and ordp. Since p - N and η(p) = 1 the restriction of
L(η) to the decomposition group at p is a trivial representation. The localization map

κη : H1(Q,L(η))→ H1(Qp,L)
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is injective and identifies H1(Q,L(η)) with a one-dimensional subspace of H1(Qp,L). It
can be shown that Im(κη) is generated by an element of the form

log χ +L (η) ordp (3)

where L (η) ∈ L is necessarily unique. Applying Proposition 2.2.2 to the Euler system
of cyclotomic units we obtain a new proof of the trivial zero conjecture for Dirichlet
L-functions

L′p(ηω, 0)=−L (η) L(η, 0). (4)

This formula was first proved in [38] as the combination of the result of Ferrero and
Greenberg [28] giving an explicit formula for L′p(ηω, 0) in terms of the p-adic Γ -function
and the Gross–Koblitz formula [39]. We also remark that Dasgupta et al. [25] recently
generalized (4) to totally real number fields F assuming Leopoldt’s conjecture and some
additional condition on the vanishing of p-adic L-functions.

0.5. The plan of the paper

The main content of this article is as follows. In ğ 1 we review the necessary
preliminaries. Sections 1.1 and 1.2 are devoted to the theory of (ϕ, Γ )-modules which
plays a key role in our definition of the `-invariant. In particular, in ğ 1.2.4 we define the
Bloch–Kato exponential map for potentially semistable (ϕ, Γ )-modules. An alternative
but equivalent definition can be found in [57, 71]. In ğ 1.3 we review the construction
and main properties of Perrin-Riou’s large exponential map and give an explicit formula
for its derivative. The `-invariant is introduced and studied in ğ 2. In ğ 2.1 we review
and slightly generalize the construction of `(V,D) from [7]. In ğ 2.2 we prove an explicit
formula for the derivative of the large logarithmic map in terms of `(V,D) and the dual
exponential map. The rest of the paper is devoted to applications of this result. In ğ 3 we
consider Dirichlet L-functions and give a new proof of (4). Trivial zeros of modular forms
are studied in ğ 4.

1. Preliminaries

1.1. (ϕ, Γ )-modules

1.1.1. Definition of (ϕ, Γ )-modules (see [31, 15, 23]). Let Qp be a fixed algebraic
closure of Qp. We denote by C the p-adic completion of Qp and by vp : C→ R ∪ {∞}
the p-adic valuation normalized so that vp(p) = 1 and set |x|p =

(
1
p

)vp(x)
. Write B(r, 1)

for the p-adic annulus B(r, 1) = {x ∈ C | r 6 |x|p < 1}. Fix a system of primitive roots of
unity ε = (ζpn)n>0 such that ζ p

pn = ζpn−1 for all n. If K is a finite extension of Qp we set
GK = Gal(Qp/K), Kn = K(ζpn) and K∞ =⋃∞n=0 Kn. Put ΓK = Gal(K∞/K) and denote by
χ : ΓK → Z∗p the cyclotomic character. We write OK for the ring of integers of K, K0 for
the maximal unramified subextension of K and σ for the absolute Frobenius of K0/Qp.

For any r > 0 let B†,r
K denote the ring of overconvergent elements of Fontaine’s ring

BK (see [15, 9]). Note that B†,r1
K ⊂ B†,r2

K if r1 6 r2. The ring BK is equipped with a
continuous action of ΓK and a Frobenius operator ϕ which commute with each other.
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We remark that the B†,r
K are stable under the action of ΓK and that ϕ(B†,r

K ) ⊂ B
†,pr
K for

all r. The following description of B†,r
K is sufficient for the goals of this paper. Let F

denote the maximal unramified subextension of K∞/K0 and let e = [K∞ : K0(ζp∞)]. For
any 06 s< 1 define

R(s)(K) =
{

f (XK)=
∑
k∈Z

akXk
K | ak ∈ F and f is holomorphic on B(s, 1)

}
,

E (s)(K) =
{

f (XK)=
∑
k∈Z

akXk
K | ak ∈ F and f is holomorphic and bounded on B(s, 1)

}
.

Then there exists r(K) > 0 such that for all r > r(K) the ring B†,r
K is isomorphic to

E (p
−1/er)(K). The union B†

K = ∪r>0B
†,r
K is a field which is stable under the actions of ΓK

and ϕ and is isomorphic to E †(K)= ∪06s<1E (s)(K). In general, the action of ΓK and ϕ on
E †(K) is quite complicated but the ring B†,0

K contains an element X such that

ϕ(X)= (1+ X)p − 1, τ (X)= (1+ X)χ(τ) − 1, τ ∈ ΓK .

If K = K0, i.e. K is absolutely unramified, then F = K0 and one can take XK0 = X. The
action of ΓK0 and ϕ on E (s)(K0) is given by

ϕf (X)= f σ (ϕ(X)), τ f (X)= f (τ (X)), τ ∈ ΓK0 .

We come back to the general case. The field E †(K) is endowed with the valuation

w

(∑
k∈Z

akXk

)
=min{vp(ak)|k ∈ Z}

and we denote by OE †(K) its ring of integers. The operator ϕ has a left inverse given by

ψ(f )= 1
p
ϕ−1 (TrE †(K)/ϕ(E †(K))(f )

)
.

If K = K0 we can also write

ψ(f (X))= 1
p
ϕ−1

(∑
ζ p=1

f (ζ(1+ X)− 1)
)
.

Set R(K) = ∪06s<1R(s)(K). The actions of ΓK , ϕ and ψ can be extended to R(K)
by continuity. If K ⊂ K′ then the natural inclusions B†,r

K ⊂ B†,r
K′ induce embeddings

E †(K) ⊂ E †(K′) and R(K) ⊂ R(K′). Let t = log(1 + X) =∑∞k=1(−1)k+1Xk/k ∈ R(Qp).

Note that ϕ(t)= p t and τ(t)= χ(τ)t for all τ ∈ ΓK .

In this paper we deal with p-adic representations with coefficients in a finite extension
L of Qp. By this reason it is convenient to set E †

L (K)= E †(K)⊗QpL, R†
L(K)=R†(K)⊗QpL

and OE †
L (K)
=OE †(K)⊗ZpOL.

Definition. (i) A (ϕ, ΓK)-module over E †
L (K) (resp. RL(K)) is a free E †

L (K)-module
(resp. RL(K)-module) D of finite rank d equipped with semilinear actions of ΓK
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and ϕ which commute with each other and such that the induced linear map
E †

L (K)⊗ϕD→D (resp. RL(K)⊗ϕD→D) is an isomorphism.
(ii) A (ϕ, ΓK)-module D over E †

L (K) is said to be étale if there exists a basis of D such
that the matrix of ϕ in this basis is in GLd(OEL

†(K)).

If D is a (ϕ, ΓK)-module over A = E †
L (K) or RL(K) we write D∗ for the dual module

HomA(D,A) and D(χ) for the module obtained from D by twisting the action of ΓK by
the cyclotomic character.

Let RepL(GK) be the category of p-adic representations of GK with coefficients in L,
i.e. the category of finite dimensional L-vector spaces equipped with a continuous linear
action of GK .

Theorem 1.1.2 ([31, 15]). There exists a natural functor V→ D†(V) which induces an
equivalence between RepL(GK) and the category of étale (ϕ, ΓK)-modules over E †

L (K).

From Kedlaya’s theory it follows [23, Proposition 1.4 and Corollary 1.5] that the
functor D→ RL(K)⊗E †

L (K)
D establishes an equivalence between the category of étale

(ϕ, ΓK)-modules over E †
L (K) and the category of (ϕ, ΓK)-modules over RL(K) of slope

0 in the sense of [48]. Together with Theorem 1.1.2 this implies that the functor
V → D†

rig(V) defined by D†
rig(V) = RL(K)⊗E †

L (K)
D†(V) induces an equivalence between

the category of p-adic representations and the category of (ϕ, ΓK)-modules over RL(K) of
slope 0.

1.1.3. Crystalline and semistable (ϕ, ΓK)-modules (see [33, 11, 12]). Recall that
a filtered (ϕ,N)-module over K with coefficients in L is a free K0⊗QpL-vector space M
equipped with the following structures:

• a σ -semilinear isomorphism ϕ :M→M (σ acts trivially on L);
• a K0⊗QpL-linear nilpotent operator N such that N ϕ = pϕ N;
• an exhaustive decreasing filtration (FiliMK)i∈Z on MK = K⊗K0M by (K⊗QpL)-

submodules.

If K′/K is a finite Galois extension with Galois group GK′/K , then a filtered
(ϕ,N,GK′/K)-module is a filtered (ϕ,N)-module M over K′ equipped with a semilinear
action of GK′/K such that the filtration FiliMK′ is GK′/K-stable. We say that M is a
filtered (ϕ,N,GK)-module if it is a filtered (ϕ,N,GK′/K)-module for some K′/K. It is well
known (see for example [33]) that filtered (ϕ,N,GK)-modules form a tensor category
MF

ϕ,N,GK
K which is additive, and has kernels and cokernels but is not abelian. The unit

object 1 of MF
ϕ,N,GK
K is the module K0⊗QpL with the natural action of ϕ and the

filtration given by

Fili1K =
{

K⊗Qp L, if i6 0,

0, if i> 0.

A filtered (ϕ,N)-module can be viewed as a filtered (ϕ,N,GK)-module with the trivial
action of GK and we denote by MF

ϕ,N
K the resulting subcategory. A filtered Dieudonné
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module is an object M of MF
ϕ,N
K such that N = 0 on M. Filtered Dieudonné modules

form a full subcategory MF
ϕ
K of MF

ϕ,N
K .

If M is a filtered (ϕ,N,GK)-module of rank 1 and m is a basis vector of M, then
ϕ(m) = αm for some α ∈ L. Set tN(M) = vp(α) and denote by tH(M) the unique jump
in the filtration of M. If M has rank d > 1, set tN(M) = tN(∧dM) and tH(M) = tH(∧dM).
A filtered (ϕ,N,GK)-module M is said to be weakly admissible if tH(M) = tN(M) and
tH(M′)6 tN(M′) for any (ϕ,N,GK)-submodule M′ of M. Weakly admissible modules form
a subcategory of MF

ϕ,N,GK
K which we denote by MF

ϕ,N,GK
K,f .

Let RL,log(K)=RL(K)[log X] where log X is transcendental over RL(K) and

τ(log X)= log X + log (τ (X)/X) , τ ∈ ΓK, ϕ(log X)= p log X + log
(
ϕ(X)/Xp) .

Define a monodromy operator N :RL,log(K)→RL,log(K) by N =−
(

1− 1
p

)−1
d

d log X . For
any (ϕ, ΓK)-module D over RL(K) we set

Dcris(D)=
(
D ⊗RL(K) RL(K)[1/t]

)ΓK , Dst(D)=
(
D ⊗RL(K) RL,log(K)[1/t]

)ΓK .

Then Dcris(D) (resp. Dst(D)) is a K⊗QpL-module of finite rank equipped with a natural
action of ϕ (resp. with natural actions of ϕ and N). There exists a compatible system
of embeddings ϕ−m : RL(K)(r) → (L ⊗ K∞)[[t]] which allows one to define exhaustive
decreasing filtrations on Dcris(D)K and Dst(D)K (see [12, proof of Theorem III.2.3]).
Moreover Dcris(D)=Dst(D)

N=0 and

rgL⊗K0
(Dcris(D))6 rgL⊗K0

(Dst(D))6 rgRL(K)(D).

We say that D is crystalline (resp. semistable) if rgL⊗K0
(Dcris(D)) = rgRL(K)(D)

(resp. rgL⊗K0
(Dst(D))= rgRL(K)(D)).

If K′/K is a finite extension, then RL(K) ⊂RL(K′) and we set DK′ =RL(K′)⊗RL(K)D.

The direct limit

Dpst(D)= lim−→
K′/K

Dst/K′(DK′)

is a Kur
0 ⊗QpL-module of finite rank equipped with a discrete action of GK and we say

that D is potentially semistable if rgL⊗K0
(Dpst(D)) = rgRL(K)(D). Denote by M

ϕ,Γ
pst,K ,

M
ϕ,Γ
st,K and M

ϕ,Γ
cris,K the categories of potentially semistable, semistable and crystalline

(ϕ, ΓK)-modules respectively.

Proposition 1.1.4. (i) The functors Dcris :M ϕ,Γ
cris,K →MF

ϕ
K, Dst :M ϕ,Γ

st,K →MF
ϕ,N
K and

Dpst :M ϕ,Γ
pst,K→MF

ϕ,N,GK
K are equivalences of categories.

(ii) If V is a p-adic representation of GK then Dcris(D
†
rig(V)) (resp. Dst(D

†
rig(V)),

resp. Dpst(D
†
rig(V))) is canonically and functorially isomorphic to Fontaine’s module

Dcris(V) (resp. Dst(V), resp. Dpst(V)).

Proof. The first statement is the main result of [12]. The second statement follows from
[9, Theorem 0.2]. �
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1.2. Cohomology of (ϕ, Γ )-modules

1.2.1. Fontaine–Herr complexes (see [40, 41, 52]). Let A be either E †
L (K) or RL(K).

We fix a generator γK ∈ ΓK . If D is a (ϕ, ΓK)-module over A we shall write H∗(D) for the
cohomology of the complex

Cϕ,γK (D) : 0→D
f−→D⊕D

g−→D→ 0

where f (x) = ((ϕ − 1) x, (γK − 1) x) and g(y, z) = (γK − 1) y − (ϕ − 1) z. A short exact
sequence of (ϕ, ΓK)-modules

0→D′→D→D′′→ 0

gives rise to an exact cohomology sequence:

0→ H0(D′)→ H0(D)→ H0(D′′)→ H1(D′)→ · · · → H2(D′′)→ 0.

The cohomology of (ϕ, ΓK)-modules over RL(K) satisfies the following fundamental
properties (see [52, Theorem 0.2]):

• Euler characteristic formula. H∗(D) are finite dimensional L-vector spaces and
2∑

i=0

(−1)i dimL Hi(D)=−[K :Qp] rgRL(K)(D).

• Poincaré duality. For each i= 0, 1, 2 there exist functorial pairings

Hi(D)× H2−i(D∗(χ)) ∪−→ H2(RL(K)(χ))' L

which are compatible with the connecting homomorphisms in the usual sense.

Proposition 1.2.2. Let V be a p-adic representation of GK . Then:

(i) The continuous Galois cohomology H∗(K,V) is canonically (up to the choice of γK)
and functorially isomorphic to H∗(D†(V)).

(ii) The natural map D†(V) → D†
rig(V) induces a quasi-isomorphism of complexes

Cϕ,γK (D
†(V))→ Cϕ,γK (D

†
rig(V)).

Proof. See [40] and [52, Theorem 1.1]. �

1.2.3. Iwasawa cohomology (see [16]). If V is a p-adic representation of GK and T is
an OL-lattice of V stable under GK we define

Hi
Iw(K,T)= lim←−

corKn/Kn−1H

(Kn,T)

and Hi
Iw(K,V) = Hi

Iw(K,T)⊗OL L. Since D†(V) is étale, each x ∈ D†(V) can be written in
the form x=∑d

i=1 aiϕ(ei) where {ei}di=1 is a basis of D†(V) and ai ∈ E †
L (K). Therefore the

formula

ψ

(
d∑

i=1

ai ϕ(ei)

)
=

d∑
i=1

ψ(ai) ei
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defines an operator ψ : D†(V)→ D†(V) which is a left inverse for ϕ. The Iwasawa
cohomology H∗Iw(K,V) is canonically (up to the choice of γK) and functorially
isomorphic to the cohomology of the complex

C†
Iw,ψ (V) :D†(V)

ψ−1−−→D†(V).

The projection map prV,n : H1
Iw(K,V)→ H1(Kn,V) has the following explicit description.

Set γK,n = γ [Kn:K]
K . Let x ∈ D†(V)ψ=1. Then (ϕ − 1) x ∈ D†(V)ψ=0 and by [15, Lemma

1.5.1] there exists y ∈ D†(V) such that (γK,n − 1) y = (ϕ − 1) x. Then prV,n sends x
to cl(y, x). This interpretation of the Iwasawa cohomology was found by Fontaine
(unpublished but see [16]).

1.2.4. The exponential map (see [13, 59, 7]). Let D be a (ϕ, ΓK)-module. With any
cocycle α = (a, b) ∈ Z1(Cϕ,γ (D)) one can associate the extension

0→D→Dα→RL(K)→ 0

defined by

Dα =D⊕RL(K) e, (ϕ − 1) e= a, (γK − 1) e= b.

As usual, this gives rise to a canonical isomorphism H1(D) ' Ext1
(ϕ,ΓK)

(RL(K),D).

We say that the class cl(α) of α in H1(D) is crystalline if rgL⊗K0
Dcris(Dα) =

rgL⊗K0
Dcris(D)+ 1 and define

H1
f (D)= {cl(α) ∈ H1(D)|cl(α) is crystalline}

(see [7, ğ1.4]). Now assume that D is potentially semistable and define the tangent space
of D as

tD(K)=DdR(D)/Fil0DdR(D).

Consider the complex

C•cris(D) :Dcris(D)
f−→ tD(K)⊕Dcris(D)

where the modules are placed in degrees 0 and 1 and f (d) = (d(mod Fil0DdR(D)), (1 −
ϕ) (d)) (see [59, 34]). From Proposition 1.1.4 there follows the existence of a canonical
isomorphism

H1(C•cris(D))→ H1
f (D)

(see [7, Proposition 1.4.4] for the proof). We define the exponential map

exp D,K : tD(K)⊕Dcris(D)→ H1(D)

as the composition of this isomorphism with the natural projection tD(K) ⊕ Dcris(D)→
H1(C•cris(D)) and the embedding H1

f (D) ↪→ H1(D).

If V is a potentially semistable representation and D = D†
rig(V) then the isomorphism

H1(D) ' H1(K,V) identifies H1
f (D) with H1

f (K,V) of Bloch and Kato [7, Proposition
1.4.2]. Let

tV(K)=DdR(V)/Fil0DdR(V)
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denote the tangent space of V. By [59, Proposition 1.21] the following diagram
commutes and identifies our exponential map with the exponential map expV,K of Bloch
and Kato [13, ğ4]:

tD(K)
expD,K //

��

H1(D)

��
tV(K)

expV,Kn// H1(K,V).

Let

[ , ] :DdR(D)×DdR(D
∗(χ))→ L ⊗Qp K

be the canonical duality. The dual exponential map

exp∗D∗(χ),K : H1(D∗(χ))→ Fil0DdR(D
∗(χ))

is defined to be the unique linear map such that

expD,K(x) ∪ y= TrK/Qp [x, exp∗D∗(χ),K(y)]
for all x ∈DdR(D), y ∈DdR(D

∗(χ)).

Remark 1.2.5. An alternative definition of the exponential map for (ϕ, Γ )-modules,
based on Berger’s theory of B-pairs can be found in Nakamura’s paper [57] and Riedel’s
PhD thesis [71]. It is not difficult to see that the two definitions are equivalent.

1.2.6. (ϕ, Γ )-modules of rank 1 (see [23, 7]). In this paper we deal with potentially
semistable representations of GQp . To simplify notation we set Kn = Qp(ζpn), E †

L =
E †

L (Qp), RL = RL(Qp), Γ = ΓQp and we fix a topological generator γ of Γ. With
each continuous character δ : Q∗p → L∗ one can associate the (ϕ, Γ )-module of rank 1,
RL(δ) = RLeδ, defined by γ (eδ) = δ(χ(γ ))eδ and ϕ(eδ) = δ(p)eδ. Colmez proved that
any (ϕ, Γ )-module of rank 1 over RL is isomorphic to one and only one of the RL(δ)

[23, Proposition 3.1]. It is easy to see that RL(δ) is crystalline if and only if there exists
m ∈ Z such that δ(u) = um for all u ∈ Z∗p [7, Lemma 1.5.2]. In this case Dcris(RL(δ)) is
the one-dimensional vector space generated by t−meδ with Hodge–Tate weight equal to
−m and ϕ acts on Dcris(RL(δ)) as multiplication by p−mδ(p). The computation of the
cohomology of crystalline (ϕ, Γ )-modules of rank 1 reduces to the following four cases.
We refer the reader to [23, ğğ2.3–2.5] and to [7, Proposition 1.5.3 and Theorem 1.5.7] for
proofs and more details.

• δ(u) = u−m (u ∈ Z∗p) for some m > 0 but δ(x) 6= x−m. In this case H1(RL(δ)) is a
one-dimensional L-vector space, H1

f (RL(δ))= 0 and Hi(RL(δ))= 0 for i= 0, 2.

• δ(x)= x−m for some m> 0. In this case H0(RL(δ))=Dcris(RL(δ)) and H2(RL(δ))= 0.
The map

iδ :Dcris(RL(δ))⊕Dcris(RL(δ))→ H1(RL(δ)),

iδ(x, y)= cl(−x, log χ(γ )y)
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is an isomorphism. We let iδ,f and iδ,c denote its restrictions to the first and second
direct summand respectively. Then Im(iδ,f ) = H1

f (RL(δ)) and we have a canonical
decomposition

H1(RL(δ))' H1
f (RL(δ))⊕ H1

c (RL(δ)) (5)

where H1
c (RL(δ))= Im(iδ,c). Set

xm = iδ,f (t
meδ)=−cl(tm, 0) eδ,

ym = iδ,c(t
meδ)= log χ(γ ) cl(0, tm) eδ.

• δ(u) = um (u ∈ Z∗p) for some m > 1 but δ(x) 6= |x|xm. Then H1(RL(δ)) is a
one-dimensional L-vector space, H1

f (RL(δ)) = H1(RL(δ)) and Hi(RL(δ)) = 0 for
i= 0, 2.
• δ(x)= |x|xm for some m> 1. Then H0(RL(δ))= 0 and H2(RL(δ)) is a one-dimensional

L-vector space. Moreover χδ−1(x)= x1−m and there exists a unique isomorphism

iδ :Dcris(RL(δ))⊕Dcris(RL(δ))→ H1(RL(δ))

such that

iδ(α, β) ∪ iχδ−1(x, y)= [β, x] − [α, y]
where [ , ] : Dcris(RL(δ)) × Dcris(RL(χδ

−1))→ L is the canonical pairing. Denote as
iδ,f and iδ,c the restrictions of iδ to the first and second direct summand respectively.
Then Im(iδ,f )= H1

f (RL(δ)) and again we have a canonical decomposition

H1(RL(δ))' H1
f (RL(δ))⊕ H1

c (RL(δ)) (6)

where H1
c (RL(δ))= Im(iδ,c).

More explicitly, let αm =−
(

1− 1
p

)
cl(αm) and βm =

(
1− 1

p

)
log χ(γ ) cl(βm) where

αm = (−1)m−1

(m− 1)! ∂
m−1

(
1
X
+ 1

2
, a

)
eδ, (1− ϕ) a= (1− χ(γ )γ )

(
1
X
+ 1

2

)
,

βm = (−1)m−1

(m− 1)! ∂
m−1

(
b,

1
X

)
eδ, (1− ϕ)

(
1
X

)
= (1− χ(γ ) γ ) b

and ∂ = (1 + X) d
dX . Then H1

f (RL(δ)) and H1
c (RL(δ)) are generated by αm and βm

respectively and one has

αm ∪ xm−1 = βm ∪ ym−1 = 0, αm ∪ ym−1 =−1, βm ∪ xm−1 = 1. (7)

Proposition 1.2.7. Let δ(x) = |x|xm where m > 1. Then dm = t−meδ is a basis of
Dcris(RL(δ)) and the exponential map sends (dm, 0) to αm.

Proof. See [7, Theorem 1.5.7]. �
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1.3. The large exponential map

1.3.1. The large exponential map (see [63, 19, 5, 10]). In this section we review the
construction and basic properties of Perrin-Riou’s large exponential map [63]. We work
with p-adic representations of GQp and keep the notation of ğ 1.2.6. Let p be an odd
prime number. We let Λ = OL[[Γ ]] denote the Iwasawa algebra of Γ over OL and set
R+L =RL ∩ L[[X]]. We remark that R+L is the ring of power series with coefficients in L
which converge on the open unit disk. Fix a topological generator γ of Γ and define a
compartible system of generators of Γn setting γ1 = γ p−1 and γn+1 = γ p

n for n > 1. Let
∆=Gal(K1/Qp). Define

H = {f (γ1 − 1) | f ∈R+L }, H (Γ )= Zp[∆] ⊗ZpH .

Thus H (Γ ) = ⊕p−2
i=0 H δi where δi = 1

|∆|
∑

g∈∆ ω−i(g)g. We equip H (Γ ) with twist
operators Twm :H (Γ )→H (Γ ) defined by Twm(f (γ1 − 1) δi) = f (χ(γ1)

mγ1 − 1) δi−m.

The ring H (Γ ) acts on R+L and (R+L )ψ=0 is the free H (Γ )-module generated by (1+X)
[63, Proposition 1.2.7].

Let V be a potentially semistable representation of GQp . Set D(V) =
(R+L )ψ=0⊗LDcris(V) and define a map

Ξ ε
V,n :D(V)→ H1(Kn,C•cris(D

†
rig(V)))= coker(Dcris(V)

f−→ tV(Kn)⊕Dcris(V))

by

Ξ ε
V,n(α)=

p−n
( n∑

k=1

(σ ⊗ ϕ)−kα(ζpk − 1),−α(0)
)

if n> 1,

−(0, (1− p−1ϕ−1) α(0)
)

if n= 0.
(8)

In particular, if Dcris(V)ϕ=1 = 0 the operator 1− ϕ is invertible on Dcris(V) and

Ξ ε
V,0(α)=

(
1− p−1ϕ−1

1− ϕ α(0), 0
)
.

For any m ∈ Z let TwεV,m : H1
Iw(Qp,V) → H1

Iw(Qp,V(m)) denote the twist map
TwεV,m(x)= x⊗ ε⊗m.

Theorem 1.3.2 (Perrin-Riou). Let V be a potentially semistable representation of GQp

such that H0(K∞,V) = 0. Then for any integers h and m such that Fil−hDdR(V) =
DdR(V) and m+ h> 1 there exists a unique H (Γ )-homomorphism

ExpεV(m),h :D(V(m))→H (Γ )⊗ΛQp
H1

Iw(Qp,V(m))

satisfying the following properties:
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(i) For any n> 0 the diagram

D(V(m))
ExpεV(m),h //

Ξ ε
V(m),n

��

H (Γ )⊗ΛQp
H1

Iw(Qp,V(m))

prV(m),n

��
H1(Kn,C•cris(D

†
rig(V(m)))

(h−1)! expV(m),Kn// H1(Kn,V(m))

commutes.
(ii) Let e1 = ε−1 ⊗ t denote the canonical generator of Dcris(Qp(−1)). Then

ExpεV(m+1),h+1 =−TwεV(m),1 ◦ ExpεV(m),h ◦ (∂ ⊗ e1).

(iii) One has

ExpεV(m),h+1 = `hExpεV(m),h

where `m = m− log(γ1)
log χ(γ1)

.

Proof. We sketch the construction of the large exponential map ExpεV(m),h found by
Berger [10]. This gives the most natural proof of Perrin-Riou’s theorem. Berger assumes
that V is crystalline, but his arguments work in our case without modifications. See
also [70] for some detail and an interpretation of this proof entirely in terms of
(ϕ, Γ )-modules.

The action of H (Γ ) on D†(V)ψ=1 induces an isomorphism H (Γ )⊗ΛQp
D†(V)ψ=1→

D†
rig(V)

ψ=1 (see [70, §6.4]). Composing this map with the canonical isomorphism
H1

Iw(Qp,V) ' D†(V)ψ=1 we obtain an isomorphism H (Γ )⊗ΛQp
H1

Iw(Qp,V) →
D†

rig(V)
ψ=1. One can check that `m acts on RL as m − t∂ and an easy induction shows

that
∏h−1

k=0 `k = (−1)hth∂h. Let h > 1 be such that Fil−hDdR(V) = DdR(V). To simplify
the formulation, assume that Dcris(V)ϕ=1 = 0. For any α ∈D(V) the equation

(ϕ − 1)F = α −
h∑

m=1

∂mα(0)
m! tm

has a solution in R+L ⊗Dcris(V) and we define

Ωε
V,h(α)=

log χ(γ1)

p
`h−1`h−2 · · · `0(F(X)).

It is not difficult to see that Ωε
V,h(α) ∈ D+rig(V)

ψ=1 and an explicit computation shows
that Ωε

V,h(α) satisfies properties (i)–(iii) [10, Theorem II.13].
This construction of ExpεV,h(α) will be used in the proof of Proposition 1.3.7 below. �

Remark 1.3.3. (1) Theorem 1.3.2 was first proved in [63] for crystalline
representations. Other proofs can be found in [19, 47, 5]. The fact that the statement
is still valid if we take the ‘crystalline’ part of an arbitrary potentially semistable
representation was first pointed out in [47] (see also [46]). We also remark that
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in [63], ExpεV,h(α) was defined only for α such that ∂mα(0) ∈ (1− pmϕ)Dcris(V) for all
m ∈ Z. This assumption can be omitted (see [66] or [5, §5.1]).

(2) It is very important to define the large exponential map to the ‘non-crystalline’
part of V and develop a natural generalization of Perrin-Riou’s theory (see [63, 65,
8]) in this context. In [68], Perrin-Riou constructed the large exponential map for
absolutely semistable representations. Recently Nakamura [57] and, independently
and in a slightly different form, Riedel [71] extended Berger’s construction to all de
Rham (ϕ, Γ )-modules. The results of Pottharst concerning the Iwasawa cohomology
of (ϕ, Γ )-modules [70] play an important role in these papers. See also [58, 49]. The
relationship between these constructions and the theory of p-adic L-functions is an
interesting open question. We refer the reader to the Introduction to [68] for some
remarks on this subject.

1.3.4. The logarithmic maps. The Iwasawa algebra Λ is equipped with an involution
ι : Λ→ Λ defined by ι(τ ) = τ−1, τ ∈ Γ. If M is a Λ-module we set Mι = Λ⊗ιM and
denote by m 7→ mι the canonical bijection of M onto Mι. Thus λmι = (ι(λ)m)ι for
all λ ∈ Λ, m ∈ M. Let T be an OL-lattice of V stable under the action of GQp . The
cohomological pairings

( , )T,n : H1(Kn,T)× H1(Kn,T∗(1))→ OL

give rise to a Λ-bilinear pairing

〈 , 〉T : H1
Iw(Qp,T)× H1

Iw(Qp,T∗(1))ι→Λ

defined by 〈
x, yι

〉
T ≡

∑
τ∈Γ/Γn

(τ−1xn, yn)T,nτ mod (γn − 1), n> 1

(see [63, ğ3.6.1]). By linearity we extend this pairing to

〈 , 〉V :H (Γ )⊗ΛH1
Iw(Qp,T)×H (Γ )⊗ΛH1

Iw(Qp,T∗(1))ι→H (Γ ).

For any η ∈Dcris(V∗(1)) the element η̃ = η⊗ (1+X) lies in D(V∗(1)) and we define a map

LεV,1−h,η : H1
Iw(Qp,V)→H (Γ )

by

LεV,1−h,η(x)=
〈

x,Expε
−1

V∗(1),h(η̃)
ι
〉

V
.

Lemma 1.3.5. For any j ∈ Z one has

LεV(−1),−h,η⊗e1(TwεV,−1(x))= Tw1(L
ε
V,1−h,η(x)).
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Proof. A short computation shows that 〈TwεV,j(x),TwεV∗(1),−j(y)〉V(j) = Tw−j〈x, y〉V .
Taking into account that Twε

−1
V∗(1),1 =−TwεV∗(1),1 we have

LεV(−1),−h,η⊗e1(TwεV,−1(x)) =
〈

TwεV,−1(x),Expε
−1

V∗(2),h+1(η̃ ⊗ e1)
ι
〉

V(−1)

=
〈

TwεV,−1(x),−Twε
−1

V∗(1),1
(
Expε

−1
V∗(1),h(η̃)

)ι〉
V(−1)

=
〈

TwεV,−1(x),TwεV∗(1),1
(
Expε

−1
V∗(1),h(η̃)

)ι〉
V(−1)

= Tw1

〈
x,Expε

−1
V∗(1),h(η̃)

ι
〉

V
= Tw1(L

ε
V,1−h,η(x))

and the lemma is proved. �

1.3.6. The derivative of the large exponential map. In this section we give an
explicit formula for the derivative of the large exponential map. This result will be
used in ğ 2.2 to relate the derivative of the p-adic L-function associated with global
cohomology classes to the `-invariant.

Let D be a one-dimensional subspace of Dcris(V) on which ϕ acts as multiplication
by p−1. Set DQur

p
= D ⊗QpQur

p where Qur
p denotes the maximal unramified extension of

Qp. Using the weak admissibility of Dpst(V) it is easy to see that D is not contained in
Fil0Dcris(V) and therefore

Dpst(V)= Fil0Dpst(V)⊕ DQur
p

(9)

as Qur
p ⊗QpL-modules. Let m> 1 denote the unique Hodge–Tate weight of D. By Berger’s

theory [12] (see also [4, Section 2.4.2]), the intersection D†
rig(V) ∩

(
D⊗LRL[1/t]

)
is a

saturated (ϕ, Γ )-submodule of D†
rig(V) of rank 1 which is isomorphic to RL(δ) with

δ(x)= |x|xm.

Recall (see the proof of Theorem 1.3.2) that H1(Qp,H (Γ )⊗QpV) = H (Γ )⊗ΛQp

H1
Iw(Qp,V) injects into D†

rig(V). Set

H1
δ (Qp,H (Γ )⊗QpV)=RL(δ) ∩ H1(Qp,H (Γ )⊗QpV).

The projection map induces a commutative diagram

H1
δ (Qp,H (Γ )⊗Qp V) //

��

H1(Qp,H (Γ )⊗Qp V)

pr0
��

H1(RL(δ))
// H1(Qp,V).

Note that the bottom map is not injective in general. Fix a generator γ ∈ Γ and an
integer h> 1 such that Fil−hDdR(V)=DdR(V).

Proposition 1.3.7. Let V be a potentially semistable representation of GQp such that
H0(K∞,V) = 0. Assume that D is a one-dimensional subspace of Dcris(V) on which ϕ

acts as multiplication by p−1. For any a ∈ D let x ∈D(V) be such that x(0)= a. Then:
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(i) There exists a unique F ∈ H1
δ (Qp,H (Γ )⊗ V) such that

(γ − 1)F = ExpεV,h(x).

(ii) The composition map

δD : D→ H1
δ (Qp,H (Γ )⊗ V)→ H1(RL(δ))

δD(a)= pr0(F)

is well defined and is explicitly given by the following formula:

δD(a)= Γ (h)
(

1− 1
p

)−1

(log χ(γ ))−1 ic(a).

Proof. (1) Consider the diagram

D(V)
ExpεV,h //

Ξ ε
V,0

��

H1(Qp,H (Γ )⊗ V)

pr0
��

tV(Qp)⊗Dcris(V)
(h−1)! expV // H1(Qp,V)

where Ξ ε
V,0 is given by (8). If x ∈ D⊗R

ψ=0
L then Ξ ε

V,0(x)=−(0, (1−p−1ϕ−1) x(0))= 0
and pr0

(
ExpεV,h(x)

)= 0. On the other hand, as H1
Iw(Qp,V) is ΛQp -free, the map

(H (Γ )⊗ΛQp
H1

Iw(Qp,V))Γ → H1(Qp,V)

is injective and therefore there exists a unique F ∈H (Γ )⊗ΛQp
H1

Iw(Qp,V) such that

ExpεV,h(x) = (γ − 1)F. Let y ∈ D ⊗R
ψ=0
L be another element such that y(0) = a and

let ExpεV,h(y) = (γ − 1)G. Since R
ψ=0
L =H (Γ ) (1 + X) we have y = x + (γ − 1)g for

some g ∈ D ⊗R
ψ=0
L . As ExpεV,h(g) = 0, we obtain immediately that pr0(G) = pr0(F)

and we have proved that the map δD is well defined.
(2) Take a ∈ D and set

x= a⊗ `
(
(1+ X)χ(γ ) − 1

X

)
,

where `(u)= 1
p log

(
up

ϕ(u)

)
. An easy computation shows that

∑
ζ p=1

`

(
ζχ(γ )(1+ X)χ(γ ) − 1

ζ(1+ X)− 1

)
= 0.

Thus x ∈ D⊗ OL[[X]]ψ=0. Write x in the form f = (1− ϕ) (γ − 1) (a⊗ log(X)). Then

Ωε
V,h(x)= (−1)h−1 log χ(γ1)

p
th∂h((γ − 1) (a log(X))=

(
1− 1

p

)
log χ(γ ) (γ − 1)F

where

F = (−1)h−1th∂h(a log(X))= (−1)h−1ath∂h−1
(

1+ X

X

)
.

https://doi.org/10.1017/S1474748013000261 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000261


578 D. Benois

This implies immediately that F ∈ H1
δ (Qp,H (Γ ) ⊗ V). On the other hand, as

D = Dcris(RL(δ)), without loss of generality we may assume that a = t−meδ where
δ(x)= |x|xm. Then

F = (−1)h−1th−m∂h log(X) eδ.

One has pr0(F)= cl(G,F) where (1−γ )G= (1−ϕ)F (see § 1.2.3) and by [15, Lemma
1.5.1] there exists a unique b ∈ E

†,ψ=0
L such that (1− γ ) b= `(X). One has

(1− γ )
(

th−m∂hbeδ
)
= (1− ϕ)

(
th−m∂h log(X)eδ

)
= (−1)h−1(1− ϕ)F.

Thus G = (−1)h−1th−m∂h(b)eδ and res
(
G tm−1dt

) = (−1)h−1res
(
th−1∂h(b)dt

)
eδ = 0.

Next from the congruence F ≡ (h − 1)! t−meδ (mod Qp[[X]] eδ) it follows that
res(Ftm−1dt)= (h− 1)! eδ. Therefore by [7, Corollary 1.5.5] we have(

1− 1
p

)
(log χ(γ )) cl(G,F)= (h− 1)! cl(βm)= (h− 1)! ic(a). (10)

On the other hand

x(0)= a⊗ `
(
(1+ X)χ(γ ) − 1

X

)∣∣∣∣∣
X=0

= a

(
1− 1

p

)
log χ(γ ). (11)

The formulas (10) and (11) imply that

δD(a)= (h− 1)!
(

1− 1
p

)−1

(log χ(γ ))−1 ic(a).

and the proposition is proved. �

1.4. p-adic distributions (see [24, Chapitre II], [63, §§1.1, 1.2])

Let D(Z∗p,L) be the space of distributions on Z∗p with values in a finite extension L of Qp.

With each µ ∈D(Z∗p,L) one can associate its Amice transform Aµ(X) ∈ L[[X]] by

Aµ(X)=
∫

Z∗p
(1+ X)xµ(x)=

∞∑
n=0

(∫
Z∗p

( x

n

)
µ(x)

)
Xn.

The map µ 7→ Aµ(X) establishes an isomorphism between D(Z∗p,L) and (R+L )ψ=0. We
will denote by M(µ) the unique element of H (Γ ) such that

M(µ) (1+ X)=Aµ(X).

For each m ∈ Z the character χm : Γ → Z∗p can be extended to a unique continuous

L-linear map χm :H (Γ )→ L∗. If h =∑p−2
i=0 δihi(γ1 − 1), then χm(h) = hi(χ

m(γ1) − 1)
with i≡ m (mod (p− 1)). An easy computation shows that∫

Z∗p
xmµ(x)= ∂mAµ(0)= χm(M(µ)).

https://doi.org/10.1017/S1474748013000261 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000261


Trivial zeros of p-adic L-functions at near-central points 579

If x ∈ Z∗p we set 〈x〉 = ω−1(x) x where ω denotes the Teichmüller character. With any
µ ∈D(Z∗p,L) we associate p-adic functions

Lp(µ, ω
i, s)=

∫
Z∗p
ωi(x)〈x〉sµ(x), 06 i6 p− 2.

Write M(µ)=∑p−2
i=0 δihi(γ1 − 1). Then

Lp(µ, ω
i, s)= hi

(
χ(γ1)

s − 1
)
. (12)

To prove this formula it is enough to compare the values of both sides at the integers
s≡ i (mod (p− 1)).

We say that µ is of order r > 0 if its Amice transform Aµ(X) =∑∞n=1 anXn is of order
r, i.e. if the sequence |an|p/nr is bounded above. A distribution of order r is completely
determined by the values of the integrals∫

Z∗p
ζ x

pnxiµ(x), n ∈ N, 06 i6 [r],

where [r] is the largest integer no greater then r.
Set Ẑ(p) = Z∗p ×

∏
l 6=p Zl. A locally analytic function on

∏
l 6=p Zl is locally constant and

we say that a distribution µ on Ẑ(p) is of order r if for any locally constant function g(y)
on
∏

l 6=p Zl the linear map f 7→ ∫
Ẑ(p) f (x)g(y)µ(x, y) is a distribution of order r on Z∗p.

2. The `-invariant

2.1. The `-invariant

2.1.1. Definition of the `-invariant. In this section we review and slightly generalize
the definition of the `-invariant proposed in our previous article [7] in order to cover
the case of potentially crystalline reduction of modular forms. Let S be a finite set of
primes and Q(S)/Q be the maximal Galois extension of Q unramified outside S ∪ {∞}.
Fix a finite extension L/Qp. Let V be an L-adic representation of GS = Gal(Q(S)/Q),
i.e. a finite dimensional L-vector space equipped with a continuous linear action of GS.
We write H∗S(Q,V) for the continuous cohomology of GS with coefficients in V. We will
always assume that the restriction of V to the decomposition group at p is potentially
semistable. For all primes l 6= p (resp. for l = p), Greenberg [35] (resp. Bloch and Kato
[13]) defined a subgroup H1

f (Ql,V) of H1(Ql,V) by

H1
f (Ql,V)=

{
ker(H1(Ql,V)→ H1(Qur

l ,V)) if l 6= p,

ker(H1(Qp,V)→ H1(Qp,V ⊗ Bcris)) if l= p

where Bcris is the ring of crystalline periods [32]. The Selmer group of V is defined as

H1
f (Q,V)= ker

(
H1

S (Q,V)→
⊕
l∈S

H1(Ql,V)

H1
f (Ql,V)

)
.
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We also define

H1
f ,{p} (Q,V)= ker

H1
S (Q,V)→

⊕
l∈S−{p}

H1(Ql,V)

H1
f (Ql,V)

 .
Note that these definitions do not depend on the choice of S. From now until the end of
this section we assume that V satisfies the following conditions:

(1) H1
f (Q,V)= H1

f (Q,V∗(1))= 0.

(2) The action of ϕ on Dst(V) is semisimple at 1.

(3) dimLtV(Qp)= 1.

We remark that the last condition can be relaxed but it simplifies the formulation of
Proposition 2.2.2 below and holds for the situations considered in ğğ 3 and 4.

The condition (1) together with the Poitou–Tate exact sequence

· · · → H1
f (Q,V)→ H1

S (Q,V)→
⊕
l∈S

H1(Ql,V)

H1
f (Ql,V)

→ H1
f (Q,V∗f (1))∗→ · · ·

(see [34, Proposition 2.2.1]) gives an isomorphism

H1
S (Q,V)'

⊕
l∈S

H1(Ql,V)

H1
f (Ql,V)

.

In particular, we have

H1
f ,{p}(Q,V)' H1(Qp,V)

H1
f (Qp,V)

. (13)

Let D be a one-dimensional subspace of Dcris(V) on which ϕ acts as multiplication by
p−1. Recall (see ğ1.3.5) that D = Dcris(RL(δ)) where δ(x) = |x|xm and m > 1 denotes the
unique Hodge–Tate weight of D. Thus we have an exact sequence of (ϕ, Γ )-modules

0→RL(δ)→D†
rig(V)→D→ 0 (14)

where D = D†
rig(V)/RL(δ). Passing to duals and taking the long exact cohomology

sequence we obtain an exact sequence

H1(Qp,V∗(1))→ H1(RL(χδ
−1))→ H2(D∗(χ)). (15)

Proposition 2.1.2. Let V be an L-adic representation of GS which satisfies the
conditions (1)–(3) above. Assume that D is a one-dimensional subspace of Dcris(V)
such that Dϕ=p−1 = D and that one of the following conditions holds:

(a) D is not contained in the image of the monodromy operator N : Dpst(V)→ Dpst(V)
and Dcris(V)ϕ=1 = 0.

(b) D is contained in the image of N and N−1(D) ∩ Dst(V)ϕ=1 is a one-dimensional
L-vector space.
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Then the composition

~ : H1
f ,{p}(Q,V∗(1))→ H1(RL(χδ

−1))

of the localization map H1
f ,{p}(Q,V∗(1)) → H1(Qp,V∗(1)) with H1(Qp,V∗(1)) →

H1(RL(χδ
−1)) is injective. Moreover, Im(~) is a one-dimensional L-vector space such

that

Im(~) ∩ H1
f (RL(χδ

−1))= {0}.
Proof. We consider the cases (a) and (b) separately.

First assume that D satisfies (a). Applying the functor Dpst to (14) we obtain an exact
sequence

0→ DQur
p
→Dpst(V)

f−→Dpst(D)→ 0. (16)

From (9) it follows that Fil0Dpst(D)=Dpst(D) and by [7, Proposition 1.4.4]

H0(D)'Dpst(D)
ϕ=1,N=0,GQp =Dcris(D)

ϕ=1.

Applying the snake lemma to (16) we obtain an isomorphism of GQp -modules
Dpst(V)ϕ=1 ' Dpst(D)

ϕ=1. Thus Dst(V)ϕ=1 ' Dst(D)
ϕ=1. Let x ∈ Dcris(D)

ϕ=1. There
exists a unique y ∈ Dst(V)ϕ=1 such that f (y) = x. Since f (N(y)) = N(x) = 0, one has
N(y) ∈ D and by (a) N(y) = 0, i.e. y ∈ Dcris(V)ϕ=1. Since Dcris(V)ϕ=1 = 0 by assumption
(a), we have proved that H0(D)= 0.

Now H2(D∗(χ)) = 0 by Poincaré duality and from the exact sequence (15) we obtain
that the map H1(Qp,V∗(1)) → H1(RL(χδ

−1)) is surjective. Since χδ−1(x) = x1−m,
the cohomology H1(RL(χδ

−1)) decomposes into the direct sum of one-dimensional
subspaces

H1(RL(χδ
−1))' H1

f (RL(χδ
−1))⊕ H1

c (RL(χδ
−1)).

The image of H1
f (Qp,V∗(1)) in H1(RL(χδ

−1)) is contained in H1
f (RL(χδ

−1)) and we have
a surjective map

H1(Qp,V∗(1))
H1

f (Qp,V∗(1))
→ H1(RL(χδ

−1))

H1
f (RL(χδ−1))

. (17)

From Dcris(V)ϕ=1 = 0 it follows that H0(Qp,V)= 0 and

dimL

(
H1

f (Qp,V)
)
= dimL (tV(L))+ dimL(H

0(Qp,V))= 1.

Therefore H1(Qp,V∗(1))/H1
f (Qp,V∗(1)) is one-dimensional and the map (17) is an

isomorphism. Combining (17) with the isomorphism (13) for the cohomology with
coefficients in V∗(1) instead of V we obtain an isomorphism

H1
f ,{p}(Q,V∗(1))' H1(RL(χδ

−1))

H1
f (RL(χδ−1))

.

This proves the proposition in the case (a).
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Now assume that D satisfies (b). We follow the approach of [7, §§2.1 and 2.2] with
some modifications (see especially the proofs of Proposition 2.1.7 and Lemma 2.1.8
op. cit.). The proposition will be proved in several steps.

(b1) Consider the filtration on Dpst(V) given by

Di =


0 if i=−1

DQur
p

if i= 0

(D+ N−1(D) ∩Dst(V)
ϕ=1)Qur

p
if i= 1

Dpst(V) if i= 2.

By [12] this filtration induces a unique filtration on D†
rig(V)

{0} = F−1D
†
rig(V)⊂ F0D

†
rig(V)⊂ F1D

†
rig(V)⊂ F2D

†
rig(V)=D†

rig(V)

such that Dpst(FiD
†
rig(V))= Di. Note that F1D

†
rig(V) is a semistable (ϕ, Γ )-submodule of

D†
rig(V). To simplify notation set M0 = F0D

†
rig(V), M = F1D

†
rig(V) and M1 = gr1D

†
rig(V).

We remark that M0 'RL(δ) and since Fil0(D1/D0) = D1/D0 and (D0/D1)
ϕ=1 = D0/D1,

Proposition 1.5.9 of [7] implies that M1 ' RL(x−k) for some k > 0. By the assumption
(b) the monodromy operator N acts non-trivially on D1 and therefore we have a
non-crystalline extension

0→RL(δ)→M→RL(x
−k)→ 0

which is a particular case of the exact sequence from [7, Proposition 2.1.7]. Passing to
duals and taking the long cohomology sequence we obtain a diagram

H1(RL(|x|xk+1))
f1 // H1(M∗(χ))

g1 // H1(RL(χδ
−1))

δ1 // H2(RL(|x|xk+1)) // 0 .

H1
f ,{p}(Q,V∗(1))

η

OO
~

77nnnnnnnnnnnn

(18)

(b2) The quotient D̃ = gr2D
†
rig(V) is a potentially semistable (ϕ, Γ )-module with

Hodge–Tate weights > 0. Thus H0(D̃) ' (Dpst(V)/D1)
GQp ,ϕ=1,N=0

. Let x̄ = x + D1 ∈
(Dpst(V)/D1)

GQp ,ϕ=1,N=0
. For each g ∈ GQp we can write g(x) = x + d for some d ∈ D1.

Since the inertia subgroup Ip ⊂ GQp acts on Dpst(V) through a finite quotient and
since the restriction of this action to D1 is trivial, we obtain that x ∈ Dpst(V)Ip =
Dst(V)⊗QpQur

p . Thus

x̄ ∈
((

Dst(V)

D+ N−1(D) ∩Dst(V)ϕ=1

)
⊗Qur

p

)GQp ,ϕ=1,N=0

=
(

Dst(V)

D+ N−1(D) ∩Dst(V)ϕ=1

)ϕ=1,N=0

.

Since ϕ is semisimple at 1, we can assume that x ∈ Dst(V)ϕ=1. Then N(x) ∈ D
and therefore x ∈ N−1(D) ∩ Dst(V)ϕ=1. This shows that x̄ = 0 and we have proved
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that H0(D̃) = 0. By Poincaré duality we obtain immediately that H2(D̃∗(χ)) = 0. Now
the Euler characteristic formula together with [7, Corollary 1.4.5] give

dimL H1(D̃∗(χ))= rg(D̃∗(χ))+ dimL H0(D̃∗(χ))= dimL H1
f (D̃
∗(χ))

and therefore

H1
f (D̃
∗(χ))= H1(D̃∗(χ)). (19)

(b3) Consider the exact sequence

0→ D̃∗(χ)→D†
rig(V

∗(1))→M∗(χ)→ 0.

Since H0(M∗(χ)) = 0, this sequence together with the isomorphism (19) gives an exact
sequence

0→ H1
f (D̃
∗(χ))→ H1(Qp,V∗(1))→ H1(M∗(χ))→ 0. (20)

On the other hand, by [7, Corollary 1.4.6] the sequence

0→ H1
f (D̃
∗(χ))→ H1

f (Qp,V∗(1))→ H1
f (M

∗(χ))→ 0 (21)

is also exact.
(b4) We come back to the diagram (18). The sequences (20) and (21) together with

the isomorphism (13) show that the map η is injective. By [7, Lemma 2.1.8] one has
ker(g1)= H1

f (M
∗(χ)) and H1(RL(χδ

−1))= H1
f (RL(χδ

−1))⊕ Im(g1). Since

H1(Qp,V∗(1))/H1
f (Qp,V∗(1))' H1(M∗(χ))/H1

f (M
∗(χ))

we obtain that ker(~) = Im(η) ∩ ker(g1) = 0 and that Im(~) ∩ H1
f (RL(χδ

−1)) = 0. The
proposition is proved. �

Definition. The `-invariant associated with V and D is the unique element `(V,D) ∈ L
such that

Im(~)= L(ym−1 + `(V,D) xm−1).

Here {xm−1, ym−1} is the canonical basis of H1(RL(χδ
−1)) constructed in § 1.2.6.

Remarks 2.1.3. (1) If V is semistable at p this definition agrees with the definition of
`(V,D) proposed in [7, §§2.2.2 and 2.3.3].

(2) In the both cases (a) and (b) our assumptions imply that H0(Qp,V)= 0.
(3) One can express `(V,D) directly in terms of V and D. Assume that D satisfies the

condition (a) of Proposition 2.1.2. Since H0(D) = 0 the sequence (14) shows that
H1(RL(δ)) injects into H1(D†

rig(V))' H1(Qp,V). Moreover, from dimLH1
f (Qp,V)= 1

and the fact that dimL H1
f (RL(δ)) = 1 it follows that H1

f (Qp,V) ' H1
f (RL(δ)). Let

H1
D(V) denote the inverse image of H1(RL(δ))/H1

f (RL(δ)) under the isomorphism
(13). Then

H1
D(V)'

H1(RL(δ))

H1
f (RL(δ))
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and the localization map H1
S (V) → H1(Qp,V) induces an injection H1

D(V) →
H1(RL(δ)). Using the decomposition (6) we define L (V,D) as the unique element of
L such that

Im(H1
D(V)→ H1(RL(δ)))= L(βm +L (V,D)αm)

where {αm, βm} denotes the canonical basis of H1(RL(δ)). Then

`(V,D)=−L (V,D) (22)

(see [7, Proposition 2.2.7]). Note that in the cited work, V is assumed to be
semistable, but in the potentially semistable case the proof is exactly the same.

A similar duality formula can be proved in the case (b) too, but it will not be used
in this paper. We refer the reader to [7, §2.2.3] for more detail.

(4) The diagram (18) shows that in the case (b) the image of H1
f ,{p}(Q,V∗(1)) in

H1(RL(χδ
−1)) coincides with Im(g1) and therefore that `(V,D) depends only on

the local properties of V at p. On the other hand, in the case (a) the `-invariant
is global and contains information about the localization map H1

f ,{p}(Q,V∗(1))→
H1(RL(χδ

−1)).

2.2. Relation to the large logarithmic map

2.2.1. Global Iwasawa cohomology. We keep the notation and conventions of ğ 2.1.
Consider the global Iwasawa cohomology

H1
Iw,S(Q,T∗(1))= lim←−

cor

H1
S (Q(ζpn),T∗(1))

and

H1
Iw,S(Q,V∗(1))= H1

Iw,S(Q,T∗(1))⊗ZpQp.

By [62, ğ2.1.7] for l 6= p one has H1
Iw(Ql,V∗(1)) ' H0(Ql(ζp∞),V∗(1)) and therefore

H1
Iw(Ql,V∗(1))

Γ
is contained in H1

f (Ql,V∗(1)). Thus H1
Iw,S(Q,V∗(1))

Γ
injects into

H1
f ,{p}(Q,V∗(1)) and we have a commutative diagram

H1
Iw,S(Q,V∗(1))

locp //

prV,0

��

H1
Iw(Qp,V∗(1))

prV,0

��
H1

f ,{p}(Q,V∗(1))
locp // H1(Qp,V∗(1))

where locp and prV,0 denote localization maps and projections respectively.
From (13) (applied to V∗(1)) it follows that the bottom localization map is
injective. One expects that the upper localization map is also injective. This
is a consequence of the weak Leopoldt conjecture which predicts the vanishing
of H2

S (Q(ζp∞),V/T) (see [65, Appendice B]). Let δ0 denote the idempotent of
Gal(Q(ζp)/Q) associated with the trivial character. It is not difficult to see
(see [66, Proposition B5]) that if H1

f (V
∗(1)) = 0 and H0(Qp,V∗(1)) = 0 then the

https://doi.org/10.1017/S1474748013000261 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000261


Trivial zeros of p-adic L-functions at near-central points 585

δ0-component H2
S (Q(ζp∞),V/T)(δ0) of H2

S (Q(ζp∞),V/T) vanishes and therefore the map
H1

Iw,S(Q,V∗(1))(δ0)→ H1
Iw(Qp,V∗(1))(δ0) is injective. This result will not be used in the

remainder of the paper.
Fix a generator γ ∈ Γ and an integer h > 1 such that Fil−hDdR(V) = DdR(V). Recall

(see ğ 1.3.4) that with each d ∈Dcris(V) one can associate the large logarithmic map

LεV∗(1),1−h,d : H1
Iw(Qp,V∗(1))→H (Γ ).

The main results of this paper will be directly deduced from the following statement.

Proposition 2.2.2. Let V be an L-adic representation which satisfies the conditions
(1)–(3). Assume that D is a one-dimensional subspace of Dcris(V) on which ϕ

acts as multiplication by p−1 and which satisfies one of the conditions (a), (b) of
Proposition 2.1.2. Fix a non-zero element d ∈ D. Let z ∈ H1

Iw,S(Q,V∗(1)) be such that
z0 = pr0(z) ∈ H1

S (Q,V∗(1)) is non-zero. Denote by µz ∈ D(Z∗p,L) the distribution defined
by

M(µz)= LεV∗(1),1−h,d(locp(z))

and consider the p-adic function

Lp(µz, s)=
∫

Z∗p
〈x〉sµz(x).

Then Lp(µz, 0)= 0 and

L′p(µz, 0)= `(V,D) Γ (h)

(
1− 1

p

)−1 [
d, exp∗V∗(1)(locp(z0))

]
V

where [ , ]V :Dcris(V)×Dcris(V∗(1))→ L is the canonical duality.

Proof. We fixed a basis d of the one-dimensional L-vector space D = Dcris(RL(δ)).

Let d∗ be the basis of Dcris(RL(χδ
−1)) which is dual to d. Denote by z̃0 the

image of locp(z0) under the projection map H1(D†
rig(V

∗(1)))→ H1(RL(χδ
−1)). Write

z̃0 = a if (d∗)+ b ic(d∗). Then `(V,D)= a/b. By Proposition 1.2.7 and (7) we have[
d, exp∗V∗(1)(locp(z0))

]
V
= −expV(d) ∪ locp(z0)=−expRL(δ)

(d) ∪ z̃0

= −b
(
if (d) ∪ ic(d

∗)
)=−b (αm ∪ ym−1)= b. (23)

Let M(µz) = ∑p−2
i=0 δihi(γ1 − 1). Then Lp(µz, s) = h0 (χ(γ1)

s − 1) by (8). From
Proposition 1.3.7 it follows that there exists F ∈ H1

δ (Qp,H (Γ ) ⊗ V) such that
Expε

−1
V,h (d ⊗ (1+ X))= (γ − 1)F and

M(µz) = LεV∗(1),1−h,d(locp(z))=
〈

locp(z),Expε
−1

V,h (d ⊗ (1+ X)ι
〉

V

= (γ−1 − 1)
〈
locp(z),Fι

〉
V .

Put
〈
locp(z),Fι

〉
Vf
=∑p−2

i=0 δiHi(γ1 − 1). Then Lp(µz, s) = (χ(γ )−s − 1)H0(χ(γ1)
s − 1).

Since χ(γ1)= χ(γ )p−1 the last formula implies that Lp(µz, s) has a zero at s= 0 and

L′p(µz, 0)=−(log χ(γ ))H0(0). (24)
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On the other hand, by Proposition 1.3.7,

H0(0) = locp(z0) ∪ (pr0F)= z̃0 ∪ δD(d)

= Γ (h)
(

1− 1
p

)−1

(log χ(γ ))−1 (z̃0 ∪ ic(d)
)

= −Γ (h)
(

1− 1
p

)−1

(log χ(γ ))−1a. (25)

From (23)–(25) we obtain that

L′p(µz, 0)= Γ (h)
(

1− 1
p

)−1

a= `(V,D) Γ (h)

(
1− 1

p

)−1 [
d, exp∗V∗(1)(locp(z0))

]
V

and the proposition is proved. �

3. Trivial zeros of Dirichlet L-functions

3.1. Dirichlet L-functions

Let η : (Z/NZ)∗→ C∗ be a Dirichlet character of conductor N. We fix a primitive N th
root of unity ζN and set τ(η)=∑a mod N η(a) ζ

a
N . The Dirichlet L-function

L(η, s)=
∞∑

n=1

η(n)

ns , Re(s) > 1

has a meromorphic continuation on the whole complex plane and satisfies the functional
equation(

N

π

)s/2

Γ

(
s+ δη

2

)
L(η, s)=Wη

(
N

π

)(1−s)/2

Γ

(
1− s+ δη

2

)
L(η̄, 1− s)

where Wη = i−δηN−1/2τ(η) and δη = 1−η(−1)
2 . From now until the end of this section we

assume that η is not trivial. For any j > 0 the special value L(η,−j) is the algebraic
integer given by

L(η,−j)= djFη(0)
dtj

(26)

where

Fη(t)= 1
τ(η−1)

∑
a mod N

η−1(a)

1− ζ a
Net

(see for example [64, proof of Proposition 3.1.4] ). In particular,

L(η, 0)= 1
τ(η−1)

∑
a mod N

η−1(a)

1− ζ a
N
. (27)

Moreover L(η,−j)= 0 if and only if j≡ δη(mod 2).
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Let p be a prime number such that (p,N) = 1. We fix a finite extension L of Qp

containing the values of all Dirichlet characters η of conductor N. The power series

Aµη (X)=−
1

τ(η−1)

∑
a mod N

(
η−1(a)

(1+ X) ζ a
N − 1

− η−1(a)

(1+ X)pζ pa
N − 1

)
lies in OL[[X]]ψ=0 and therefore can be viewed as the Amice transform of a unique
measure µη on Z∗p. The p-adic L-functions associated with η are defined to be

Lp(η ω
m, s)=

∫
Z∗p
ωm−1(x)〈x〉−sµη(x), 06 m6 p− 2.

From (12) and (26) it follows that these functions satisfy the following interpolation
property (the Iwasawa theorem):

Lp(η ω
m, 1− j)= (1− (η ωm−j)(p)p1−j) L(η ωm−j, 1− j) j> 1.

Note that the Euler factor 1− (η ωm−j)(p)p1−j vanishes if m= j= 1 and η(p)= 1 and that
L(η, 0) does not vanish if and only if η is odd, i.e. η(−1)=−1.

3.2. p-adic representations associated with Dirichlet characters

We continue to assume that (p,N) = 1. Set F = Q(ζN), G = Gal(F/Q) and let
ρ : G ' (Z/NZ)∗ denote the canonical isomorphism normalized by g(ζN) = ζ ρ(g)

−1
N . Fix

a finite extension L/Qp containing the values of all Dirichlet characters modulo N. If η
is such a character, we identify η with the character ψ ◦ ρ of G and denote by L(ψ)
the associated one-dimensional Galois representation. Let S denote the set of primes
dividing N.

Assume that η is a non-trivial character of conductor N. We need the following well
known results concerning the Galois cohomology of L(η):

(i) H∗(Ql,L(η))= H∗(Ql,L(χη−1))= 0 for l ∈ S.
(ii) H1

f (Q,L(η)) = 0 and H1
f (Q,L(χη−1)) ' (O∗F⊗ZL)(η). In particular,

H1
f (Q,L(χη−1))= 0 if η is odd.

(iii) The restriction of L(η) to the decomposition group at p is crystalline. More
precisely, ϕ acts on Dcris(L(η)) as multiplication by η(p) and the unique Hodge–Tate
weight of L(η) is 0.

Note that H0(Ql,L(η)) = 0 if l|N because in this case the inertia group acts
non-trivially on L(η). Together with Poincaré duality and the Euler characteristic
formula this gives (i). To prove (ii) it is enough to remark that H1

f (F,Qp(1)) ' O∗F⊗̂Qp

(see for example [45, ğ5]). Finally (iii) follows immediately from the definition of Dcris.
Assume now that η is odd and η(p) = 1. Then ϕ acts on Dcris(L(χη−1)) as

multiplication by p−1 and D = Dcris(L(χη−1)) satisfies the conditions (1)–(4) from
ğ 2.1.1. The isomorphism (13) takes the form

H1
S (Q,L(χη−1))' H1(Qp,L(χ))

H1
f (Qp,L(χ))

.
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3.3. Trivial zeros

3.3.1. Cyclotomic units. Set Fn = F(ζpn). The collection zcycl = (1 − ζ
p−n

N ζpn)n>1

form a norm compartible system of units which can be viewed as an element of
H1

Iw,S(F,L(χ)) using Kummer maps F∗n → H1
S (Fn,L(χ)). Twisting by ε−1 we obtain an

element zcycl(−1) ∈ H1
Iw,S(F,L). Shapiro’s lemma gives an isomorphism of G-modules

H1
Iw,S(F,L) ' H1

Iw,S(Q,L[G]ι). Let eη = 1
|G|
∑

g∈G η
−1(g) g. Since eηL[G]ι = Leη−1 is

isomorphic to L(η−1) we have

eηH1
Iw,S(F,L)' H1

Iw,S(Q,L(η−1)).

Moreover Dcris(L[G]) ' (L[G] ⊗ F)G ' L ⊗ F. The isomorphism Q[G] ' F defined by
λ 7→ λ(ζN) induces an isomorphism Dcris(L[G]) ' L[G] and therefore we can consider
eη as a basis of Dcris(L(η−1)). Let z

(η)

cycl(−1) denote the image of zcycl(−1) in
H1

Iw(Q,L(η−1)). We need the following properties of these elements:

(1) Relation to the complex L-function. Let z
(η−1)
cycl (−1)0 denote the projection of

z
(η−1)
cycl (−1) on H1(Q,L(η)). Then

exp∗L(η)
(

locp

(
z
(η−1)
cycl (−1)0

))
=−

(
1− η

−1(p)

p

)
L(η, 0) eη−1 .

(2) Relation to the p-adic L-function. Let e∗
η−1 ∈ Dcris(L(χη−1)) be the dual basis of

the basis eη−1 of Dcris(L(η)) and let L
(ε)
L(η),0 : H1

Iw(Qp,L(η))→ H (Γ ) denote the
associated logarithmic map. Then

LεL(η),0

(
locp

(
z
(η−1)
cycl (−1)

))
=−M(µη).

We remark that (1) follows from the explicit reciprocity law of Iwasawa [43] together
with (27). See also [45, Theorem 5.12] and [42, Corollary 3.2.7] where a more general
statement is proved using the explicit reciprocity law for Qp(r). The statement (2)
is Coleman’s construction of p-adic L-functions reformulated in terms of the large
logarithmic map [64, Proposition 3.1.4].

Theorem 3.3.2. Let η be an odd character of conductor N. Assume that p is a prime
odd number such that p - N and η(p)= 1. Then

L′p(η ω, 0)=−L (η) L(η, 0)

where L (η) is the invariant defined by (3).

Proof. We apply Proposition 2.2.2 to V = L(χη−1), D = Dcris(L(χη−1)) and z =
z
(η−1)
cycl (−1). It is easy to see that L (η) coincides with `(L(χη−1),D). Taking into account

(1), (2) above we obtain that

L′p(η ω, 0) = L′p(µz, 0)= `(L(χη−1),D)

(
1− 1

p

)−1 [
e∗
η−1 , exp∗L(η)

(
locp(z0)

)]
= −L (η) L(η, 0)

and the theorem is proved. �
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4. Trivial zeros of modular forms

4.1. p-adic L-functions

4.1.1. Construction of p-adic L-functions (see [1, 53, 76, 55]). Let f =∑∞n=1 anqn

be a normalized newform on Γ0(N) of weight k and character ε. The complex L-function
L(f , s)=∑∞n=1 ann−s decomposes into an Euler product

L(f , s)=
∏

p

Ep(f , p−s)−1

with Ep(f ,X) = 1 − apX + ε(p)pk−1X2. Let p > 2 be a prime such that the Euler factor
Ep(f ,X) is not equal to 1 and let α ∈Qp be a root of the polynomial X2 − apX + ε(p)pk−1.

Assume that α is not critical, i.e. that vp(α) < k − 1. Manin and Vishik [53, 76] and,
independently, Amice and Vélu [1] proved that there exists a unique distribution µf ,α on
Ẑ(p) of order vp(α) such that for any Dirichlet character η of conductor M prime to p and
any Dirichlet character ξ of conductor pm,

∫
Ẑ(p)

η(x)ξ(x)xj−1µf ,α(x)=



(
1− η̄(p)p

j−1

α

) (
1− βη(p)

pj

)
L̃(f , η, j)

if 16 j6 k − 1 and m= 0,

pmj η̄(pm)

αmτ(ξ̄ )
L̃(f , ηξ−1, j)

if 16 j6 k − 1 and m> 1

where τ(ξ̄ ) =∑pm−1
a=1 ξ̄ (a) ζ a

pm and L̃(f , η, j) is the algebraic part of L(f , η, j) (see (1)). For
us it will be more convenient to work with the distribution λf ,α = x−1µf ,α. The p-adic
L-functions associated with η : (Z/MZ)∗→Q ∗p are defined by3

Lp,α(f , ηω
m, s)=

∫
Ẑ(p)

ηωm(x)〈x〉sλf ,α(x) 06 m6 p− 2. (28)

It is easy to see that Lp,α(f , ηωm, s) is a p-adic analytic function which satisfies the
following interpolation property:

Lp,α(f , ηω
m, j)= Eα(f , ηωm, j) L̃(f , ηωj−m, j), 16 j6 k − 1 (29)

where

Eα(f , ηωm, j)=


(

1− η̄(p)p
j−1

α

) (
1− η(p)ε(p)p

k−j−1

α

)
if j≡ m (mod p− 1)

η̄(p)pj

α τ(ωj−m)
if j 6≡ m (mod p− 1).

(30)

4.1.2. p-adic representations associated with modular forms. For each prime p,
Deligne [26] constructed a p-adic representation

ρf :Gal(Q/Q)→GL(Wf )

3 Our Lp,α(f , ηωm, s) coincides with Lp(f , α, η̄ωm−1, s− 1) of [55].
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with coefficients in a finite extension L of Qp. This representation has the following
properties:

(i) det ρf is isomorphic to εχk−1 where χ is the cyclotomic character.
(ii) If l - Np then the restriction of ρf to the decomposition group at l is unramified and

det(1− FrlX|Wf )= 1− alX + ε(l) lk−1X2

(the Deligne–Langlands–Carayol theorem [14, 50]).
(iii) The restriction of ρf to the decomposition group at p is potentially semistable

with Hodge–Tate weights (0, k − 1) [29]. It is crystalline if p - N and semistable
non-crystalline if p ‖ N and (p, cond(ε)) = 1. If p|N and ordp(N) = ordp(cond(ε))
the restriction of ρf to the decomposition group at p is potentially crystalline and
Dcris(Wf )=Dpcris(Wf )

Gal(Qp/Qp) is one-dimensional. In all three cases,

det(1− ϕX|Dcris(Wf ))= 1− apX + ε(p) pk−1X2

(Saito’s theorem [73]; see also [30, 75]).

4.1.3. Trivial zeros (see [55]).

Definition. We say that Lp,α(f , ηωm, s) has a trivial zero at s= j if

L(f , ηωj−m, j) 6= 0 and Eα(f , ηωm, j)= 0. (31)

From (30) it is not difficult to deduce that this occurs in the following three cases
[55, ğ15]:

• The semistable case: p ‖ N, k is even and (p, cond(ε)) = 1. Thus ε(p) = 0, Ep(f ,X) =
1− apX and ap is the unique non-critical root of X2 − apX. The restriction of Wf to the
decomposition group at p is semistable non-crystalline and the eigenvalues of ϕ acting
on Dst(Wf ) are α = ap and β = pα. The module Dst(Wf ) has a basis {eα, eβ} such that
ϕ(eα) = apeα, ϕ(eβ) = βeβ and N(eβ) = eα. Moreover Dcris(Wf ) = Leα. Let ε̃ be the
primitive character associated with ε. Then ε̃(p) 6= 0 and a2

p = ε̃(p)pk−2 [51, Theorem
3]. Write ap = ξpk/2−1 where ξ is a root of unity. Then Eα(f , ηωm, j) = 0 if and
only if j = k/2, m ≡ k/2 mod (p − 1) and η̄(p) = ξ. Therefore the p-adic L-function
Lp,α(f , ηωk/2, s) has a trivial zero at the central point s= k/2 if and only if η̄(p)= ξ.
• The crystalline case: p - N. The restriction of Wf to the decomposition group at

p is crystalline and by Deligne [27] one has |α| = p(k−1)/2. Write α = ξp
k−1
2 with

|ξ | = 1. Then Eα(f , ηωm, j) vanishes if and only if m ≡ j (mod p − 1), k is odd, and
either j = k+1

2 and η̄(p) = ξ or j = k−1
2 and η(p)ε(p) = ξ. The p-adic L-function

Lp,α(f , ηω
k+1
2 , s) has a trivial zero at the near-central point s = k+1

2 if and only

if α = η̄(p) p
k−1
2 and Lp,α(f , ηω

k−1
2 , s) has a trivial zero at s = k−1

2 if and only if

α = η(p) ε(p) p
k−1
2 .

• The potentially crystalline case: p|N and ordp(N)= ordp(cond(ε)). One has Ep(f ,X)=
1− apX and α = ap is the unique non-critical root of X2 − apX. Moreover ε̃(p)= 0 and
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it can be shown that |ap| = p
k−1
2 [60, 51]. The restriction of Wf to the decomposition

group at p is potentially crystalline and Dcris(Wf ) is a one-dimensional vector space
on which ϕ acts as multiplication by ap. The factor Eα(f , ηωm, j) vanishes if and only if
k is odd, j = m = k+1

2 and ap = η̄(p)p k−1
2 . The p-adic L-function Lα,p(f , ηω

k+1
2 , s) has a

trivial zero at the near-central point s= k+1
2 if and only if ap = η(p)p k−1

2 .

If η is a Dirichlet character of conductor M, the twisted modular form fη =∑∞
n=1 η(n) anqn is not necessarily primitive, but there exists a unique normalized

newform f ⊗ η such that

L(f , η, s)= L(f ⊗ η, s)
∏
l|M

El(f ⊗ η, l−s)

(see for example [2]). Write L(f ⊗ η, s) =∑∞n=1
aη,n
ns . If p - M, the Euler factors at p of

LM(f ⊗ η, s) and L(f , η, s) coincide and αη = αη(p) is a root of X2− aη,pX+ ε(p)η2(p)pk−1.

It is easy to see that Eαη (fη, ωm, j) = Eα(f , ηωm, j) and from the interpolation formula
(29) it follows immediately that the behavior of Lp,α(f , ηωm, s) and Lp,αη (f ⊗ η, ωm, s)
is essentially the same. Therefore the general case reduces to the case of the trivial
character η.

4.2. Selmer groups and `-invariants of modular forms

4.2.1. The Selmer group. From now until the end of this section, we assume that
Lp,α(f , ωk0 , s) has a trivial zero at k0. Thus k0 = k/2 in the semistable case and k0 = k±1

2
in the crystalline or potentially crystalline case. Set Vf = Wf (k0) . Let f ∗ denote the
complex conjugation of f , i.e. f ∗ =∑∞n=1 ānqn. The canonical pairing Wf ×Wf ∗→ L(1− k)
induces an isomorphism Wf ∗ (k − k0) ' V∗f (1). We need the following basic results
concerning the Galois cohomology of Vf :

(i) H0(Qp,Vf )= H0(Qp,V∗f (1))= 0 and dimL H1(Qp,Vf )= dimL H1(Qp,V∗f (1))= 2.

(ii) H1
f (Qp,Vf ) and H1

f (Qp,V∗f (1)) are one-dimensional L-vector spaces.

(iii) H1
f (Q,Vf )= H1

f (Q,V∗f (1))= 0.

We remark that using the fact that the Hodge–Tate weights of Wf are 0 and k − 1
and the eigenvalues of ϕ on Dcris(Wf ) have absolute value p(k−1)/2 (respectively pk/2) in
the crystalline and potentially crystalline case (respectively in the semistable case), one
deduces that H0(Qp,Wf (m)) = 0 for all 1 6 m 6 k − 1 (see [46, Proposition 14.12 and
ğ13.3]). Applying Poincaré duality and the Euler characteristic formula we obtain (i).
Next (ii) follows from (i) together with the formula

dimL H1
f (Qp,Vf )= dimL tVf (L)+ dimL H0(Qp,Vf ).

Finally (iii) is a deep result of Kato [46, Theorem 14.2]. Note that in the semistable case
we assume (see (31)) that L(f , k/2) 6= 0 and therefore the assumptions of Kato’s theorem
hold.

From (i)–(iii) above it follows that Vf satisfies the conditions (1)–(3) of ğ 2.2.1.
Assume that k0 >

k+1
2 . This holds automatically in the semistable (k0 = k/2) and
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potentially crystalline (k0 = k+1
2 ) cases. In the crystalline case α∗ = ε−1(p)α is a root

of 1 − āpX + ε−1(p)pk−1X2 and using the functional equation for p-adic L-functions one
can reduce the study of Lp,α(f , ωk0 , s) at s = k−1

2 to the study of Lp,α∗(f ∗, ωk0+1, s) at
s= k+1

2 .

Lemma 4.2.2. Assume that Lp,α(f , ωk0 , s) has a trivial zero on the right of the central
point (i.e. k0 > k/2). Then Dα = Dcris(Vf )

ϕ=p−1 is a one-dimensional L-vector space
which satisfies one of the conditions (a), (b) of Proposition 2.1.2.

Proof. From 4.1.2 it follows that αp−k0 = p−1 is an eigenvalue of ϕ acting on Dcris(Vf ).

Thus dimL Dα > 1. If dimL Dα = 2 then Vf will be crystalline and ϕ will act on Dcris(Vf )

as multiplication by p−1. This contradicts the weak admissibility of Dcris(Vf ). Finally Dα
satisfies (a) in the crystalline and potentially crystalline cases and (b) in the semistable
case. �

4.2.3. The `-invariant of modular forms. From Lemma 4.2.2 it follows that if
Lp,α(f , ωk0 , s) has a trivial zero at k0 > k/2, the `-invariant `(Vf ,Dα) is well defined.
To simplify notation we will denote it by `α(f ). The general definition of the `-invariant
can be made more explicit in the case of modular forms.

• The semistable case. Let {eα, eβ} denote the basis of Dst(Wf ) as in 4.1.3. In
[7, Proposition 2.3.7] it is proved that

`α(f )=LFM(f ) (32)

where LFM(f ) is the Fontaine–Mazur invariant [54] which is defined as the unique
element of L such that

eβ +LFM(f ) eα ∈ Filk−1Dst(Wf ).

• The crystalline and potentially crystalline cases. The (ϕ, Γ )-module D†
rig(Vf ) ∩(

Dα⊗LRL[1/t]
)

is isomorphic to RL(δ) with δ(x) = |x|x k+1
2 and the exact sequence

(14) takes the form

0→RL(δ)→D†
rig(Vf )→RL(δ

′)→ 0

for some character δ′ : Q∗p → L∗. Since dimL H1(RL(δ)) = 2 we have H1(Qp,Vf ) '
H1(RL(δ)). Therefore H1

Dα (Vf ) = H1
f ,{p}(Q,Vf ) and Lα(f ) =L (Vf ,Dα) is the slope of

the image of the localization map H1
f ,{p}(Q,Vf )→ H1(Qp,Vf ) under the canonical

decomposition (6)

H1(Qp,Vf )' H1
f (RL(δ))× H1

c (RL(δ)).

The formula (22) gives

`α(f )=−Lα(f ). (33)

4.3. The main result

4.3.1. Kato’s Euler systems. Using the theory of modular units, Kato [46]
constructed an element zKato ∈ H1

Iw,S(Wf ∗) which is closely related to the complex
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and the p-adic L-functions via the Bloch–Kato exponential map. The CM case was
considered before by Rubin [72]. Set

zKato(j)= Twεj (zKato) ∈ H1
Iw,S(Wf ∗(j))

and denote by zKato(j)0 = pr0(zKato(j)) the projection of zKato(j) on H1
S (Wf ∗(j)). The

following statements are direct analogues of properties (1), (2) of cyclotomic units from
ğ 3.3.1:

(1) Relation to the complex L-function. One has

exp∗Wf∗ (j)
(
locp

(
zKato(j)0

)) = Γ (k − j)−1Ep

(
f , pk−j

)
L̃ (f , k − j) ω∗j ,

16 j6 k − 1, (34)

for some canonical basis ω∗j of Fil0Dcris(W∗f (j)) [46, Theorem 12.5]. Note that
ω∗j+1 = ω∗j ⊗ e1 where e1 = ε−1 ⊗ t.

(2) Relation to the p-adic L-function. Fix a generator dα of Dα. Let L
(α),ε
Wf∗ (k),1 denote the

large logarithmic map L
(ε)
Wf∗ (k),1,η associated with η = dα ⊗ e k+1

2
∈Dcris(Wf ). Then

L
(α),ε
Wf∗ (k),1

(
locp(zKato(k))

)=M(λf ,α)
[
dα ⊗ e k+1

2
, ω∗k

]
Wf

(35)

[46, Theorem 16.2]. We can now prove the main result of this paper.

Theorem 4.3.2. Let f be a newform on Γ0(N) of character ε and weight k and let p
be an odd prime. Assume that the p-adic L-function Lp,α

(
f , ωk0 , s

)
has a trivial zero at

s= k0 > k/2. Then

L′p,α(f , ωk0 , k0)= `α(f )
(

1− ε(p)
p

)
L̃ (f , k0) .

Proof. To simplify notation set z= zKato (k − k0). By Lemma 1.3.5 one has

L
(α),ε

V∗f (1),1−k0
(locp(z))= Twk0

(
L
(α),ε
Wf∗ (k),1(locp(zKato(k)))

)
.

Let µz be the distribution defined by M(µz)= L
(α),ε

V∗f (1),1−k0
(locp(z)). Then (35) gives

M(µz)= Twk0

(
M(λf ,α)

) [dα ⊗ ek0 , ω
∗
k ]Wf = Twk0

(
M(λf ,α)

) [dα, ω∗k0−1]Vf

and from (12) and (28) it follows that

Lp(µz, s)= Lp,α

(
f , ωk0 , s+ k0

) [
dα, ω

∗
k0−1

]
Vf
.

Now, applying Proposition 2.2.2 we obtain

L′p,α
(

f , ωk0 , k0

) [
dα, ω

∗
k0−1

]
Vf
= `α(f ) Γ (k0)

(
1− 1

p

)−1 [
dα, exp∗V∗f (1)(locp(z0))

]
Vf

. (36)

On the other hand, for j= k − k0 the formula (34) gives

exp∗V∗f (1)(locp(z0))= Γ (k0)
−1Ep

(
f , pk0

)
L̃ (f , k0) ω

∗
k0−1. (37)
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Since Ep
(
f , pk0

) = (1− 1
p

) (
1− ε(p)

p

)
and

[
dα, ω∗k0−1

]
Vf
6= 0, from (36) and (37) we

obtain that

L′p,α
(

f , ωk0 , k0

)
= `α(f )

(
1− ε(p)

p

)
L̃ (f , k0)

and the theorem is proved. �

Corollaries 4.3.3. (1) In the semistable case, k is even and ε(p) = 0. Theorem 4.3.2
together with (32) gives the Mazur–Tate–Teitelbaum conjecture

L′p,α(f , ωk/2, k/2)=LFM(f ) L̃ (f , k/2)

and our proof can be seen as a revisiting of the Kato–Kurihara–Tsuji approach using
the theory of (ϕ, Γ )-modules.

(2) In the crystalline and potentially crystalline cases, Theorem 4.3.2 reads

L′p,α
(

f , ω
k+1
2 ,

k + 1
2

)
=−Lα(f )

(
1− ε(p)

p

)
L̃

(
f ,

k + 1
2

)
(see (33)).
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12. L. Berger, Equations différentielles p-adiques et (ϕ,N)-modules filtrés, in
Représentations p-adiques de groupes p-adiques. I. Représentations Galoisiennes et
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