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The linear stability analysis of an uniform shear flow of granular materials is
revisited using several cases of a Navier–Stokes-level constitutive model in which
we incorporate the global equation of states for pressure and thermal conductivity
(which are accurate up to the maximum packing density νm) and the shear viscosity
is allowed to diverge at a density νμ (<νm), with all other transport coefficients
diverging at νm. It is shown that the emergence of shear-banding instabilities (for
perturbations having no variation along the streamwise direction), that lead to shear-
band formation along the gradient direction, depends crucially on the choice of the
constitutive model. In the framework of a dense constitutive model that incorporates
only collisional transport mechanism, it is shown that an accurate global equation of
state for pressure or a viscosity divergence at a lower density or a stronger viscosity
divergence (with other transport coefficients being given by respective Enskog values
that diverge at νm) can induce shear-banding instabilities, even though the original
dense Enskog model is stable to such shear-banding instabilities. For any constitutive
model, the onset of this shear-banding instability is tied to a universal criterion in
terms of constitutive relations for viscosity and pressure, and the sheared granular flow
evolves toward a state of lower ‘dynamic’ friction, leading to the shear-induced band
formation, as it cannot sustain increasing dynamic friction with increasing density
to stay in the homogeneous state. A similar criterion of a lower viscosity or a lower
viscous-dissipation is responsible for the shear-banding state in many complex fluids.

1. Introduction
One challenge in granular flow research is to devise appropriate hydrodynamic/

continuum models to describe its macroscopic behaviour. Rapid granular flows
(Campbell 1990; Goldhirsch 2003) can be modelled well by an idealized system
of smooth hard spheres with inelastic collisions. The kinetic theory of dense gases
has been modified to obtain Navier–Stokes-like (NS) hydrodynamic equations, with
an additional equation for the fluctuation kinetic energy of particles (i.e. granular
energy) that incorporates the dissipative nature of particle collisions. Such NS-order
hydrodynamic models have been widely used as prototype models to gain insight into
the ‘microscopic’ understanding of various physical phenomena involved in granular
flows.

† Email address for correspondence: meheboob@jncasr.ac.in
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The plane Couette flow has served as a prototype model problem to study the
rheology (Lun et al. 1984; Jenkins & Richman 1985; Campbell 1990; Sela &
Goldhirsch 1998; Alam & Luding 2003a, b, 2005; Tsai, Voth & Gollub 2003;
Gayen & Alam 2008) and dynamics (Hopkins & Louge 1991; McNamara 1993;
Tan & Goldhirsch 1997; Alam & Nott 1997, 1998; Conway & Glasser 2004; Alam
et al. 2005; Alam 2005, 2006; Gayen & Alam 2006; Saitoh & Hayakawa 2007) of
granular materials. In the rapid shear flow, the linear stability analyses of plane
Couette flow (Alam & Nott 1998; Alam 2006) showed that this flow admits different
types of stationary and travelling-wave instabilities, leading to pattern formation.
One such instability is the ‘shear-banding’ instability in which the homogeneous shear
flow breaks into alternating dense and dilute regions of particles along the gradient
direction. This is dubbed ‘shear-banding’ instability since the ‘nonlinear’ saturation
of this instability (Alam & Nott 1998; Alam et al. 2005; Shukla & Alam 2008) leads
to alternate layers of dense and dilute particle bands in which the shear rate is
high/low in dilute/dense regions, respectively, leading to ‘shear localization’ (Varnik
et al. 2003). This is reminiscent of shear-band formation in shear-cell experiments
(Savage & Sayed 1984; Losert et al. 2000; Mueth et al. 2000; Alam & Luding 2003b;
Tsai et al. 2003): when a dense granular material is sheared the shearing is confined
within a few particle layers (i.e. a shear band) and the rest of the material remains
unsheared, leading to the two-phase flows of dense and dilute regions. Alam & Nott
(1998) and Alam et al. (2005) showed that the kinetic-theory-based hydrodynamic
models are able to predict the co-existence of dilute and dense regimes of such
shear-banding patterns.

The above problem has been reanalysed (Khain & Meerson 2006), with reference
to shear-band formation, with a constitutive model which is likely to be valid in
the dense limit. These authors showed that their ‘dense’ constitutive model does
not admit the shear-banding instabilities of Alam & Nott (1998); however, a single
modification so that the shear viscosity diverges at a density lower than other transport
coefficients resulted in the appearance of two-phase-type solutions of dilute and dense
flows that are reminiscent of shear-banding instabilities. That the viscosity diverges
stronger/faster than other transport coefficients has also been incorporated previously
in a constitutive model by Losert et al. (2000) that yields a satisfactory prediction for
shear bands in an experimental Couette flow in three dimensions.

We revisit this problem to understand the influence of different Navier–Stokes-
order constitutive models (as detailed in § 2) on the shear-banding instabilities in
granular plane Couette flow. More specifically, we will pinpoint how the effects of
various models, some of them involving the global equation of state and the viscosity
divergence (at a density lower than the maximum packing), change the shear-banding
instabilities predicted by Alam & Nott (1998). For the sake of a systematic overview,
we will also discuss the instability results based on special limiting cases of these
models. One important finding is that a global equation of state (without viscosity
divergence at a lower density) leads to a shear-banding instability in the framework
of ‘dense’ model that incorporates only the collisional transport mechanism. Even
with the local equation of state, if we use a constitutive relation for viscosity that has
a stronger divergence (at the same maximum packing density) than other transport
coefficients, we recover shear-banding instabilities in the framework of the dense-
model of Haff (1983). This brings us to a crossroad: are there any connections among
the results of Alam & Nott, Khain & Meerson, and the present work? Is there any
universal criterion for the onset of the shear-banding instability in granular shear
flow? Such a universality for the shear-banding instability indeed exists, solely in
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terms of the constitutive relations, as we show in this paper. Possible connections
of the present criterion of a lower dynamic friction for the shear-banding state to
explain the onset of shear-banding in many complex fluids as well as in an elastic
hard-sphere fluid are discussed.

2. Balance equations and constitutive model
We use a Navier–Stokes-level hydrodynamic model for which we need balance

equations for mass, momentum and granular temperature:(
∂

∂t
+ u · ∇

)
� = −�∇ · u, (2.1)

�

(
∂

∂t
+ u · ∇

)
u = −∇ · P, (2.2)

dim

2
�

(
∂

∂t
+ u · ∇

)
T = −∇ · q − P : ∇u − D. (2.3)

Here � = mn = ρpν is the mass density, m the particle mass, n the number density,
ρp the material density and ν the area/volume fraction of particles; u is the coarse-
grained velocity field and T is the granular temperature of the fluid. Note that
the granular temperature, T = 〈C2/ dim〉, is defined as the mean-square fluctuation
velocity, with C = (c−u) being the peculiar velocity of particles and c the instantaneous
particle velocity; dim is the dimensionality of the system and hereinafter we focus on
the two-dimensional (dim =2) system of an inelastic ‘hard-disk’ fluid. The flux terms
are the stress tensor, P, and the granular heat flux, q; D is the rate of dissipation
of granular energy per unit volume – for these three terms we need appropriate
constitutive relations which are detailed below.

2.1. General form of Newtonian constitutive model: model A

The standard Newtonian form of the stress tensor and the Fourier law of heat flux
are:

P = (p − ζ∇ · u)I − 2μS, (2.4)

q = −κ∇T , (2.5)

where I is the identity tensor and S the deviator of the deformation rate tensor. Here
p, μ, ζ and κ are the pressure, shear viscosity, bulk viscosity and thermal conductivity
of the granular fluid, respectively.

Focusing on the nearly elastic limit (e → 1) of an inelastic hard-disk (of diameter d)
fluid, the constitutive expressions for p, μ, ζ , κ and D are given by

p(ν, T ) = ρpf1(ν)T , μ(ν, T ) = ρpdf2(ν)
√

T ,

ζ (ν, T ) = ρpdf3(ν)
√

T , κ(ν, T ) = ρpdf4(ν)
√

T ,

D(ν, T ) =
ρp

d
f5(ν, e)T 3/2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.6)

where f1–f5 are non-dimensional functions of the particle area fraction ν (Gass 1971;
Jenkins & Richman 1985):

f1(ν) = ν + 2ν2χ, (2.7)
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f2(ν) =

√
π

8χ
+

√
π

4
ν +

√
π

8

(
1 +

8

π

)
ν2χ, (2.8)

f3(ν) =
2√
π

ν2χ, (2.9)

f4(ν) =

√
π

2χ
+

3
√

π

2
ν +

√
π

(
2

π
+

9

8

)
ν2χ, (2.10)

f5(ν, e) =
4√
π

(1 − e2)ν2χ. (2.11)

These constitutive expressions give good predictions for transport coefficients of
nearly elastic granular fluid upto a density of ν ≈ 0.55 (see figure 2 of Alam & Luding
2003a). In the above expressions, χ(ν) is the contact radial distribution function which
is taken to be of the following form (Henderson 1975)

χ(ν) =
1 − 7ν/16

(1 − ν/νm)2
, (2.12)

that diverges at some finite density ν = νm. For the ideal case of point particles (i.e. in
one dimension, Torquato 1995), we have νm = 1 which is unrealistic for macroscopic
grains at very high densities; there are two other choices for this diverging density:
the random close packing density νr = νm = 0.82 or the maximum packing density
νm = π/2

√
3 ≈ 0.906 in two-dimensions (Torquato 1995); upto some moderate density

(ν ∼ 0.5), there is no difference in the value of χ(ν) for any choice of νm = 1 or 0.906 or
0.82. The range of validity of different variants of model radial distribution functions
is discussed in an forthcoming paper (Luding 2008).

We shall denote the above constitutive model (2.6)–(2.11), with the contact radial
distribution function being given by (2.12), as ‘model A’. Since the stability results do
not differ qualitatively with either choice of the numerical value for νm ( = 0.82 or
0.906 or 1), we will present all results with νm = π/2

√
3 in (2.12) (except in figure 12d ,

see § 5.2).
Now we consider the dilute and dense limits of model A. It should be noted that

each transport coefficient has contributions from the ‘kinetic’ and ‘collisional’ modes
of transport: while the former is dominant in the Boltzmann limit (ν → 0), the latter
is dominant in the dense limit (ν → νm). For example, the pressure can be decomposed
into its kinetic and collisional contributions:

p = pk + pc = ρp

(
f k

1 + f c
1

)
T . (2.13)

To obtain the constitutive expressions for the dilute and dense regimes, we must take
the appropriate limit of all functions f1–f4:

f1 = f k
1 + f c

1 , f2 = f k
2 + f c

2 ,

f3 = f k
3 + f c

3 , f4 = f k
4 + f c

4 .

}
(2.14)

Based on this decomposition, we have the following two limiting cases of model A.
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2.1.1. Dilute limit: model A0

For this dilute (ν → 0) model, χ(ν) → 1 and the constitutive expressions are
assumed to contain contributions only from the kinetic mode of transport:

f1 ≡ f k
1 (ν) = ν, f2 ≡ f k

2 (ν) =

√
π

8
+

√
π

4
ν,

f3 ≡ f k
3 (ν) = 0, f4 ≡ f k

4 (ν) =

√
π

2
+

3
√

π

2
ν,

f5 ≡ f5(ν → 0) =
4√
π

(1 − e2)ν2.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.15)

We shall call this ‘model A0’. Note that f5 has only the leading-order collisional
contribution, since no energy is dissipated in kinetic (free-flow) motion.

2.1.2. Dense limit: model Ad

For this dense model, the constitutive expressions are assumed to contain
contributions only from collisional mode of transport:

f1 ≡ f c
1 (ν) = 2ν2χ, f2 ≡ f c

2 (ν) =

√
π

8

(
1 +

8

π

)
ν2χ,

f3 ≡ f c
3 (ν) =

2√
π

ν2χ, f4 ≡ f c
4 (ν) =

√
π
( 2

π
+

9

8

)
ν2χ,

f5 ≡ f5(ν, e) =
4√
π

(1 − e2)ν2χ.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.16)

We shall call this ‘model Ad ’ which is merely Haff’s model (1983).

2.2. Model B: global equation of state (EOS)

In two-dimensions, a global equation of state for pressure has been proposed by
Luding (2001):

p/ρpT ≡ f1(ν) = ν + ν (P4 + m(ν) [Pdense − P4]) , ∀ 0 � ν � νm =
π

2
√

3
, (2.17)

where
P4 = 2νχ4,

χ4(ν) =
1 − 7ν/16

(1 − ν)2
− ν3

128(1 − ν)4
,

Pdense =
2νmh3(νm − ν)

(νm − ν)
− 1,

h3(νm − ν) = 1 − 0.04(νm − ν) + 3.25(νm − ν)3,

m(ν) =
[
1 + exp(−(ν − νf )/m0)

]−1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.18)

Here νf is the freezing point density, and m(ν) is a merging function that selects P4 for
ν � νf and Pdense for ν � νf ; the value of m0 is taken to be 0.012 along with a freezing
density of νf = 0.7. It should be noted that the above functional form of f1(ν), (2.17),
is a monotonically increasing function of ν, and it has been verified (Luding 2001,
2002; Garcia-Rojo, Luding & Brey 2006) from molecular dynamics simulations of
elastic hard-disk systems that the numerical values for different constants in (2.18) are
accurate (within much less than 1 % except around νf ) upto the maximum packing
density.
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Rewriting (2.17) as

f1(ν) = ν + 2ν2χp(ν), (2.19)

we can define an ‘effective’ contact radial distribution function for pressure:

χp(ν) =
1

2ν
(P4 + m(ν) [Pdense − P4])

= χ4 + m(ν)

[
h3(νm − ν)

ν(1 − ν/νm)
− 1

2ν
− χ4

]
with νm =

π

2
√

3
. (2.20)

It should be noted here that this functional form of χp(ν) has been verified by
molecular dynamics simulations of plane shear flow of frictional inelastic disks
(Volfson, Tsimring & Aranson 2003). In particular, they found that the simulation
data on G(ν) = νχp(ν) agree with the predictions of (2.20); however, its divergence
appears to occur at the random close packing limit in two dimensions (νm = νr = 0.82).

Similar to pressure, a global equation for thermal conductivity has been suggested
by Garcia-Rojo et al. (2006) which is also accurate upto the maximum packing density.
More specifically, the non-dimensional function of density for thermal conductivity
(equation (2.10)) is replaced by

f4(ν) =

√
π

2χκ (ν)
+

3
√

π

2
ν +

√
π

(
2

π
+

9

8

)
ν2χκ (ν), (2.21)

where χκ (ν) is the ‘effective’ contact radial distribution function for thermal
conductivity:

χκ (ν) = χ(ν, νm = 1) + m(ν)

[
h3(νm − ν)

ν(1 − ν/νm)
− 1

2ν
− χ(ν, νm = 1)

]
, (2.22)

with χ(ν, νm =1) being obtained from (2.12) by putting νm = 1.
The model A with the above global equation of state for pressure and the global

equation for thermal conductivity is called ‘model B ’. Note that the dilute limit of
model B is the same as that of model A; however, the dense limits of both models
are different in the choice of the equation of state and thermal conductivity.

Now we identify two subsets of model B: ‘model Bp ’ and ‘model Bκ ’ where the
former is model B with a global equation of state for pressure (2.17) only and the
latter is model B with a global equation for thermal conductivity (2.21) only. As
clarified in the previous paragraph, the remaining transport coefficients of model B

are same as in model A.

2.3. Model C: viscosity divergence

Here we consider a variant of model A which incorporates another ingredient in the
constitutive model: the shear viscosity diverges at a density lower than other transport
coefficients (Garcia-Rojo et al. 2006). This can be incorporated in the corresponding
dimensionless function for the shear viscosity (2.8):

f
μ
2 (ν) = f2(ν)

(
1 +

0.037

νμ − ν

)
, (2.23)

which diverges at a density, ν = νμ < νm, that is lower than the close packing density.
The first term on the right-hand-side is the standard Enskog term, (2.8), and the
second term incorporates a correction due to the viscosity divergence. For all results
shown here, we use νμ =0.71 which was observed for the unsheared case (Garcia-Rojo
et al. 2006); note, however, that the precise density at which viscosity diverges in a
shear flow can be larger than 0.71 (see figure 6 of Alam & Luding 2003b).
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The model with all transport coefficients as in model A but with its viscosity
divergence being at a lower density is termed ‘model C’. Similar to model A, we
can recover the dilute and dense limits of model C, by separating the kinetic and
collisional contributions to each transport coefficient. The dense limit of model C is,
however, reached at ν = νμ owing to the viscosity divergence.

2.4. Model D: global equation of state and viscosity divergence

This is the most general model in which we incorporate: (i) the global equation of
state for pressure (2.17); (ii) the global equation for thermal conductivity (2.21); and
(iii) the viscosity divergence (2.23). The other transport coefficients of model D are
same as in model A.

3. Plane shear and linear stability
Let us consider the plane shear flow of granular materials between two walls that

are separated by a distance H̃ : the top wall is moving to the right with a velocity
Uw/2 and the bottom wall is moving to the left with the same velocity. We impose
no-slip and zero heat-flux boundary conditions at both walls:

u = ±Uw/2, q = 0 at y = ± H̃ /2. (3.1)

The equations of motion for the steady and fully developed shear flow admit the
following solution:

u = [u(y), v(y)] = [(Uw/H̃ )y, 0], ν(y) = const = ν, T = d2

(
du

dy

)2
f2(ν)

f5(ν)
. (3.2)

The shear rate, du/dy = Uw/H̃ , is uniform (constant) across the Couette gap, and this
solution will hereinafter be called the uniform shear solution. Note that if viscosity
diverges at ν = νμ, there is no uniform shear solution for ν > νμ, i.e. the uniform shear
flow is possible only for densities 0 <ν <νμ.

We have non-dimensionalized all quantities by using H̃ , H̃ /Uw and Uw as
the reference length, time and velocity scales, respectively. The explicit forms of
dimensionless balance equations as well as the dimensionless transport coefficients are
given in Appendix A. There are three dimensionless control parameters to characterize
our problem: the scaled Couette gap H = H̃ /d , the mean density (area fraction)
ν = ν and the restitution coefficient e. Hereinafter all quantities are expressed in
dimensionless form.

3.1. Linear stability

The stability analysis of the plane shear flow has been thoroughly investigated
(Alam & Nott 1998; Alam 2005, 2006; Alam et al. 2005) using the constitutive models
of class A for which all transport coefficients diverge at the maximum packing fraction
ν → νm, as outlined in § 2.1. The same analysis is carried out here for a specific type
of perturbations that are invariant along the streamwise/flow (x) direction, having
variations along the gradient (y) direction only. This implies that the x-derivatives
of all quantities are set to zero (∂/∂x(·) = 0) in the governing equations. See Alam &
Nott (1998) for mathematical details of the analysis.

Consider the stability of the uniform shear solution (3.2) against perturbations
that have spatial variations along the y-direction only, e.g. the density field can be
written as ν(y, t) = ν + ν ′(y, t), with the assumption of small-amplitude perturbations,
|ν ′(y, t)/ν| � 1, for the linear analysis. Linearizing around the uniform shear solution,
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we obtain a set of partial differential equations:

∂X

∂t
= LX with BX ≡

(
1, 1,

d

dy

)
(u′, v′, T ′) = 0, (3.3)

where X = (ν ′, u′, v′, T ′) is the vector of perturbation fields, L is the linear stability
operator and B denotes the boundary operator (i.e. zero slip, zero penetration and zero
heat flux). Assuming exponential solutions in time X(y, t) = X̂(y) exp(ωt), we obtain
a differential-eigenvalue problem:

ωX̂ = L
(

d2

dy2
,

d

dy
, . . .

)
X̂ with BX̂ = 0, (3.4)

where X̂(y) = (ν̂, û, v̂, T̂ )(y) is the unknown disturbance vector that depends on
y. Here, ω = ωr + iωi is the complex frequency whose real part ωr denotes the
growth/decay rate of perturbations and the imaginary part ωi is its frequency which
characterizes the propagating (ωi �= 0) or stationary (ωi = 0) nature of the disturbance.
The flow is stable or unstable if ωr < 0 or ωr > 0, respectively.

3.2. Analytical solution: dispersion relation and its roots

Before presenting numerical stability results (§ 4), we recall that the above set of
ordinary differential equations (3.4) admits an analytical solution (Alam & Nott
1998):

(ν̂(y), T̂ (y)) = (ν1, T1) cos kn(y ± 1/2), (3.5)

(û(y), v̂(y)) = (u1, v1) sin kn(y ± 1/2), (3.6)

where kn = nπ is the ‘discrete’ wavenumber along y, with n= 1, 2, . . . being the
mode number that tells us the number of zero-crossing of the density/temperature
eigenfunctions along y ∈ (−1/2, 1/2). With this, (3.4) boils down to an algebraic
eigenvalue problem:

AX1 = ωX1, (3.7)

where X1 = (ν1, u1, v1, T1) and A is a 4 × 4 matrix. This leads to a fourth-order
dispersion relation in ω:

ω4 + a3ω
3 + a2ω

2 + a1ω + a0 = 0, (3.8)

with coefficients

a0 =
1

H 4
a04 +

1

H 6
a06, a1 =

1

H 2
a12 +

1

H 4
a14 +

1

H 6
a16,

a2 =
1

H 2
a22 +

1

H 4
a24, a3 = a30 +

1

H 2
a32.

⎫⎪⎬
⎪⎭ (3.9)

Here, the terms aij are real functions of density (ν), temperature (T ), and the restitution
coefficient (e) whose explicit forms are given in Appendix B.

Out of four roots of (3.8), two roots are real and the other two form a complex-
conjugate pair. It is possible to obtain an approximate analytical solution for these four
roots using the standard asymptotic expansion for large Couette gaps (H ≡ H̃ /d), with
the corresponding small parameter being H −1. The real roots have the approximations
for large H :

ω(1) = − 1

H 2

(
a04

a12

)
+ O(H −4), (3.10)
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ω(2) = ω
(2)
0 +

1

H 2

[
a12 + a22ω

(2)
0 + a32ω

(2)
0

2
]

ω
(2)
0

(
3a30 + 4ω

(2)
0

) + O(H −4), (3.11)

where

ω
(2)
0 = −1

ν
f5T

1/2 < 0. (3.12)

The real and imaginary parts of the conjugate pair,

ω(3,4) = ω(3,4)
r ± i ω

(3,4)
i , (3.13)

have the asymptotic approximations for large H :

ωr
(3,4) =

1

H 2

[
a04 +

(
a2

12/a
2
30

)
− (a12a22/a30)

2a12

]
+ O(H −4), (3.14)

(
ω

(3,4)
i

)2
=

1

H 2

(
a12

a30

)
+ O(H −4). (3.15)

For full models (i.e. A, B , C and D), it can be verified that ω(3,4)
r is always negative,

making the first real root ω(1), given by (3.10), the least-stable mode. However, for the
dense models (i.e. Ad , Bd , Cd and Dd), ω(3,4)

r could be positive, making the travelling
waves, given by (3.13), the least-stable mode at low densities. These predictions have
been verified against numerical values obtained from spectral method as discussed
in § 4.

4. Stability results: comparison among different models
For results in this section, the differential eigenvalue problem (3.4) has been

discretized using the Chebyshev spectral method (Alam & Nott 1998) and the resultant
algebraic eigenvalue problem has been solved using the QR-algorithm of the Matlab
software. The degree of the Chebyshev polynomial was set to 20 which was found
to yield accurate eigenvalues. In principle, we could solve (3.8) to obtain eigenvalues,
but it provides eigenvalues only for a given mode number n= 1, 2, . . . in one shot;
therefore, we must solve (3.8) for several n to determine the growth rate of the most
unstable mode. The advantage of the numerical solution of (3.4) is that it provides
all leading eigenvalues in one shot.

4.1. Results for model A and its dilute and dense limits

As mentioned before, the stability analysis of the uniform shear flow with a three-
dimensional variant (i.e. for spheres) of model A has been performed previously
(Alam & Nott 1998; Alam 2005, 2006; Alam et al. 2005). Even though the results
for our two-dimensional model are similar to those for the three-dimensional model,
we show a few representative results for this constitutive model for the sake of a
complete, systematic study and for comparison with other models; note that the
results for model A0 and model Ad are new.

The phase diagram, separating the zones of stability and instability, in the (ν, H )-
plane is shown in figure 1 for model A. The flow is unstable inside the neutral
contour, denoted by ‘0’, and stable outside; a few positive growth-rate contours are
also displayed. For the same parameter set, from the respective contours of the
frequency, ωi , in the (ν, H )-plane it has been verified that these instabilities are
stationary, i.e. ωi =0. It is seen that there is a minimum value of the Couette gap
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Figure 1. Phase diagram, showing the positive growth-rate contours, for model A: e = 0.9,

νm = π/2
√

3. The flow is unstable inside the neutral contour, denoted by ‘0’, and stable outside.
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Figure 2. (a) Variation of the growth rate of the least stable mode with H for ν = 0.5 and
e = 0.9. (b) Density eigenfunctions, ν̂(y), of the least stable mode at - - -, H = 50; -·-, 100;
—, 150.

(H = Hcr ) and a minimum density (ν = νcr ) below which the flow remains stable. With
increasing value of e, the neutral contour shifts towards the right, i.e. Hcr increases and
hence the flow becomes more stable with increasing e. We shall discuss the dependence
of e on the shear-banding instability and the related instability length scale in § 5.2.

Figure 2(a) shows the variation of the growth rate of the least stable mode,
ωl

r = max ωr , with Couette gap for ν = 0.5, with other parameters as in figure 1.
The kinks on the growth-rate curve correspond to crossing of modes n= 1, 2, 3, . . . .
This can be verified from figure 2(b) which displays density eigenfunctions for three
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Figure 3. (a) Phase diagram, showing the positive growth-rate contours, for model Ad (i.e.

the dense limit of model A): e = 0.9, νm = π/2
√

3. (b) Contours of frequency, indicating that
the instability in (a) is due to travelling waves.

values of Couette gaps H = 50, 100 and 150. The density eigenfunction at H =50
corresponds to the mode n= 1 (i.e. ν̂ ∼ cos(π(y ± 1/2)) = sin(πy), see (3.5)), the other
two at H =100, 150 correspond to modes n= 2, 3 (i.e. ν̂ ∼ cos(2πy) and sin(3πy),
respectively). In fact, there is an infinite hierarchy of such modes as H → ∞ which
has been discussed before (Alam & Nott 1998; Alam et al. 2005).

For the dilute limit of model A (i.e. model A0), there are stationary instabilities
at finite densities (ν > 0), and the stability diagram (not shown for brevity) in the
(H, ν)-plane looks similar to that for model A (figure 1), but the range of H over
which the flow is unstable is much larger. As expected, both model A and model A0

predict that the flow is stable in the Boltzmann limit (ν → 0).
Figure 3(a) shows the analogue of figure 1 for model Ad for which the constitutive

relations are expected to be valid in the dense limit (since the constitutive relations
contain the collisional part only, § 2.1.2); figure 3(b) shows the contours of frequency
(corresponding to the least-stable mode) in the (H, ν)-plane. The flow is unstable
to travelling-wave instabilities inside the neutral contour. For this dense model, the
crossings of different instability modes (n= 1, 2, . . . ) with increasing Couette gap H

and their frequency variations can be ascertained from figure 4. From a comparison
between figures 1 and 3, the following differences are noted:
(i) Model Ad predicts that the flow is stable in the dense limit which is in contrast to
the prediction of the full model (i.e. model A) for which the dense flow is unstable.
This is a surprising result since the kinetic contribution to transport coefficients is
small in the dense limit, and hence both model A and model Ad are expected to yield
similar results.
(ii) There is a travelling-wave (TW) instability at low densities (ν < 0.3) for model
Ad which is absent in model A. Since model Ad is devoid of the kinetic modes of
momentum transfer and hence not applicable at low densities, we call the TW-modes
in figure 3(a) ‘anomalous’ modes and they vanish when both kinetic and collisional
effects are incorporated as in the full model A.

One conclusion that can be drawn from the results of three variants of model A is
that the choice of the constitutive model is crucial for the prediction of shear-banding
instability. We shall return to this point in § 5.
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Figure 4. Variations of (a) the growth rate and (b) the frequency of the least stable mode
with H for ν = 0.1 and e = 0.9. Other parameters as in figure 3.

H

v

0.0006

0.0004

0.0002

0

50 100 150
0

0.2

0.4

0.6

0.8

Figure 5. Phase diagram, showing the positive growth-rate contours, for model Bκ with a

global equation for thermal conductivity: e = 0.9, νm = π/2
√

3, νf = 0.7.

4.2. Results for model B: influence of global equation of state

Figure 5 shows a phase diagram in the (H, ν)-plane for model Bκ ; the flow is unstable
inside the neutral contour and stable outside. Recall that this model is the same as
model A for ν < νf , with the only difference being that we use a global equation
for thermal conductivity which is valid upto the maximum packing density (equation
(2.21)). This instability is stationary and the other features of stability diagrams
remain the same (as those in figure 1 for the standard model A), but there is a dip
on the neutral contour at the freezing density ν = νf . For its dense counterpart, the
model Bκ

d does not predict any instability at large densities, but has travelling-wave
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Figure 6. Phase diagram, showing the positive growth-rate contours, for model Bp with a

global equation for pressure: e =0.9, νm = π/2
√

3, νf = 0.7. (a) Full model; (b) dense limit.

instability at low densities (the corresponding stability diagram looks similar to that
in figure 3(a) for model Ad and hence is not shown).

When a global equation of state for pressure is incorporated (i.e. model-Bp , see
§ 2.2), the phase diagram in the (H, ν)-plane looks markedly different, especially at
ν > νf , as seen in figure 6. (Recall that model Bp is same as model A, except that
we use a global equation of state for pressure, equation (2.17).) In figure 6(b), the
neutral stability contour contains a kink at ν ≈ 0.3 and there are two instability lobes:
the lower instability lobe is due to travelling waves and the upper-one is due to
stationary waves. (Similar to model Ad , the low-density T W instability in figure 6(b)
is dubbed ‘anomalous’ since model Bd is not valid at low densities.) For the dense
limit of model Bp (i.e. model B

p
d ), the flow remains unstable to the ‘stationary’ shear-

banding instability upto the maximum packing density (figure 6b). This observation
is in contrast to the predictions of model Ad (figure 3a) and model Bκ

d . Therefore, we
conclude that within the framework of a dense model, the global equation of state
for pressure induces shear-banding instabilities at large densities.

When both the global equations for pressure and thermal conductivity are
incorporated, the phase diagrams in the (H, ν)-plane look qualitatively similar (not
shown) to those for model Bp as in figure 6, with the only difference being slightly
higher growth rates for the least stable mode. It is noteworthy that with the global
EOS, the flow becomes unstable to shear-banding instabilities at very small values of
H for ν � νf .

From this section, we can conclude that within the framework of a ‘dense’
constitutive model (that incorporates only collisional contributions to transport
coefficients, § 2.1.2), a simple modification with a global equation of state for
pressure induces new shear-banding instabilities at large densities; however, a similar
modification with a global equation of state for thermal conductivity does not induce
any new instability.

4.3. Results for models C and D: influence of viscosity divergence

As discussed in § 2.3, model C is the same as model A, with the viscosity divergence
being at a lower density ν = νμ < νm. On the other hand, model D is the most
general model that incorporates the viscosity divergence at a lower density ν = νμ < νm
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Figure 7. Phase diagram for model C with viscosity divergence: e = 0.9, νm = π/2
√

3,
νμ = 0.71. (a) Full model; (b) dense limit.

(equation (2.23)) as well as global equations for pressure (equation (2.17)) and thermal
conductivity (equation (2.21)). The stability results for these two models are found to
be similar, and hence we present results only for model C.

Figures 7(a) and 7(b) show phase diagrams in the (H, ν)-plane for model C and
its dense variant model Cd , respectively; the results are shown upto the viscosity
divergence since uniform shear is not a solution for ν > νμ. For the full model in
figure 7(a), the phase-diagram looks similar to those for models A and B . For its
dense counterpart in figure 7(b), the phase diagram is similar to that for models Bd

and B
p
d in the sense that all three models support shear-banding instabilities at large

densities. Therefore, for model Cd , the viscosity divergence induces shear-banding
instabilities at large densities. This prediction is in tune with the results of Khain &
Meerson (2006) whose model is similar to our model Cd (see § 5.3).

Within the framework of a ‘dense’ model (§ 2.1.2), therefore, we can conclude
about the emergence of shear-banding instabilities at large densities that; (i) a global
equation of state for pressure alone can induce shear-banding instabilities; (ii) a
viscosity divergence at a density, ν = νμ, lower than the maximum packing density
alone can induce shear-banding instabilities.

5. Discussion: universality of shear-banding instability and crystallization
5.1. An universal criterion for shear-banding instability

Since the shear-banding instability is a stationary (ωi = 0) mode, this instability is given
by one of the real roots (equation (3.10)) of the dispersion relation. The condition
for neutral stability (ωr = 0) can be obtained by setting ω = 0 in the dispersion rela-
tion (3.8):

a0 = 0 ⇒ k2
n

/
H 2 =

Ψ2

Ψ1

, (5.1)

where

Ψ1 =
f4

f5

, Ψ2 =

(
f5ν

f5

+
f2ν

f2

)
f1

f1ν

− 2.
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Figure 8. Variation of the ‘dynamic’ friction coefficient, βd = μγ/p, with density for model A:

e =0.9, νm = π/2
√

3. The inset shows the variation of dβd/dν with ν: the onset of shear-banding
instability corresponds to dβd/dν > 0, denoted by the square.

For an instability to occur at a given density, there must be a range of ‘positive’
discrete wave-numbers, i.e. kn/H > 0, which is equivalent to

Ψ2 > 0,

since Ψ1 is always positive. The expression for Ψ2 can be rearranged to yield (Alam
2006)

d

dν

(√
f2f5

f1

)
> 0 (with f1ν > 0), (5.2)

which must be satisfied for the onset of instability. (It should be noted that (5.2)
provides a necessary condition for instability, but the sufficient condition is tied to
the thermal-diffusive mechanism that leads to an instability length scale (5.1) which
is discussed in § 5.2.) The term within the brackets in (5.2) is the ratio between the
shear stress, Pxy = μγ , and the pressure, p, for the plane Couette flow:

βd =
Pxy

p
=

μ(du/dy)

p
=

f2

√
T

f1T
=

f2

f1

√
T

=
f2

f1

√
f2/f5

≡
√

f2f5

f1

, (5.3)

where γ = du/dy is the local shear rate (which is a constant for uniform shear
flow). This is merely the dynamic friction coefficient of the shear flow, which must
increase with increasing density for the shear-banding instability to occur. Note that
as per the Navier–Stokes-level description, the steady fully developed plane Couette
flow admits solutions for which the shear stress and pressure are constants across
the Couette gap. Hence, the dynamic friction coefficient, βd =μ(du/dy)/p = μγ/p,
is a position-independent order-parameter for both ‘uniform’ (γ = const.) and ‘non-
uniform’ (γ = γ (y)) shear flows.

For model A, the variation of βd with ν is non monotonic, as shown by the solid
line in figure 8: in the dilute limit, βd is large and its value decreases with increasing
density until a critical density ν = νcr is reached beyond which βd increases. Recall
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Figure 9. The effect of restitution coefficient e on the variation of dβd/dν with ν for
model A.

that the onset of shear-banding instability corresponds to dβd/dν > 0, denoted by the
square in the inset of figure 8. It is clear from this inset that the full model is unstable
to shear-banding instability for ν > νcr , the dilute model is unstable at any density
(since dβd/dν > 0 for ν > 0), but the dense model is stable for all densities (since
dβd/dν =0). It is worth pointing out that, for the full model A, the critical density
for the onset of the shear-banding instability (cf. figure 1) is νcr ≈ 0.31733 which is
independent of the restitution coefficient e as confirmed in figure 9. The lower branch
of the neutral contour of figure 1 asymptotically approaches this critical density as
H → ∞.

For model B , the variation of βd with density (ν) is shown in figure 10, and the inset
shows the variation of dβd/dν with ν. (Recall that this model incorporates the global
equations of state for pressure and thermal conductivity.) In contrast to the ‘stable’
model Ad , model Bd (i.e. the dense variant of model B) is unstable to shear-banding
instabilities for all densities (figure 6b) since dβd/dν > 0. For the full model B , the
critical density for the onset of shear-banding instability (cf. figure 6a) is νcr ≈ 0.2351
which is also independent of the restitution coefficient e (as in figure 9 for model A).
For models C and D, this critical density is νcr ≈ 0.2849 and νcr ≈ 0.2207, respectively.

It should be noted that there is a constraint (f1ν > 0) with our instability criterion
(5.2), i.e. f1 should be a monotonically increasing function of density for the instability
to occur. This constraint on f1, see (2.7) and (2.19), is satisfied for all four models.
The consequence of a possible non-monotonic f1 is that the shear flow remains stable
over a small density range between freezing and melting. However, the increasing
dynamic friction with increasing density (5.2) still remains the criterion for the onset
of the shear-banding instability. Even though for an unsheared elastic system, f1

is non-monotonic (Luding 2001) between freezing and melting density, we retain
(2.19)–(2.20) for f1 since this functional form has been shown to hold upto the
random close-packing density in simulations of plane shear flow of inelastic hard
disks (Volfson et al. 2003).
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Figure 10. Same as figure 8, but for model B .

5.1.1. Shear-banding state and crystallization

For all four models (A, B , C and D), the shear flow is stable and the system remains
homogeneous at low densities, but becomes unstable to shear-banding instability
beyond a critical density (ν > νcr ). This is because for ν > νcr , the flow cannot sustain
the increasing dynamic friction (βd) and hence breaks into alternating layers of dilute
and dense regions along the gradient direction. For ν > νcr , the associated ‘finite-
amplitude’ bifurcated solution corresponds to a lower shear stress, or, equivalently, a
lower dynamic friction coefficient. This has been verified (Alam 2008) numerically by
tracking the bifurcated solutions of the associated steady nonlinear equations.

A representative set of such nonlinear bifurcated solutions for the profiles of
density ν(y), granular temperature T (y) and streamwise velocity u(y) are displayed
in figure 11 for three values of the Couette gap H =50, 75 and 125 for model A;
the related numerical procedure is the same as described in Alam et al. (2005). For
this plot, the mean density is set to 0.5 and the restitution coefficient is 0.9; the
corresponding growth-rate variation of the least stable mode can be ascertained from
figure 2(a). These nonlinear solutions bifurcate from the n= 1 mode (see, (3.5) and
(3.6)) of the corresponding linear stability equations, and there is a pair of nonlinear
solutions for each H owing to the symmetry of the plane Couette flow (Alam & Nott
1998). For mode n=1, the density is a maximum at either of the two walls, and this
density maximum approaches the maximum packing density (νm ≈ 0.906) at H = 125
(solid line in figure 11a) for which we have the coexistence of a ‘crystalline’ zone
and a dilute zone, representing a state of phase separation. Within the crystalline
zone, the granular temperature approaches zero (figure 11b) and so does the shear
rate (figure 11c). It is noteworthy that the shear rate is almost uniform and localized
within the dilute zone. The resulting two-phase solution is called a ‘shear-band’ (or,
shear-localization) since the shearing is confined within a band of an agitated dilute
region that coexists with a denser region with negligible shearing (i.e. a crystalline
region at large enough Couette gap).
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Figure 11. Nonlinear shear-banding solutions for model A for mode n= 1 with ν = 0.5
and e = 0.9: (a) density, (b) granular temperature and (c) streamwise velocity. - - -, H = 50;
- ·-, 100; —, 125.

At H = 50 with parameters as in figure 11, there are two possible solutions: a
‘uniform-shear’ state, with the ‘dynamic’ friction coefficient being βd ≈ 0.26965, which
is unstable, and one of two ‘shear-band’ solutions for which βd ≈ 0.2672. The selection
of the stable branch is determined by the value of the dynamic friction coefficient
being the lowest among all possible solutions, and therefore the equilibrium state
of the flow (at H = 50) corresponds to the shear-banding state of a ‘lower’ dynamic
friction (Alam 2008).

For higher-order modes (n= 2, 3, . . . ), the shape of the nonlinear density/
temperature/velocity profiles can be ascertained from (3.5) and (3.6). For example,
the density profiles for modes n= 2 and 3 would look like the corresponding density
eigenfunctions in figure 2(b). In fact, the solution for the first mode (n= 1) serves as
a ‘building block’ of solutions for higher modes which has been clarified previously
(Alam & Nott 1998; Nott et al. 1999; Alam et al. 2005).
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At this point, we can say that an accurate constitutive model over the whole
range of densities (that incorporates both kinetic and collisional modes of transport
mechanisms) should be used since the dilute and dense regimes can coexist even at
a moderately low mean density. Details of such shear-banding solutions for other
models (B , C and D) and their stability as well as the related results from particle-
dynamics simulations will be considered in a separate paper. Such an exercise will
help to identify and tune the best among the four models.

5.2. Instability length scale and the effect of dissipation

While our instability criterion, given by (5.2), yields a critical value for the density
above which the uniform shear flow is unstable to the shear-banding instability, it
does not say anything about the related instability length scale below which the flow
is stable (cf. figures 1–7). This issue of a dominant instability length scale is tied to the
underlying diffusive mechanisms in a granular fluid, offered by the pseudo-thermal
conductivity in the energy balance equation (2.3).

We have mentioned in § 4 that the neutral contour in the (H, ν)-plane (such as
in figures 1–7) shifts towards the right with increasing restitution coefficient (e), and
hence the flow becomes more stable in the elastic limit. In fact, the dependence
of the neutral contour on e can be removed if we define a normalized Couette
gap as

H ∗ = H
√

1 − e2, (5.4)

which can be thought of as an ‘instability length scale’ (Tan & Goldhirsch 1997;
Alam & Nott 1998). This length scale appears directly from an analysis of the
equation for the neutral contour (5.1):

H 2/Ψ1 = k2
n/Ψ2 = f5H

2/f4 = f50(1 − e2)H 2/f4

⇒ H
√

1 − e2 ≡ H ∗ = kn

√
f4(ν)

Ψ2(ν)f50(ν)
, (5.5)

where f5(ν, e) = (1 − e2)f50(ν), and f4(ν) is related to pseudo-thermal conductivity
as in (2.6). This specific functional dependence of the ‘instability length scale’ on the
restitution coefficient is also due to the dependence of the thermal conductivity on
the granular temperature which implicitly depends on e (equation (3.2)): T ∼ f2/f5 ∼
(1 − e2)−1.

In terms of the above instability length scale (5.4), the renormalized stability
diagrams in the (H ∗, ν)-plane are displayed in figure 12(a–c) for models A–D.
In each panel, we have superimposed three neutral contours for e =0.9, 0.99
and 0.999 which are indistinguishable from each other owing to the underlying
scaling (5.5) with e. In figure 12(b), we compared the neutral contour of the full
model B with those for model Bp (which incorporates the EOS for pressure)
and model Bκ (which incorporates the global EOS for thermal conductivity). A
global equation for thermal conductivity has little influence on the stability diagram,
but a global equation for pressure significantly enlarges the domain of instability in
the (H ∗, ν)-plane.

Comparing figures 12(a) and 12(b), we find that there is a significant difference
between the predictions of models A and B , especially in the dense limit. In
particular, with accurate equations of state as in model B , the dense flow is
unstable to shear-banding instability, even for small values of the Couette gap.
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Figure 12. Renormalized stability diagrams in the (H ∗, ν)-plane, showing the neutral contour
that separates stable and unstable regions: (a) model A; (b) model B; (c) model C and D;
(d) model A with different χ(ν) as explained at the end of § 5.2. The outermost dotted curve
in (d) is discussed at the end of § 5.3. In each panel, the abscissa has been renormalized as

H ∗ = H
√

1 − e2. Note the different range of the vertical axis in each panel.

This is an important issue beyond the square packing density ν > π/4 (in two
dimensions) for which the flow must reorganize internally such that a part of
the flow forms a layered crystalline structure or banding (Alam & Luding 2003b),
thereby allowing the material to shear. This reconciles well with the predictions of
model B , but not with model A (which uses the standard Enskog expressions for
all transport coefficients, § 2.1) for H ∗ < 30 (figure 12a); therefore, using an accurate
equation of state over the whole range of densities should give reasonable predictions
for shear-banding solutions.

In this regard, the predictions of model C (upper curve in figure 12c) and model D

(lower curve in figure 12c) are also consistent for dense flows since the shear-banding
instabilities persist at small values of H for these models too. It may be recalled that
these two models (C and D), with viscosity divergence at ν = νμ < νm, do not admit
‘uniform’ shear solution at large densities ν > νμ. However, the related shear-banding
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solutions at ν < νμ can be continued to higher densities ν > νμ by embedding the
present problem into the uniform shear case such that the shear work is vanishingly
small (Khain & Meerson 2006).

Following one referee’s suggestion, we briefly discuss possible effects of Torquato’s
(1995) formula for the contact radial distribution function:

χ(ν) =
(1 − 0.436ν)

(1 − ν)2
for 0 � ν � νf ,

=
(1 − 0.436ν)

(1 − νf )2
(1 − νf /νr )

(1 − ν/νr )
for νf � ν � νr, (5.6)

which is known to be valid for an elastic hard-disk fluid over a range of densities upto
the random packing limit νr =0.82. When (5.6) is used instead of (2.12) in model A,
the neutral stability curve in the (H ∗, ν)-plane follows the thick line in figure 12(d).
For the sake of comparison, we have also superimposed the neutral stability curve of
model A, denoted by the thin line, with χ(ν) being given by (2.12) with νm = νr . Clearly,
a larger range in the dense regime is unstable with Torquato’s formula (5.6), but the
overall instability characteristics (the stationary nature of instability, the magnitude
of growth rate, etc.) remain similar for both (2.12) and (5.6). We have also verified
that the stability diagram looks similar to that in figure 5 (except for the presence
of a discontinuity on the neutral contour at ν = νf , resulting in two instability lobes)
when (2.20) is used as an effective contact radial distribution function for all transport
coefficients.

5.3. Discussion of some ‘ultra-dense’ constitutive models

Focussing on the ‘ultra-dense’ regime with volume fractions close to the close-packing
density (ν → νm), the dense limit of model A (i.e. model Ad in § 2.1.2) can be simplified
by replacing ν with νm and retaining the dependence of the fi terms on ν via the
corresponding dependence of the pair correlation function. For this ultra-dense regime
the constitutive expressions are:

f1 ≡ f c
1 (ν → νm) = 2ν2

mχ,

f2 ≡ f c
2 (ν → νm) =

√
π

8

(
1 +

8

π

)
ν2

mχ,

f3 ≡ f c
3 (ν → νm) =

2√
π

ν2
mχ,

f4 ≡ f c
4 (ν → νm) =

√
π

(
1

π
+

9

8

)
ν2

mχ,

f5 ≡ f5(ν → νm) =
4√
π

(1 − e2)ν2
mχ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.7)

This model is devoid of shear-banding instabilities since it can be verified that

dβd

dν
= 0, ∀ ν > 0.

This is similar to the predictions of model Ad (see the dot-dashed line in figure 8).
The constitutive model of Khain & Meerson (2006) can be obtained from (5.7) by

replacing the contact radial distribution function for viscosity by

χ → χμ(ν) =

(
1 +

0.037

νμ − ν

)
χ(ν)
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which diverges at ν = νμ as in (2.23); the exact density at which viscosity diverges
is not important here. Khain & Meerson found two-phase-type solutions using their
model. Since viscosity diverges at a lower density (and hence ‘faster’) than other
transport coefficients, it is straightforward to verify that our instability criterion,

dβd

dν
> 0, ∀ ν > νcr ,

holds for this model. Khain (2007) also found two-phase-type solutions using a
constitutive model (a modified model of Khain & Meerson 2006) which is similar to
our model D, and the predictions of his model agree well with particle simulation
results; for this modified model too, our instability criterion (5.2) holds. Therefore, the
two-phase-type solutions of Khain & Meerson (2006) and Khain (2007) are directly
tied to the shear-banding instabilities of Alam & Nott (1998), Alam et al. (2005) and
Alam (2006) via the universal instability criterion (5.2). More specifically, both belong
to the same class of constitutive instability (Alam 2006).

The constitutive model of Losert et al. (2000) can be obtained from (5.7) by using
the following functional form for the contact radial distribution function

χ = (1 − ν/νr )
−1 ,

which diverges at the random close-packing limit (νr ), for all transport coefficients
except the shear viscosity, μ, that has a ‘stronger’ rate of increase near νr :

χ → χμ(ν) = (1 − ν/νr )
−7/4 .

This choice of viscosity satisfies our instability criterion, dβd/dν > 0, and, therefore,
the model of Losert et al. would yield shear-banding-type solutions which is again
tied to the increase of ‘dynamic’ friction with density for the uniform shear state.

To illustrate the quantitative effect of a stronger viscosity divergence on the shear-
banding instability, the neutral stability contour for model A (with a stronger viscosity
divergence, see below) is shown in figure 12(d), denoted by the outermost dotted curve.
For this case, the constititutive model is the same as the full model A (i.e. all transport
coefficients diverge at the same density νm) but its viscosity function f2(ν) in (2.8) is
calculated using a radial distribution function that has a stronger divergence than all
other transport coefficients:

χ → χμ(ν) =
1 − 7ν/16

(1 − ν/νm)q
,

with its exponent q = 2.25 > 2. (It should be noted that this specific functional form
of χμ may not be correct quantitatively at all densities, but it has simply been chosen
to illustrate the possible effects of a stronger viscosity divergence on instabilities.)
Comparing the dotted contour in figure 12(d) with the thin-solid contour for model
A, we find that a larger range in the (ν, H ∗)-plane is unstable for the case of a stronger
viscosity divergence. With further increase of q , the neutral contour shifts towards
the left to cover smaller values of H , leading to an even larger instability region in
the (ν, H ∗)-plane. In either case, however, the nature of the shear-banding instability
remains the same and we do not find any new instability, as emphasized before.

5.4. Limit of elastic hard-sphere fluid: dissipation versus effective shear rate

Naively extrapolating the instability length scale (5.5) to the elastic limit (e → 1)
of atomistic fluids results in H → ∞ which corresponds to an infinite system for shear
banding to occur in an atomistic fluid. This is in contrast to molecular dynamics
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simulations of sheared ‘elastic’ hard-sphere fluid (Erpenbeck 1984) for which a
shear-induced ordering phenomenon has been observed at moderate densities (much
below the freezing density). Similar observations of such banding have been made
in simulations for continuous potentials too (see, Evans & Morriss 1986). The key
to resolving this apparent anomaly is that the elastic limit (e =1) is singular since
the collisional dissipation vanishes. To achieve a steady state in simulations of a
sheared atomistic fluid, thermostats are used to take away energy from the system
that compensates the production of energy due to shear-work (P : ∇u). Otherwise
the system would continually heat up, leading to an infinite temperature. Hence, the
collisional dissipation in a granular fluid can be seen to play the role of a thermostat
in an atomistic fluid.

Equating the dissipation term (either due to a thermostat in an elastic fluid, or due
to inelastic collisions in a granular fluid) with the shear-work, we obtain a scaling
relation for temperature with the shear rate and the restitution coefficient:

T̃ ∝ γ 2

1 − e2
∝ γ ∗2

, (5.8)

where T̃ is the dimensional temperature, and

γ ∗ =
γ√

1 − e2
(5.9)

defined as an ‘effective’ shear rate. For an elastic fluid, this effective shear rate, γ ∗, is
used to normalize the temperature, and hence a similar criterion (5.2) is likely to hold
for the onset of shear-banding instability in an elastic fluid too. The dependence of the
effective shear rate (5.9) with inelasticity suggests that the shear-banding in atomistic
fluids is likely to occur at large shear rates, a prediction that agrees with Erpenbeck’s
(1984) simulations. This should be checked by determining the analytical expression
for the thermostat term (which might depend on the choice of the thermostat) in the
energy equation.

Although the Erpenbeck’s ordering transition has been explained (Kirkpatrik &
Nieuwoudt 1986; Lutsko & Dufty 1986) as an instability of the ‘unbounded’ shear flow
of an elastic fluid, using Navier–Stokes-level equations with wave-vector-dependent
transport coefficients (i.e. generalized hydrodynamics), Lee et al. (1996) have identified
a long-wave instability (with perturbations along the gradient direction only) in the
uniform shear flow for all densities. In particular, Lee et al. showed that the Navier–
Stokes-level constitutive model is the ‘minimal’ model to predict the robustness of this
instability. The possible connection of this instability with the present work should
be investigated in the future.

5.4.1. Shearbanding criterion in a molecular fluid: Loose & Hess (1989)

We close our discussion by recalling a similar instability criterion for an ‘ordering’
transition in a dense molecular fluid (Loose & Hess 1989) and its connection (Alam
2006) with our instability criterion (5.2), along with a more general criterion for
shear-banding in a shear thinning/thickening fluid.

Using a non-Newtonian constitutive model, Loose & Hess (1989) have derived a
criterion for the onset of shear-banding in a dense molecular fluid:(

∂pyx

∂γ

)(
∂pyy

∂ν

)
�

(
∂pyx

∂ν

)(
∂pyy

∂γ

)
, (5.10)
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where pyy and pyx are the normal and shear stresses, respectively. Assuming the
following functional dependence of pyy and pyx with density (ν) and shear rate (γ ),

pyy = p0
yy(ν)fyy(γ ), pyx = p0

yx(ν)fyx(γ ), (5.11)

the above instability criterion simplifies to(
p0

yx

dfyx

dγ

) (
fyy

dp0
yy

dν

)
�

(
fyx

dp0
yx

dν

)(
p0

yy

dfyy

dγ

)
. (5.12)

For a granular fluid, the shear-rate dependence of stresses follows the well-known
Bagnold scaling:

fyy(γ ) ∼ T ∼ γ 2, fyx(γ ) ∼ γ
√

T ∼ γ 2, (5.13)

where we have used the relation of the granular temperature with the shear rate,
T ∼ γ 2. Substituting (5.13) into (5.12), the Loose–Hess instability criterion boils down
to (Alam 2006)

d

dν

(
p0

yx

p0
yy

)
� 0. (5.14)

The term within the brackets is the dynamic friction coefficient of a fluid, and hence
the onset of instability is again tied to the increasing value of this dynamic friction
coefficient with increasing density. This is the same as our shear-banding instability
criterion (5.3). For a more general case, the shear-rate dependence of stresses can be
postulated as

fyy(γ ) = γ 2n,

fyx(γ ) = γ n+1,

}
(5.15)

where the index n is a measure of shear-thickening (n> 0) or shear-thinning (n< 0)
behaviour of the fluid. With this, the shear-banding instability criterion boils down to

p0
yx

dp0
yy

dν
�

(
2n

n + 1

)
p0

yy

dp0
yx

dν
. (5.16)

6. Conclusion and outlook
To conclude, we showed that by just by knowing the constitutive expressions

for pressure and shear viscosity, we can determine whether any Navier–Stokes-level
constitutive model would lead to a shear-banding instability in granular plane Couette
flow. The onset of this stationary instability is tied to the increasing value of the
‘dynamic’ friction coefficient, βd = μγ/p (where μ, p and γ =du/dy are the shear
viscosity, pressure and shear rate, respectively), with increasing density for ν > νcr

(equation (5.2)): the ‘homogeneous’ shear flow breaks into alternating layers of dilute
and dense regions along the gradient direction since the flow cannot accommodate
the increasing friction to stay in the homogeneous state. For ν > νcr , the associated
‘nonlinear’ shear-band solution corresponds to a lower shear stress, or, equivalently, a
lower dynamic friction coefficient (Alam 2008). In other words, the sheared granular
flow evolves toward a state of ‘lower’ dynamic friction, leading to shear-induced band
formation along the gradient direction. Note that the dynamic friction coefficient,
βd =μγ/p, is a position-independent order-parameter for both ‘uniform’ (γ = const.)
and ‘non-uniform’ (γ = γ (y)) shear flows.
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In the framework of a ‘dense’ constitutive model that incorporates only the
collisional transport mechanism (i.e. Haff’s model, 1983), we showed that an accurate
global equation of state for pressure or a viscosity divergence at a lower density
(with other transport coefficients being given by respective Enskog values) can induce
shear-banding instabilities, even though the original dense Enskog model is stable to
such shear-banding instabilities. Since the prediction of the shear-banding instability
depends crucially on the form of the constitutive relations, we must use accurate
forms of constitutive expressions over the whole range of density that incorporate
both kinetic and collisional transport mechanisms. The latter statement is important
since the dilute and dense regimes coexist even at a low mean density when the
uniform shear flow is unstable to shear-banding instability. The resulting nonlinear
shear-banding solutions of all four models (A, B , C and D) and their stability, as
well as the related results from particle-dynamics simulations, will be considered in
a separate paper. This will help to identify the best among these four constitutive
models, or will point towards new models. In this regard, it is recommended that
the particle-dynamics simulations be used to find accurate expressions (valid over the
whole range of density) for all transport coefficients.

We established that the two-phase-type solutions of Khain & Meerson (2006) are
directly related to the shear-banding instabilities of Alam & Nott (1998), Alam et al.
(2005) and Alam (2006) via the universal instability criterion (5.2), and both belong
to the same class of constitutive instability (Alam 2006). In particular, the instabilities
arising out of non-monotonicities of constitutive relations with mean fields (e.g. the
coil–stretch transition is tied to the non-monotonic stress–strain curve; see, de Gennes
1974) are of constitutive origin and hence dubbed constitutive instability. The same
universal criterion (5.2) also holds for the constitutive model of Losert et al. (2000),
thereby yielding such two-phase-type solutions in their model of plane shear
flow.

The onset of the ordering transition of Erpenbeck (1984) in a sheared ‘elastic’ hard-
sphere fluid (which is close to our granular system) is accompanied by a decrease
in viscosity and hence a lower viscous dissipation. Therefore, similar to the sheared
granular fluid, the state of lower viscosity/friction is the preferred equilibrium state
for a sheared atomistic fluid. Our instability criterion (5.2) seems to provide a unified
description for the shear-banding phenomena for the singular case of hard-sphere
fluids if we relate the collisional dissipation to a thermostat, leading to an ‘effective’
shear rate. This possible connection should be investigated further considering the
constitutive instability of the underlying field equations.

The shear-banding phenomenon is ubiquitous in a variety of complex fluids under
non-equilibrium conditions: wormlike micelles (Spenley, Cates & McLeish 1993),
colloidal suspensions (Hoffman 1972; Ackerson & Clark 1984), model glassy material
(Varnik et al. 2003), suspensions of rod-like viruses (Lettinga & Dhont 2004), lyotropic
liquid crystals (Olmsted 2008) and numerous other systems. In the literature of non-
Newtonian fluids (see, for a review, Olmsted 2008), the shear-banding phenomenon
has been explained as a constitutive instability from the linear stability analysis
of appropriate constitutive models (Greco & Ball 1997; Wilson & Fielding 2005).
The well-known ‘Hoffman transition’ in a colloidal suspension (banding/ordering of
particles along the gradient direction) above the freezing point is accompanied by
a sharp decrease in viscosity and has been explained in terms of a flow instability
(Hoffman 1972). Caserta, Simeone & Guido (2008) showed that the shear-induced
banding in biphasic liquid–liquid systems is tied to a lower viscosity, or, equivalently,
a lower viscous dissipation. For both cases, the criterion of lower viscosity is similar to
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our criterion of a lower ‘dynamic’ friction for the band-state in sheared granular fluid.
It appears that the shear-induced banding in many complex fluids has a common
theoretical description in terms of ‘constitutive’ instability that leads to an ordered-
state of a lower viscosity/friction.

M. A. acknowledges partial funding support from DRDO, Government of India
(DRDO/RN/4124) and the Max Planck Partner Group of MPI-MM Bremen at
JNCASR Bangalore (MPI/MA/4190, funded by Max Planck Society, Germany).

Appendix A. Non-dimensional equations
For non-dimensionalization, we have used H̃ , H̃ /Uw and Uw as the reference length,

time and velocity scales, respectively. With these scalings, the top plate moves with
a velocity 1/2 and the bottom plate with −1/2. Using these quantities as reference
scales, the non-dimensional forms of streamwise-independent (∂/∂x(·) = 0) balance
equations for mass, momentum and granular energy are:(

∂

∂t
+ v

∂

∂y

)
ν = −ν

∂v

∂y
, (A 1)

ν

(
∂

∂t
+ v

∂

∂y

)
u =

1

H 2

∂

∂y

(
μ

∂u

∂y

)
, (A 2)

ν

(
∂

∂t
+ v

∂

∂y

)
v =

1

H 2

[
−∂p

∂y
+

∂

∂y

(
2μ

∂v

∂y
+ λ

∂v

∂y

)]
, (A 3)

ν

(
∂

∂t
+ v

∂

∂y

)
T =

1

H 2

∂

∂y

(
κ

∂T

∂y

)
− p

∂v

∂y

+2μ

[(
∂v

∂y

)2

+
1

2

(
∂u

∂y

)2

+
λ

2μ

(
∂v

∂y

)2
]

− D. (A 4)

Here, u and v are the velocity components in the x- and y-directions, respectively;
H ≡ H̃ /d is the scaled Couette gap in terms of particle diameter. The dimensionless
transport coefficients are:

p(ν, T ) = f1(ν)T , μ(ν, T ) = f2(ν)
√

T ,

ζ (ν, T ) = f3(ν)
√

T , κ(ν, T ) = f4(ν)
√

T ,

D(ν, T ) = f5(ν, e)T 3/2, λ(ν, T ) = ζ − μ.

⎫⎪⎪⎬
⎪⎪⎭ (A 5)

Appendix B. Coefficients of dispersion relation
The coefficients, aij , in the dispersion relation (3.8) are given by

a30 =
1

ν
[DT − μT ] , (B 1)

a32 =
1

ν
[3μ + λ + κ] k2

n, (B 2)

a22 =
1

ν2
[(2μμT + ppT + ν2pν) + (3μ + λ)(DT − μT )]k2

n, (B 3)

a24 =
1

ν2
[(3μ + λ)κ + (2μ + λ)μ] k4

n, (B 4)
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a12 =
2pT μ

ν2
k2

n +
1

ν
[pν(DT − μT ) − pT (Dν − μν)] k2

n, (B 5)

a14 =
μ

ν3
[(2μ + λ)(DT + μT ) + ppT ] k4

n +
1

ν
[pνκ + pνμ] k4

n, (B 6)

a16 =
μ

ν3
[(2μ + λ)κ] k6

n, (B 7)

a04 =
μ

ν2
[pν (DT + μT ) − pT (Dν + μν)] k4

n, (B 8)

a06 =
μ

ν2
pνκk6

n. (B 9)

Here, kn = nπ, n is the mode number (equations (3.5) and (3.6)) and the subscripts ν

and T to any quantity denote its partial derivative.
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