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In certain rings containing non-central idempotents we characterize homomorphisms,
derivations, and multipliers by their actions on elements satisfying some special
conditions. For example, we consider the condition that an additive map h between
rings A and B satisfies h(x)h(y)h(z) = 0 whenever x, y, z ∈ A are such that
xy = yz = 0. As an application, we obtain some new results on local derivations and
local multipliers. In particular, we prove that if A is a prime ring containing a
non-trivial idempotent, then every local derivation from A into itself is a derivation.

1. Introduction

Let A be a ring and let M be an A-bimodule. Recall that a local derivation is an
additive map d : A → M such that for every x ∈ A there exists a derivation dx :
A → M such that d(x) = dx(x). The standard problem, initiated by Kadison [13]
and Larson and Sourour [14], is to find conditions implying that a local derivation
is actually a derivation. A number of papers dealing with this problem have been
published [1, 2, 6, 8, 9, 12, 17–20, 22, 24–26]. There is also a related, yet somewhat
simpler problem on local multipliers, which are defined below (see, for example,
[7, 11,12,21,23]).

It is quite common to study local derivations and multipliers in algebras that
contain many idempotents, in the sense that the linear span of all idempotents
is ‘large’. The main novelty of this paper is that we shall deal with the sub-ring
generated by all idempotents instead of the span. This will make it possible for
us to obtain a new type of results, giving definitive conclusions under very mild
assumptions concerning the existence of idempotents. For example, we will show
that every local derivation from a prime ring A into itself is a derivation provided
that A contains only one non-trivial idempotent (corollary 3.9); moreover, if A is
either a simple ring with a non-trivial idempotent or a ring of n × n matrices,
n � 2, over any unital ring, then every local derivation from A into an arbitrary
A-bimodule is a derivation (corollary 3.8). The existence of non-trivial idempotents
is certainly necessary in these results, since there exist local derivations that are
not derivations even on some fields [13].

The results on local derivations and multipliers will actually be obtained as corol-
laries to our main results in which we shall study maps satisfying certain more gen-
eral conditions. These conditions also cover some other conditions that have been
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studied in the literature, notably those from [4]. In fact, generalizing the results
from [4] is another aim of this paper.

In order to present these conditions we introduce and fix some notation. Through-
out the paper, A and B will be rings, M will denote an arbitrary A-bimodule, and
L will denote an arbitrary left A-module. These modules will play an entirely for-
mal role in this paper. The only assumption that we shall occasionally need is that
they are unital. In general we do not even require that A and B have unities, but
in some of our results this will be necessary.

Let h : A → B, d : A → M and f : A → L be additive maps. We shall consider
the following conditions:

xy = yz = 0 =⇒ h(x)h(y)h(z) = 0 for all x, y, z ∈ A; (h1)
xy = yz = 0 =⇒ xd(y)z = 0 for all x, y, z ∈ A; (d1)
xy = 0 =⇒ h(x)h(y) = 0 for all x, y ∈ A; (h2)
xy = 0 =⇒ d(x)y + xd(y) = 0 for all x, y ∈ A; (d2)
xy = 0 =⇒ xf(y) = 0 for all x, y ∈ A. (f2)

Note that homomorphisms satisfy the conditions (h1) and (h2), derivations satisfy
the conditions (d1) and (d2), and multipliers satisfy the condition (f2). The obvious
problem, which is the main issue of this paper, is to show that in appropriate settings
the converses are true.

The condition (h1) turns out to be the most general, i.e. the other conditions can
be, as we shall see, reduced to this one. Maps satisfying the conditions (h2) and (d2),
which are clearly special cases of maps satisfying (h1) and (d1), respectively, were
studied in [4] as well as in many other papers. We refer the reader to [3, 4] and
references therein for historical detail.

There is a simple link between ‘local maps’ and these conditions. If d : A → M
is a local derivation, then for all x, y, z ∈ A we have

xd(y)z = xdy(y)z = dy(xy)z − dy(x)yz,

and hence xd(y)z = 0 in case when xy = yz = 0. Thus, local derivations sat-
isfy (d1), and similarly we see that local multipliers satisfy (f2). Unfortunately,
local automorphisms, which have also been thoroughly studied in the literature, do
not always satisfy either (h1) or (h2), so our results are not directly applicable to
them.

The results that we state as theorems are formal in nature; they hold in arbitrary
rings and their (bi)modules. In corollaries we will show what these theorems yield for
two special classes of rings: rings that are generated by idempotents, and prime rings
with non-trivial idempotents. We conclude the paper with an example justifying
the necessity of certain assumptions in our results on prime rings.

2. Remarks on rings with idempotents

We continue by introducing some notation which will be fixed throughout the paper.
By E we denote the set of all idempotents in A, by R we denote the sub-ring of A
generated by E , and by I we denote the ideal of A generated by [E ,A]; here [·, ·]
denotes the commutator.
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Homomorphisms, derivations and multipliers 11

The main goal of this preliminary section is to state a simple lemma which is
of some interest in itself. In particular, it shows that the existence of merely one
non-central idempotent in A implies that R contains a non-zero ideal. The lemma
could be derived by following the arguments in Herstein’s theory of Lie ideals [10],
but we shall give a short direct proof instead. Nevertheless, it should be noted that
the idea of dealing with [E ,A] is well-known (see [10, p. 19]).

Lemma 2.1. I ⊆ R.

Proof. Let e ∈ E and x ∈ A. Then the elements e+ex−exe and e+xe−exe are also
idempotents, and so their difference, r = [e, x], lies in R. By a direct computation
one can check that

zr = [e, z[e, r]] − [e, z][e, r],
rw = [e, [e, r]w] − [e, r][e, w],

zrw = [e, z[e, r]w] − [e, z][e, rw] − [e, zr][e, w] + 2[e, z]r[e, w],

for all z, w ∈ A. Since [e,A] ⊆ R, this proves that I ⊆ R.

We shall obtain particularly nice and definitive results for those rings A in which
R = A. Lemma 2.1 makes it possible for us to list a few examples of such rings:

(i) A is a simple ring containing a non-trivial idempotent;

(ii) A is a unital ring containing an idempotent e0 such that the ideals generated
by e0 and 1 − e0, respectively, are both equal to A;

(iii) A = Mn(B), the ring of all n×n matrices over any unital ring B, where n � 2.

By a non-trivial idempotent we mean an idempotent different from 0 and 1.
Since simple rings (as well as more general prime rings) cannot contain non-trivial
central idempotents, the fact that rings of type (i) satisfy R = A follows directly
from lemma 2.1.

Now suppose that A satisfies the condition (ii). Then in particular we have∑
i xi(1 − e0)yi = e0 for some xi, yi ∈ A, and so e0 =

∑
i[e0, xi](1 − e0)yi ∈ I.

Similarly we see that 1 − e0 ∈ I. Consequently, 1 ∈ I and so I = R = A.
Finally, if A is of type (iii), then it is easy to see that A satisfies (ii). Indeed, one

can take, for example, the matrix unit E11 for e0.

3. Conditions (h1) and (d1)

We shall first consider the condition (h1). As we shall see, the results on the con-
dition (d1) will follow from those on the condition (h1).

3.1. Condition (h1)

The following theorem is of crucial importance for this paper; all other results
will be, sometimes directly and sometimes by following the method, derived from
this one.
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Theorem 3.1. Let A and B be unital rings and let h : A → B be an additive map
satisfying (h1) and h(1) = 1. Then the restriction of h to R is a homomorphism.
Moreover,

h(rxs) + h(r)h(x)h(s) = h(rx)h(s) + h(r)h(xs) for all r, s ∈ R, x ∈ A. (3.1)

Proof. Let e, f ∈ E and x ∈ A. Using

(1 − e) · exf = exf · (1 − f) = 0,

e · (1 − e)xf = (1 − e)xf · (1 − f) = 0,

(1 − e) · ex(1 − f) = ex(1 − f) · f = 0,

e · (1 − e)x(1 − f) = (1 − e)x(1 − f) · f = 0,

we infer from (h1) and h(1) = 1 that

(1 − h(e)) · h(exf) · (1 − h(f)) = 0,

h(e) · h((1 − e)xf) · (1 − h(f)) = 0,

(1 − h(e)) · h(ex(1 − f)) · h(f) = 0,

h(e) · h((1 − e)x(1 − f)) · h(f) = 0.

For convenience we rewrite these identities as

h(exf) = h(e)h(exf) + h(exf)h(f) − h(e)h(exf)h(f),
−h(e)h(xf) = −h(e)h(exf) − h(e)h(xf)h(f) + h(e)h(exf)h(f),
−h(ex)h(f) = −h(e)h(ex)h(f) − h(exf)h(f) + h(e)h(exf)h(f),

h(e)h(x)h(f) = h(e)h(ex)h(f) + h(e)h(xf)h(f) − h(e)h(exf)h(f).

Note that the sum of the right-hand sides of these four identities is 0. Therefore,
the sum of the left-hand sides must be 0 too. This proves the following special case
of (3.1):

h(exf) + h(e)h(x)h(f) = h(ex)h(f) + h(e)h(xf) for all e, f ∈ E , x ∈ A. (3.2)

In particular, by setting x = 1 we see that h(ef) = h(e)h(f) for all e, f ∈ E .
Moreover, since by (3.2) we have

h(e1e2 · · · en) = h(e1e2 · · · en−1)h(en) + h(e1)h(e2 · · · en) − h(e1)h(e2 · · · en−1)h(en)
(3.3)

it follows by induction on n that

h(e1e2 · · · en) = h(e1)h(e2) · · ·h(en) for all e1, e2, . . . , en ∈ E .

This shows that h is a homomorphism on R.
In order to prove (3.1) we introduce, for any a ∈ A, the sets

Sa = {r ∈ R | h(rxa) + h(r)h(x)h(a) = h(rx)h(a) + h(r)h(xa) for all x ∈ A},

Ta = {s ∈ R | h(axs) + h(a)h(x)h(s) = h(ax)h(s) + h(a)h(xs) for all x ∈ A}.

Clearly, both Sa and Ta are additive subgroups of R. Moreover, given r, r′ ∈ Sa we
have

h(rr′xa) = h(r(r′x)a) = h(rr′x)h(a) + h(r)h(r′xa) − h(r)h(r′x)h(a),
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and hence, since

h(r′xa) = h(r′x)h(a) + h(r′)h(xa) − h(r′)h(x)h(a)

and h(r)h(r′) = h(rr′),

h(rr′xa) = h(rr′x)h(a) + h(rr′)h(xa) − h(rr′)h(x)h(a).

This shows that rr′ ∈ Sa. That is, Sa is a sub-ring of R. Similarly, Ta is a sub-ring.
By (3.2) we have E ⊆ Sf for every f ∈ E . Since Sf is a sub-ring it follows that
R ⊆ Sf . That is to say, f ∈ Tr for every f ∈ E and every r ∈ R, i.e. E ⊆ Tr, and
hence R ⊆ Tr since Tr is a sub-ring. But this means that (3.1) holds true.

We remark that the first part of the proof leading to (3.2) is similar to Shulman’s
argument in [22, pp. 68–69], which, however, was used in a different context.

Corollary 3.2. Let A and B be unital rings and let h : A → B be an additive
map satisfying (h1) and h(1) = 1. If R = A (e.g. if A is as in (i), (ii) or (iii)),
then h is a homomorphism.

Corollary 3.3. Let A and B be unital rings and let h : A → B be a bijective
additive map satisfying (h1) and h(1) = 1. If A is a prime ring containing a non-
trivial idempotent, then h is an isomorphism.

Proof. Since I ⊆ R by lemma 2.1, h is a homomorphism on I by theorem 3.1. In
particular, for all u, v ∈ I and x ∈ A we have h(uxv) = h(ux)h(v) and h(uxv) =
h(u)h(xv), and so (3.1) implies that

h(uxv) = h(ux)h(v) = h(u)h(xv) = h(u)h(x)h(v) for all u, v ∈ I, x ∈ A. (3.4)

We claim that h(I)b0 = 0, where b0 ∈ B, implies that b0 = 0. Indeed, since h is
surjective we have b0 = h(a0) for some a0 ∈ A, and so (3.4) yields h(Ia0I) = 0.
Accordingly, Ia0I = 0 and hence, since A is prime and I �= 0 in view of our
assumption, we have a0 = 0, and so b0 = 0. Similarly, we see that b0h(I) = 0
implies b0 = 0.

Now, since by (3.4) we have h(I)(h(xv) − h(x)h(v)) = 0, x ∈ A, v ∈ I, it follows
that h(xv) = h(x)h(v). Therefore, for x, y ∈ A and v ∈ I we have h(xyv) =
h(xy)h(v) and, on the other hand, h(xyv) = h(x)h(yv) = h(x)h(y)h(v). Thus,
(h(xy) − h(x)h(y))h(I) = 0, and so h(xy) = h(x)h(y).

3.2. Condition (d1)

Problems on derivations can be often reduced to similar problems on homomor-
phisms through the trick that we now apply. Given an A-bimodule M, the set of
all matrices of the form (

x m

0 x

)
, x ∈ A, m ∈ M,

forms a ring under the usual matrix operations. We denote this ring by B. Given a
map d : A → M, we define h : A → B by

h(x) =
(

x d(x)
0 x

)
.
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Note that d is a derivation if and only if h is a homomorphism; moreover, d satis-
fies (d1) if and only if h satisfies (h1), and d satisfies condition (3.5), below, if and
only if h satisfies (3.1). Of course, d(1) = 0 if and only if h(1) = 1. Therefore, the
first part of the next theorem follows directly from theorem 3.1.

Theorem 3.4. Let A be a unital ring, let M be a unital A-bimodule, and let d :
A → M be an additive map satisfying (d1) and d(1) = 0. Then the restriction of d
to R is a derivation. Moreover,

d(rxs) + rd(x)s = d(rx)s + rd(xs) for all r, s ∈ R, x ∈ A, (3.5)

and
I(d(xy) − d(x)y − xd(y))I = 0 for all x, y ∈ A. (3.6)

Proof. We only have to prove (3.6). Pick u ∈ I, s ∈ R, and x ∈ A. Then ux ∈ I ⊆ R
and so, since d is a derivation on R, we have d(uxs) = d(ux)s+uxd(s). On the other
hand, since u, s ∈ R, it follows from (3.5) that d(uxs) = d(ux)s + ud(xs) − ud(x)s.
Comparing the last two identities, we get

ud(xs) = ud(x)s + uxd(s) for all u ∈ I, x ∈ A, s ∈ R. (3.7)

Now pick y ∈ A and v ∈ I. Since v ∈ R, it follows from (3.7) that

ud(xyv) = ud((xy)v) = ud(xy)v + uxyd(v).

On the other hand, since yv, v ∈ I ⊆ R and ux ∈ I, (3.7) yields

ud(xyv) = ud(x(yv)) = ud(x)yv + uxd(yv)
= ud(x)yv + uxd(y)v + uxyd(v).

Comparing these two identities, we obtain (3.6).

Corollary 3.5. Let A be a unital ring, let M be a unital A-bimodule, and let
d : A → M be an additive map satisfying (d1) and d(1) = 0. If R = A (e.g. if A is
as in (i), (ii), or (iii)), then d is a derivation.

Corollary 3.6. Let A be a unital ring and let d : A → A be an additive map sat-
isfying (d1) and d(1) = 0. If A is a prime ring containing a non-trivial idempotent,
then d is a derivation.

Now let d : A → M be a local derivation. Then d satisfies (d1). If A and M are
unital, then it is easy to see that we also have d(1) = 0 and so theorem 3.4 can
be used. Otherwise, we consider the ring A1 obtained by adjoining a unity to A.
Setting 1m = m = m1 for every m ∈ M, M then becomes a unital A1-bimodule.
Extend d to A1 by defining d(1) = 0 and note that d is a local derivation on A1.
Therefore, the following is true.

Remark 3.7. The conclusion of theorem 3.4 holds for local derivations d : A → M
even when A and M are not unital.

In particular we thus see that every ring A with a non-central idempotent contains
a non-zero ideal I such that every local derivation d : A → M is a derivation on I.
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A special case of (3.5) where r and s are idempotents for local derivations is well
known; it appears in the proof of [22, theorem 1], and it has also been extensively
used in [8, 20], for example. The work on the present paper actually began by
observing that (3.5) can be extended from the case where r and s are idempotents
to the case where they are products of idempotents. While the proof of this is fairly
easy, this more general identity seems to be much stronger and more useful. Let us
record two of its (indirect) consequences: analogues of corollaries 3.5 and 3.6.

Corollary 3.8. Suppose that R = A (e.g. if A is as in (i), (ii) or (iii)). Then
every local derivation d : A → M is a derivation.

Corollary 3.9. Let A be a prime ring containing a non-trivial idempotent. Then
every local derivation d : A → A is a derivation.

4. Conditions (h2), (d2) and (f2)

It is obvious that the condition (h2) implies the condition (h1), and that (d2)
implies (d1). Therefore, the results of the previous section give some conclusions
for maps satisfying (h2) and (d2). However, by a direct approach we will be able to
obtain somewhat stronger results. In particular, we will avoid the assumption that
our rings are unital, and we will obtain short proofs and slight improvements on
the main results from [4].

4.1. Condition (h2)

It was observed in [4] that (h2) implies that h satisfies

h(xe)h(z) = h(x)h(ez) for all e ∈ E , x, z ∈ A. (4.1)

Indeed, just note that (x−xe)·ez = 0 and xe·(z−ez) = 0, and so h(x−xe)·h(ez) = 0
and h(xe)·h(z−ez) = 0, from which (4.1) follows. This identity played an important
role in [4], and its special cases appear also in [3]. However, we shall use it in a
somewhat different way than the authors did in those two papers.

Theorem 4.1. Let h : A → B be an additive map satisfying (h2). Then

h(xr)h(z) = h(x)h(rz) for all r ∈ R, x, z ∈ A, (4.2)

and

h(wt)h(z)h(x)h(y) = h(w)h(t)h(z)h(xy) for all t ∈ A2I, x, y, z, w ∈ A. (4.3)

Proof. Let

T = {r ∈ A | h(xr)h(z) = h(x)h(rz) for all x, z ∈ A}.

Given r, r′ ∈ T and x, z ∈ A we have

h(xrr′)h(z) = h(xr)h(r′z) = h(x)h(rr′z),

showing that T is a sub-ring of A. Since E ⊆ T by (4.1), it follows that R ⊆ T .
This proves (4.2).
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Now let u ∈ I and x, y, z, w, w′, w′′ ∈ A. Then uzx, w′′uz, w′w′′u ∈ I ⊆ R and
so using (4.2) we get

h(w)h(w′)h(w′′)h(uzxy) = h(w)h(w′)h(w′′uzx)h(y)
= h(w)h(w′w′′uz)h(x)h(y)
= h(ww′w′′u)h(z)h(x)h(y).

On the other hand, since uz, w′′u ∈ R, we have

h(w)h(w′)h(w′′)h(uzxy) = h(w)h(w′)h(w′′uz)h(xy)
= h(w)h(w′w′′u)h(z)h(xy).

Comparing these we get

h(ww′w′′u)h(z)h(x)h(y) = h(w)h(w′w′′u)h(z)h(xy),

which proves (4.3).

Corollary 4.2. Suppose that R = A (e.g. if A is as in (i), (ii) or (iii)). If
an additive map h : A → B satisfies (h2), then h(xy)h(z) = h(x)h(yz) for all
x, y, z ∈ A.

Corollary 4.3. Let A be such that A2I �= 0 and let B be prime. If a bijective
additive map h : A → B satisfies (h2), then there exists λ in the extended centroid
of B such that h(xy) = λh(x)h(y) for all x, y ∈ A.

Proof. Since h is surjective and B is prime, we have h(x)h(y) �= 0 for some x, y ∈
A. Therefore, by a well-known result of Martindale [16, theorem 2(a)], it fol-
lows from (4.3) that, for each pair of elements w ∈ A and t ∈ A2I, h(w)h(t)
and h(wt) are linearly dependent over the extended centroid C of B. Fixing w
and t such that h(w)h(t) �= 0 (such elements exist since A2I �= 0 and B is prime)
we thus have h(wt) = λh(w)h(t) for some λ ∈ C. But then (4.3) implies that
h(w)h(t)h(z)(h(xy) − λh(x)h(y)) = 0 for all x, y, z ∈ A, and hence the desired
conclusion follows from the primeness of B.

The technical assumption that A2I �= 0 is just slightly more restrictive than the
assumption that I �= 0, i.e. that A contains a non-central idempotent. For example,
in unital rings or in (semi-)prime rings, these two assumptions are equivalent. More-
over, a careful inspection of the proof shows that in the prime ring case assuming
even less is sufficient: it is sufficient to require the assumption from [4] that the
maximal right ring of quotients Q of A contains a non-trivial idempotent e such
that eA ∪ Ae ⊆ A. Therefore, corollary 4.3 generalizes [4, theorem 1]. In particular
it shows that the assumption that deg(B) � 3 can be removed from this theorem.
The proof of corollary 4.3 is also simpler and, in particular, it avoids the use of the
theory of functional identities.

If A is a unital ring, then some of our formulae can be simplified. Indeed, set
α = h(1) ∈ B. Letting x = z = 1 in (4.2), we see that h(r)α = αh(r) for every r ∈ R.
Accordingly, for every u ∈ I and z ∈ A we have

αh(u)h(z) = αh(1u)h(z) = α2h(uz) = αh(uz)α = h(1)h(uz)α = h(u)h(z)α.
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Therefore, setting w = 1 in (4.3), it follows that

h(t)h(z)(αh(xy) − h(x)h(y)) = 0 for all t ∈ I, x, y, z ∈ A.

If B is prime, h is bijective and I �= 0, then it follows that αh(xy) = h(x)h(y) for
all x, y ∈ A, from which we infer that λ = α−1.

4.2. Condition (d2)

Obvious examples of maps satisfying (d2) are derivations and multiplications by
central elements, and of course their sums.

Given d : A → M, we define B and h in the same way as in § 3.2. Note that d
satisfies (d2) if and only if h satisfies (h2). Consequently, by a straightforward
computation one can check that theorem 4.1 implies the following.

Theorem 4.4. Let d : A → M be an additive map satisfying (d2). Then

d(xr)z + xrd(z) = d(x)rz + xd(rz) for all r ∈ R, x, z ∈ A, (4.4)

and

wtz(d(xy) − d(x)y − xd(y)) = (d(wt) − d(w)t − wd(t))zxy

for all t ∈ A2I, x, y, z, w ∈ A. (4.5)

If R = A, then (4.4) can be read as

d(xy)z + xyd(z) = d(x)yz + xd(yz) for all x, y, z ∈ A. (4.6)

Suppose that A is a unital ring and that M is a unital A-bimodule. Then setting
x = z = 1 in (4.6), it follows that λ = d(1) lies in Z(M), the centre of M, and
hence, by setting z = 1, it follows that δ : x �→ d(x) − λx is a derivation. Thus we
have the following corollary.

Corollary 4.5. Suppose that R = A (e.g. if A is as in (i), (ii) or (iii)). If an
additive map d : A → M satisfies (d2), then d satisfies (4.6). Moreover, if both A
and M are unital, then λ = d(1) ∈ Z(M) and there is a derivation δ : A → M
such that d(x) = λx + δ(x) for all x ∈ A.

A simple modification of the proof of corollary 4.3 gives the following.

Corollary 4.6. Let A be a prime ring containing a non-trivial idempotent. If
an additive map d : A → A satisfies (d2), then there exists λ in the extended
centroid of A and a derivation δ from A into the central closure of A such that
d(x) = λx + δ(x) for all x ∈ A.

In the case when A is unital, this conclusion can be simplified: note that λ =
d(1) ∈ Z(A) and δ maps A into itself.

Corollary 4.6 improves [4, theorem 2]; here also we could replace the assumption
that A contains a non-trivial idempotent by a somewhat milder one that Q contains
a non-trivial idempotent e such that eA ∪ Ae ⊆ A (see the comments following
corollary 4.3).
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4.3. Condition (f2)

Recall that an additive map f : A → L is called a (right) multiplier if f(xy) =
xf(y) for all x, y ∈ A. For example, the (right) multiplications x �→ xm, where
m is a fixed element in L, are multipliers, and in fact these are obviously the only
multipliers in the case where A is unital. By a local multiplier we of course mean an
additive map f : A → L such that for every x ∈ A there is a multiplier fx : A → L
such that f(x) = fx(x). Clearly, every local multiplier satisfies (f2).

A natural question is are additive maps satisfying (f2) necessarily multipliers? If
we wish to deal with arbitrary modules, then we have to take into account that in
the case when the module multiplication is trivial, i.e. AL = 0, every additive map
f : A → L satisfies (f2). Therefore, our goal will be to prove that (f2) implies that f
satisfies a weaker condition than being a multiplier, namely,

xf(yz) = xyf(z) for all x, y, z ∈ A. (4.7)

Of course, under a very mild assumption that for every m ∈ L, Am = 0 implies
that m = 0, (4.7) is equivalent to the condition that f is a multiplier. In particular
this assumption is fulfilled in the case when A and L are unital.

We make a left A-module L an A-bimodule by defining LA = 0 (see [12]). In this
setting, the conditions (d2) and (f2) are equivalent. Therefore, the results from the
previous subsection are applicable.

Theorem 4.7. Let f : A → L be an additive map satisfying (f2). Then

xf(rz) = xrf(z) for all r ∈ R, x, z ∈ A, (4.8)

and
AI(f(xy) − xf(y)) = 0 for all x, y ∈ A. (4.9)

Proof. Note that (4.8) follows from (4.4). Given x, y, z ∈ A and u ∈ I, we see
from (4.8) that zf(uxy) = zuf(xy), and on the other hand, zf(uxy) = zuxf(y).
Comparing we obtain (4.9).

Corollary 4.8. Suppose that R = A (e.g. if A is as in (i), (ii) or (iii)). If an
additive map f : A → L satisfies (f2) (in particular, if f is a local multiplier), then
f satisfies (4.7).

This corollary considerably extends [7, theorem 3].
The notion of a local multiplier from A into itself is closely related to the notion

of a right ideal-preserving map (see [7]). By this we mean a map f : A → A such
that f(K) ⊆ K for every right ideal K of A. If f is a right ideal-preserving map,
then for every x ∈ A the element f(x) must lie in the right ideal generated by x;
that is, there exist ax ∈ A and an integer nx such that f(x) = xax + nxx. But
then f is a local multiplier. Conversely, a local multiplier from A into itself is a
right ideal-preserving map provided that KA = K for every right ideal K of A (this
condition is trivially satisfied if A is unital).

Corollary 4.9. Let A be a prime ring containing a non-trivial idempotent. If an
additive map f : A → A satisfies (f2) (in particular, if f is a local multiplier or f
is a right ideal-preserving map), then f is a multiplier.
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5. An example

If A is a division ring, then every additive map from A into A is trivially right ideal
preserving (and hence a local multiplier). This simple fact clearly explains why
the last results do not hold in general prime (or simple) rings, i.e. it justifies the
assumption that our rings must contain non-trivial idempotents. Since non-trivial
examples of local multipliers generate non-trivial examples of local derivations (by
introducing the trivial multiplication LA = 0), it formally also justifies this assump-
tion in some of our other results. Admittedly, this argument is a bit artificial since
the bimodule so constructed cannot be unital. However, as already mentioned in
the introduction, there are other examples. In his pioneering paper [13], Kadison
gave an example, which he attributed to Jensen, of a local derivation that is not
a derivation on the field of rational functions. Further, it is a fact that there exist
division rings in which every non-zero inner derivation is surjective [5,15]. It is clear
that every additive map from such a ring into itself that maps the centre into 0 is
a local derivation, but of course it is only seldom a derivation.

The goal of this final section is to present an example of a map which is neither a
derivation nor a multiplier but it satisfies several conditions that have been treated.
It is defined on a prime (even primitive) ring having plenty of idempotents, and maps
into a suitably chosen bimodule. In particular this example justifies our confinement
to maps from rings into themselves in corollaries concerning prime rings.

In a note added in proof, Kadison [13] mentioned that Kaplansky has found
local derivations on the algebra C[x]/[x3] that are not derivations. We did not see
Kaplansky’s example, but just the fact that it exists has encouraged us to search for
examples in the algebra that we shall introduce in the next paragraph. We remark
that the algebra C[x]/[x3] itself is clearly not sufficient for our purposes since it is
not even semi-prime.

Let V be an infinite-dimensional vector space over a field F with char(F) �= 2
and let F be the algebra of all finite rank linear operators on V . Further, let A be
a linear operator on V such that A3 ∈ F and I, A, A2 are linearly independent
modulo F (one can easily find such an operator via the matrix representation). Let
A be the algebra generated by I, A and F . Clearly, F is an ideal of A. Considering A
and F as A-bimodules, we can construct the quotient bimodule M = A/F . Define
d : A → M by

d(F + λ0I + λ1A + λ2A
2) = λ1A + F

for all F ∈ F and λi ∈ F. We claim that d has the following properties:

(i) d is a local derivation but not a derivation;

(ii) d is a local multiplier but not a multiplier;

(iii) d satisfies (d2) and d(1) = 0 but is not a derivation;

(iv) d satisfies (f2) but is not a multiplier.

Since d(A2) = 0 while d(A)A = Ad(A) = A2 +F , d is certainly neither a derivation
nor a multiplier.
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Pick x = F0 + α0I + α1A + α2A
2 ∈ A and define dx : A → M by dx = 0 if

α1 = 0, and

dx(F + λ0I + λ1A + λ2A
2) = λ1A + 2(λ2 − α−1

1 α2λ1)A2 + F

if α1 �= 0. Note that dx is a derivation and that d(x) = dx(x). Thus, d is a local
derivation. Further, define fx : A → M by fx = 0 if α1 = 0,

fx(F + λ0I + λ1A + λ2A
2) = (F + λ0I + λ1A + λ2A

2)(1 − α−1
1 α2A + F)

if α1 �= 0 and α0 = 0, and

fx(F + λ0I + λ1A + λ2A
2) = (F + λ0I + λ1A + λ2A

2)(α−1
0 α1A − α−2

0 α2
1A

2 + F)

if α0 �= 0. Note that in all cases fx is a multiplier and d(x) = fx(x). Therefore, d is
a local multiplier.

Let x = F0 +α0I +α1A+α2A
2 ∈ A and y = F0 +β0I +β1A+β2A

2 ∈ A be such
that xy = 0. Note that this is possible only in the case when one of the following
conditions is fulfilled:

α0 = α1 = α2 = 0,

α0 = α1 = β0 = 0,

α0 = β0 = β1 = 0,

β0 = β1 = β2 = 0.

In any of the cases we have d(x)y = xd(y) = 0. In particular, d satisfies (d2)
and (f2).
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