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Abstract
Rapid advances in artificial intelligence (AI) and machine learning are creating products and services with
the potential not only to change the environment in which actuaries operate, but also to provide new
opportunities within actuarial science. These advances are based on a modern approach to designing,
fitting and applying neural networks, generally referred to as “Deep Learning”. This paper investigates
how actuarial science may adapt and evolve in the coming years to incorporate these new techniques
and methodologies. Part 1 of this paper provides background on machine learning and deep learning, as
well as an heuristic for where actuaries might benefit from applying these techniques. Part 2 of the paper
then surveys emerging applications of AI in actuarial science, with examples from mortality modelling,
claims reserving, non-life pricing and telematics. For some of the examples, code has been provided on
GitHub so that the interested reader can experiment with these techniques for themselves. Part 2 concludes
with an outlook on the potential for actuaries to integrate deep learning into their activities. Finally, a
supplementary appendix discusses further resources providing more in-depth background on machine
learning and deep learning.
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1. Introduction
As discussed in Part 1 of this paper, the aim of Part 2 of the paper is to provide a survey of recent
applications of deep learning to actuarial problems in mortality forecasting, life insurance valu-
ation, analysis of telematics data and pricing and claims reserving in short-term insurance (also
known as property and casualty insurance in the USA and general insurance in the UK). This
second part concludes by discussing how the actuarial profession can adopt the ideas presented in
the paper as standard methods.

We refer the reader back to Part 1 for a discussion of the organisation of this paper, and to
Section 2 of Part 1 for definitions and notation (Richman, 2020) which will be used throughout.
Appendix A contains a list of all acronyms used in this paper and their definitions.

2. Survey of Deep Learning in Actuarial Science
This section presents a non-exhaustive review of recent applications of neural networks in actuar-
ial science. Since this paper is concerned with themodern application of neural networks, searches
within the actuarial literature were confined to articles written after 2006, when the current resur-
gence of interest in neural networks began (Goodfellow et al., 2016) and ended in around July
2018, which is when this paper was drafted. The prominent actuarial journals listed in Appendix A
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were searched for the key phrase “neural networks,” and the search was augmented by similar
searches on the SSRN and arxiv repositories. Articles making only a passing reference to neural
networks were dropped from the list, and the resulting list of topics and papers reviewed in this
section is as follows:

• pricing of non-life insurance (Noll et al., 2018; Wüthrich & Buser, 2018);
• incurred but not reported (IBNR) reserving (Kuo, 2018b; Wüthrich, 2018a; Zarkadoulas,

2017) and the individual claims simulation machine of Gabrielli and Wüthrich (2018);
• analysis of telematics data (Gao et al., 2018; Gao &Wüthrich, 2017; Wüthrich & Buser, 2018;

Wüthrich, 2017);
• mortality forecasting (Hainaut, 2018a);
• approximating nested stochastic simulations (Hejazi & Jackson, 2016, 2017);
• forecasting financial markets (Smith et al., 2016).

Code in the R language for some of the examples in this section and pre-trained models to
reproduce the results are provided at: https://github.com/RonRichman/AI_in_Actuarial_Science/

2.1. Pricing of non-life insurance
The standard method for pricing lines of non-life insurance business with significant volumes of
data, such as personal lines, is generalised linear models (GLMs) (Parodi, 2014), which extend
linear regression models in two main ways – firstly, the assumption of a Gaussian error term is
replaced with an extended class of error distributions from the exponential family, such as the
Poisson, Binomial and Gamma distributions, and, secondly, the models are only assumed to be
linear after the application of a link function, canonical examples of which are the log link for
Poisson distributions and the logit link for Binomial distributions. Separate models for frequency
and severity are often used, but the option of modelling pure premium with Tweedie GLMs also
exists. For more details on GLMs, see Ohlsson and Johansson (2010) and Wüthrich and Buser
(2018). GLMs have been extended in several notable ways, such to incorporate smooth func-
tions of the covariates in generalised additive models (GAMs) (a comprehensive introduction to
GAMs and their implementation in R is provided by Wood (2017)) or to apply hierarchal cred-
ibility procedures to categorical covariates, as in generalised linear mixed models (GLMMs) (see
Gelman and Hill (2007) for an introduction to GLMMs and other regression modelling tech-
niques). Similar to many other supervised machine learning methods, such as boosted trees or
least absolute shrinkage and selection operator (LASSO) regression, GLMs are usually applied to
tabular, or structured, data, in which each row consists of an observation, and the columns consist
of explanatory and target variables.

Two recent examinations of the performance of GLMs to model frequency compared to
machine learning techniques are Noll et al. (2018) and Wüthrich and Buser (2018). Noll et al.
(2018) apply GLMs, regression trees, boosting and neural networks to a real third-party liability
(TPL) dataset consisting of explanatory variables, such as age of the driver and region, and tar-
get variables, consisting of the number of claims, which is freely available as an accompaniment
to Charpentier (2014). Wüthrich and Buser (2018) apply a similar set of models to a simulated
Swiss dataset. Since the study of Noll et al. (2018) is on real data where the data generating
process is unknown (i.e. similar to the situation in practice), we focus on that study and report
supplementary results fromWüthrich and Buser (2018)1.

After providing a detailed exploratory data analysis (EDA) of the French TPL dataset, Noll
et al. (2018) apply the fundamental step in the machine learning process of splitting the dataset
into training and test subsets, comprising 90% and 10% of the data, respectively. Models are fit on

1 In passing, we also mention Hainaut (2018b) who applies Self Organizing Maps (SOMs) (Kohonen, 1990) to the
problem of variable clustering for non-life modelling, but do not study it further since SOMs are not feed-forward neural
networks.
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the training dataset but tested on out-of-sample data from the test set, to give an unbiased view of
the likely predictive performance if the model were to be implemented in practice2.

Since the aim is to compare models of frequency, the loss function (which measures the dis-
tance between the observations and the fitted model) used is the Poisson Deviance (minimising
the Poisson Deviance is equivalent to maximising the likelihood of a Poisson model, seeWüthrich
and Buser (2018)):

L (D, λ) = 1
n

n∑
i=1

2Ni

(
λiVi
Ni

− 1− log
(

λiVi
Ni

))

where D represents the dataset with n policy observations having an exposure for policy i of Vi,
number of claims Ni and modelled frequency of claim λi.

Since the EDA shows that the empirical (marginal) frequencies of claim are not linear for some
of the variables, which is the underlying assumption of a log-linear GLM, some of the continuous
variables were converted to categorical variables, that is, some manual feature engineering was
applied. When fitting the GLM, it was noted that the area and vehicle brand variables appeared
not to be significant based on the p-values for these variables, however, including both variables
contributes to a better out-of-sample loss, leading the authors to select the full model (see the
discussion in Shmueli (2010) and Section 3.1 in Part 1 about the difference between explanatory
and predictive models). Although extensions of GLMs are not considered in detail this study,
Wüthrich and Buser (2018) report good performance of GAMs on the simulated dataset they
study (which contains only weak interactions between variables). After fitting the GLM, a regres-
sion tree and a Poisson Boosting Machine (PBM) are applied (see Wüthrich and Buser (2018, p.
Section 6) for the derivation of the PBM, which is similar to a gradient boosting machine) to the
unprocessed dataset, with both models outperforming the GLM, and the PBM outperforming the
regression tree on out-of-sample loss. A shallow neural network was then fit to the data, with a
hidden layer of 20 neurons, using the sigmoid activation function and the Poisson deviance loss,
with a momentum enhanced version of gradient descent. The neural network provides an out-of-
sample loss between that produced by the regression tree and the PBM. Interestingly, the authors
note that using the exposure as a feature, instead of a constant multiplied by the claims rate λi,
provides a major performance improvement. The conclusion of the study is that both the PBM
and neural network outperform the GLM, which might be because the GLM does not allow for
interactions, or because the assumption of a linear functional form is incorrect. Generously, code
in R for all of the examples is provided by the authors, and, in the following section, it is shown
how the neural network model in this example can be fit and extended using Keras.

2.1.1. Analysis using Keras
In this section, we show how Keras can be used to fit several variations of the shallow neural
network discussed in Noll et al. (2018). At the outset, it is worth noting that the signal-to-noise
ratio of claims frequency data is often relatively low (see Section 2.5.5 in Wüthrich and Buser
(2018)) and very flexible or high-dimensional models might not provide much extra accuracy
with this type of data.

As noted above, neural networks learn representations of the features that are optimal for the
problem they are optimised on, by stacking layers of neurons on top of each other. Each hid-
den layer can be thought of as a non-linear regression with a feature representation as the output.

2 Often, three splits of the data are recommended – a training split, on which to fit the models, a validation split, on
which to compare model performance, and a test split, which is only used at the end of the modelling process to estimate
likely performance of the model. Combining the test and validation splits leads to the risk that models will be over-fit to the
test set if many iterations of models are used to optimize test set performance.
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Table 1. Out-of-sample Poisson deviance for
the French TPL dataset

Model Out of sample

GLM 0.3217
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GLM_Keras 0.3217
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NN_shallow 0.3150
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NN_no_FE 0.3258
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NN_embed 0.3068
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GLM_embed 0.3194
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NN_learned_embed 0.2925

A neural network without any hidden layers (i.e. without representation learning) is simply equiv-
alent to a regression model, and, therefore, for ease of exposition, we start with a GLM model in
Keras, following the data processing steps in Noll et al. (2018). As mentioned above, after noticing
that the assumption of linearity was violated for some of the continuous feature variables, Noll
et al. (2018) apply some feature engineering by discretising these variables (for details, see the
code accompanying that paper), thus, the GLM mentioned in this section allows for some non-
linear relationships. A different approach would be to use a GAM, which relies on splines tomodel
non-linear relationships between the features and the output3.

Two points should be noted when trying to use Keras to fit a Poisson rate regression. Firstly,
Keras includes a Poisson loss function, the minimisation of which is equivalent to minimising the
Poisson Deviance; nonetheless, the values returned by this function are not equal to the Poisson
Deviance. If the user wishes to track the Poisson Deviance during training, then this may be
remedied by defining a custom Poisson Deviance loss function. Secondly, the model required
is a Poisson rate regression, where the exposure measure is the time that a policy is in force, and
the regression fits the rate of claim based on this exposure measure. To fit this model in Keras, the
easiest option is to use the Keras Functional Application Programming Interface (API) tomultiply
the output of the neural network with the exposure to derive the expected number of claims. Since
the rates of claim lie between 0 and 1, the output layer of the neural network was chosen to use a
sigmoid activation, and therefore, the network learns the rates on a logit scale, which is slightly dif-
ferent from the log scale used by the GLM. This model is denoted GLM_Keras in Table 1, whereas
the baseline GLM fit using the glm() function in R is denoted GLM. The code in R to accomplish
this is

dense=NumInputs %>%
layer_dense(units= 1, activation = “sigmoid”)

N = layer_multiply(list(dense,Exposure), name = “N”)

The out-of-sample Poisson deviance in Table 1 for the GLM fit in Keras is close to that of the
baseline GLM. Fitting a shallow neural network requires a single extra line of code:

dense=NumInputs %>%
layer_dense(units= 20, activation = “relu”) %>%
layer_dense(units= 1, activation = “sigmoid”)

3 Of course, a detailed modelling exercise would probably result in a more complicated GLM, with better performance
than the GLM considered in this exercise. Thus, one might question if indeed, the analysis shown in this section is a fair
reflection on GLMmodelling. The key point of the section, though, is that good performance can be achieved relatively easily
and without much human input using neural networks.
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Figure 1. Driver age embedding reduced to two dimensions using the t-SNE technique.

In this case, a hidden layer with 20 neurons was used, with the ReLu activation function. The
same dataset used for the GLM that contained the categorical conversion of the numerical inputs
was used as the data in this network, which performed on a par with the neural network model
in Noll et al. (2018) and is denoted NN_shallow in the table. However, this model is somewhat
unsatisfying since it relies on manual feature engineering, that is, converting the numerical inputs
to categorical values.

Therefore, another network (denoted NN_no_FE) was tried, but the out-of-sample perfor-
mance was worse than the GLM, indicating that the network did not manage to fit continuous
functions to the numerical inputs properly. To overcome this deficiency, the specialised embed-
ding layer discussed above was added to the model for all of the numerical and categorical
variables, with a hand-picked number of dimensions for each embedding. The intuition behind
this is that the network might better be able to learn the highly non-linear functions mapping the
numerical variables to frequency by learning ameaningful multi-dimensional vector for each cate-
gory. To do this, the numerical variables were split into categories by the quantiles of the numerical
variable, defined so as to produce a minimum of 10,000 observations per group. For example, the
driver age variable was split into 49 groups, and a 12-dimensional embedding was estimated for
each of the 49 groups. The results of this network, denoted NN_embed, were significantly better
than all of the models considered to this point.

The learned embeddings for the driver age variable are shown in Figure 1, after applying the
t-distributed Stochastic Neighbor Embedding (t-SNE) technique (Maaten & Hinton, 2008) to the
reduce the multi-dimensional embedding values (12 dimensions) down to two dimensions. In
other words, to enable one to inspect what has been learned by the network, we have represented
the 12-dimensional embeddings in a two-dimensional space using the t-SNE technique, allowing
for some interpretation of the embeddings, which we discuss next.

The figure shows that the embeddings for the youngest age groups in the model (i.e. 20 and
22) cluster together, with two additional clusters relaying to the young adult and older adult ages
apparent. Figure 2 shows the relationship of the embeddings (again in two dimensions derived
using the t-SNE technique) to the driver age variable. The interpretation here is that the first
dimension represents a schedule of claims rates according to age, with the rates starting off high at
the youngest ages (i.e. above zero), dropping down in themiddle ages mostly below zero) and then
rising at the older ages (mostly above zero). The second dimension shows how the relationship
between the claims rates at the younger and older ages might change by “twisting” the schedule
of rates (i.e. if the rates at younger ages go down, those at older ages go up and vice versa). The
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Figure 2. Driver age embedding reduced to two dimensions using the t-SNE technique, plotted against the driver age
variable.

embedding therefore seems to tie in with the intuition that the youngest and least experienced
drivers will have similar high claims frequency experience, that more experienced but nonetheless
young drivers will have the lowest claims rates and that the oldest drivers will again experience
a rise in frequency.

That the learned embedding has an easy and useful interpretation was then shown by including
the embedding in a simple GLM model in place of the categorical driver age variable, and this
result is referred to in the table as GLM_embed. This application of transfer learning (i.e. reuse of
a calibrated neural network component in another model) reduced the out-of-sample loss of the
GLM relatively significantly, showing that the learned embedding has a meaning outside of the
neural network, and, presumably, even better performance could be achieved by replacing all of
the variables in the GLM with the corresponding embeddings. Since actuaries are more used to
pricing personal lines business using GLMs, pre-training embeddings in a neural network which
are then used within GLMs as additional parameter vectors seems like a promising strategy to be
explored further.

A last illustration4 of the flexibility of neural networks builds upon the observation of Noll et al.
(2018) that including exposure as a feature component instead of a multiplicative constant results
in a much more predictive model. The network denoted as NN_learned_embed implements this
idea in two ways. Firstly, the exposure is input into the model via an embedding layer, in the same
way as described above for the rest of the numerical features, by splitting the exposure variable
into 46 groups, and estimating an 11-dimensional embedding for each of the 46 groups. Secondly,
a secondary network is built (within the main network) to apply a multiplicative scaling factor to
the policy exposure to produce a “learned exposure” which is used in place of the policy exposure
to predict claims frequency. This network is shown in Figure 3.

Of the networks discussed, the learned exposure network by far outperforms the rest (note that
including the exposure embedding but not the secondary network did not produce as optimal
a result). To build some intuition, the average learned exposures are shown in Figure 4 plotted
against the average exposures in the data, segmented by the number of claims. The figure shows
that at the lowest level of exposures, the network has dramatically increased the level of exposure
for those policies claiming at least once5, as well as for multi-claimants, indicating that the time

4 The author wishes to acknowledge and thank Mario Wüthrich for a discussion of the idea of learned exposure.
5 A reviewer of the paper suggested that policies with the lowest levels of exposure may in fact relate to rented vehicles,

which may experience a higher frequency of claim than vehicles owned by the policyholder.
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Figure 3. Learned exposure network. A sub-network learns an exposure modifier factor, which is multiplied with the policy
exposure to produce the learned exposure. The learned exposure is used in place of the policy exposure to predict claims
frequencies.

a policy spends in force is not an optimal exposure measure, and, indeed, a recent analysis of
telematics data appears to indicate that distance travelled is a more optimal exposure measure
(Boucher et al., 2017).

2.2. IBNR reserving
Reserving for claims that have been incurred but not reported is a fundamental task of actuaries
within non-life insurance companies, primarily to ensure the company’s current and future ability
to meet policy holder claims, but also to allow for the up to date tracking of loss ratios on an
accident and underwriting year basis, which is essential for the provision of accurate management
information. Since Bornhuetter and Ferguson (1972) encouraged actuaries to pay attention to
the topic of IBNR reserves, a vast literature on loss reserving techniques has emerged; see, for
example, Schmidt (2017) andWüthrich and Merz (2008). Nonetheless, the relatively more simple
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Figure 4. Learned exposures, segmented by number of claims made, plotted against exposure.

chain-laddermethod remains themost popular choice of method for actuaries reserving for short-
term insurance liabilities, globally and in South Africa (Dal Moro et al., 2016).

As mentioned in Sections 3 and 4 of Part 1 (Richman, 2020) of this paper, the chain-ladder
technique can be viewed as a regression, with a specific type of feature engineering used to
derive forecasts of the aggregate claims still to be reported, and, therefore, it is not surprising
that enhanced approaches based on machine and deep learning are possible. In this section, we
discuss several recent contributions applying neural networks to the problem of IBNR reserving.

2.2.1. Granular reserving using neural networks
IBNR reserves are generally calculated at the level of a line of business (LoB), which represents a
homogenous portfolio with similar exposure to risk and types of claims. This high-level calcula-
tion is generally sufficient for solvency reporting and basic management information. However, a
vexing problem in practice is the production of reserves for groupings of business lower than the
LoB aggregation, since, on the one hand, these more granular calculations might reveal important
information about the business such as particularly poorly performing segments, but on the other
hand, the more granular data is often too sparse for the traditional chain-ladder calculations. One
potential solution is the various credibility weighted extensions of the chain-ladder, see, for exam-
ple, Bühlmann et al. (2009); Gisler andWüthrich (2008); however, these have been developed only
to the extent of a single level of disaggregation from the usual calculations.
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A more recent approach is Wüthrich (2018a) who extends the formulation of the chain-ladder
as a regressionmodel to incorporate features such as LoB, type of injury and age of the injured. The
basic chain-ladder method uses the aggregated incurred or paid claims (or claim amounts) from
accident period i developed up to a point in time j, Ci,j, as the sole input feature into a regression
model:

Ĉi,j+1 = fj.Ci,j

where Ĉi,j+1 is the estimated claim amount for the next development period and fj is the so-called
loss development factor (LDF) (after estimating Ĉi,j+1, the calculations are continued using the
predicted value as the next feature for that accident year). This could be expressed in a functional
form Ĉi,j+1 = f (X).Ci,j, where X is a feature vector containing only one feature, in this case, the
development period j. The insight of Wüthrich (2018a) is to extend the feature space X to include
other components, namely, LoB, labour sector, accident quarter, age of the injured and body part
injured, and then, to fit a neural network model to estimate the expanded function f (X). Once this
function is estimated, it is used to derive LDFs at the level of granularity of the expanded feature
vector X, and the chain-ladder method can be applied as normal.

One complication is that as the data are disaggregated, the multiplicative structure of themodel
may fail if Ci,j is zero (i.e. no claims have been incurred/paid in accident period i up to a point in
time, j). Two approaches are possible. A simpler approach is to calculate a second chain-ladder
model, fit for each LoB separately, which projects the total aggregated Ci,j to ultimate using mod-
ified LDFs that allow only for the development of claims from zero and a more complicated
approach would allow for an intercept in the regression model that is only calculated if Ci,j is
zero, that is, Ĉi,j+1 = fj.Ci,j + 1Ci,j=0.gj, where 1Ci,j=0 is an indicator function that takes the value
of one when Ci,j = 0 and gj is an intercept term relating to development time j.

The neural network used in Wüthrich (2018a) had a single layer of 20 neurons and used the
hyperbolic tangent activation function. Comparing the neural network and chain-ladder reserves
to the true underlying dataset, it was found that the neural network reserves were almost perfectly
accurate for three of the four LoBs considered, and more accurate than the chain-ladder reserves,
while, on the fourth line, both the neural network and chain-ladder reserves were over-stated, the
former more than the latter. The results of the neural network approach were also quite accurate
at the level of age, injury code, and claims code, which, besides for allowing for a more detailed
understanding of the aggregate IBNR requirements, also allows for the production of detailed
management information, as well as input into pricing. To explain the outperformance of the
neural network model, Wüthrich (2018a) notes that the neural network is inherently a multivari-
ate approach that leverages similar patterns in the data across LoBs, whereas the chain-ladder is
applied to each LoB separately.

In summary, the neural network chain-ladder model is a combination of a traditional actuarial
method with a machine learning method, and this paradigm of combining traditional techniques
with neural networks will be noted throughout this section.

We refer the reader to the appendices in Wüthrich (2018a) for code to fit the model in Keras.

2.2.2. Individual claims simulation machine
Gabrielli andWüthrich (2018) make an important contribution by providing software to simulate
individual claims for the purpose of testing individual claims reserving methods. Although the
methodology used to simulate is not directly applicable to reserving in practice (since it focuses
on modelling a claims dataset that has already fully developed), this research is mentioned here
because it uses several neural networks to simulate the complicated individual claims data, and,
more importantly, because the availability of test datasets appears to be an important step in
advancing the state of the art in machine learning. Wüthrich (2018a) contains code to simulate
the claims data for the neural network chain-ladder model using the individual claims simulation
machine.
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2.2.3. DeepTriangle
A different approach to IBNR reserving appears in Kuo (2018b), with an associated R package
(Kuo, 2018a), who applies many of the concepts mentioned in Section 4 of Part 1 of this paper
to a large triangle dataset provided by Meyers and Shi (2011). This dataset, which is based on
Schedule P submissions of many P&C companies in the USA and is available on the Casualty
Actuary Society website, contains paid and incurred claims triangles covering the accident years
1988–1997, the development observed on those triangles in the subsequent years 1998–2006,
and earned premiums relating to the accident years. For input to the DeepTriangle model, the
incremental paid claims and total outstanding loss reserve triangles were normalised by earned
premium, so, effectively, the model is fit to incremental paid and total outstanding loss ratios.

The proposed network combines embedding layers, for the company code categorical feature,
and recurrent neural networks (RNNs, namely a gated recurrent unit or GRU, described in Chung
et al. (2015), which is similar to an LSTM unit) for the variable length accident year development
up to development period j with fully connected layers and is amongst the most complicated
of the architectures surveyed in this section6. The network is a so-called multi-task variant on
the single output networks seen until now, with the main goal of the network to predict unseen
incremental paid claims, but with a secondary goal of predicting the outstanding reserve balances
at each point. Multi-task networks often generalise better than single-task networks, since the
shared parameters learned by the model are constrained towards good (i.e. predictive) values
(Goodfellow et al., 2016). The DeepTriangle model was fit to data from 50 companies in four lines
of business, namely, Commercial and Private Auto, Workers Compensation and Other Liability.
To fit the network, an initial training run was performed using the data of calendar year 1995 as a
training set and 1996–1997 as a validation (out-of-sample) set. The number of epochs to produce
the minimal validation set error was recorded, and the model was refit to the data of calendar
year 1997 in a second training run. Each extra diagonal predicted by the model was added back
to the triangle as input into the next prediction of the model, and the process was followed until
the lower triangles were derived. These results show that DeepTriangle network outperforms the
traditional Mack and GLM formulations of the chain-ladder on all lines, and is outperformed
only on a single line, Commercial Auto, by one of the Bayesian models in Meyers (2015).

The comparison of DeepTriangle to the traditional chain-ladder models is somewhat unfair,
for two reasons. Firstly, actuaries in practise would not generally apply the chain-ladder model
without carefully considering the potential for the LDFs to change over the accident years, and
secondly, DeepTriangle is a multivariate model fit on 50 triangles of two variables each (paid and
outstanding claims), whereas the chain-ladder is fit on a single triangle at a time. A more mean-
ingful comparison would be to a multivariate extension of the chain-ladder, whether a traditional
model such as Gisler and Wüthrich (2008) or a neural model such as Wüthrich (2018a). Another
practical issue to consider is that the model performance probably depends on the volume of
data used (i.e. 50 triangles of claims paid and outstanding) and, in practice, only large multi-line
insurers would have sufficient data to calibrate this type of network. However, having noted these
concerns, the DeepTriangle network, and similar variants which are possible using different com-
binations of the neural network building blocks discussed in Section 3, represents an opportunity
for greater accuracy in and automation of the loss reserving process.

Whereas DeepTriangle works on the level of aggregate claims triangles, a somewhat similar
approach applied to individual claims is Zarkadoulas (2017), who studies the use of neural net-
works to predict individual claims payments, using the time series of reserves and payments made
to date on each individual claim as a feature vector fed into a shallow neural network. Separate net-
works are calibrated to estimate the j− 1 development periods through which an individual claim
develops in a triangle. Since the feature vector relies on the time series of claims development to
date, it would seem that the method can only be applied to claims already reported (i.e. to estimate

6 For another network that is similar in principle to this network, see the architecture used by De Brébisson, Simon,
Auvolat et al. (2015) to predict taxi destinations.
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Incurred But Not enough Reported) and the details of how this is extended to IBNR claims are
unfortunately not clear. In any event, the results of the exercise are very similar to those of the
chain-ladder that is also applied.

Code to apply the DeepTriangle model is available in Kuo (2018a).

2.2.4. Uncertainty
In closing this section, we note that a key issue in the estimation of IBNR reserves is providing
an estimate of the uncertainty of the reserve estimates, and we refer the reader to the seminal
work of Mack (1993) and England and Verrall (1999) for two foundational approaches to this
problem.Within the neural network literature, which has focussed on “best estimate” approaches,
relatively less attention has been given to the problem of uncertainty quantification and there
does not appear to be a consensus on the most optimal method among the proposed approaches
(for the interested reader, two noteworthy techniques appear in Gal and Ghahramani (2016) and
Lakshminarayanan et al. (2017)). Perhaps for this reason, the papers covered in this survey do not
discuss solutions to the problem of uncertainty estimation, which remains a key research issue
that should be addressed by actuaries wishing to apply deep learning techniques practically.

2.3. Analysis of telematics data
Motor insurance has traditionally been priced using a number of rating factors which have been
found to be predictive of the frequency and severity of claims. These factors (i.e. features) may
relate to characteristics of the driver, such as age, gender and credit score (see Golden et al. (2016)
who attempt to explain why credit score is predictive of insurance claims), or the characteristics
of the motor vehicle, such as weight and power. More recently, the opportunity more directly to
measure driving habits and style by incorporating telematics data into pricing has arisen (Verbelen
et al., 2018). These data are often high-dimensional and high-frequency feeds containing infor-
mation on location, speed, acceleration and turning, as well as summarised information about the
number, time, distance and road type of trips (Wüthrich & Buser, 2018). The latter data are not
as challenging to incorporate into actuarial models, and one approach using GAMs and compo-
sitional data analysis is in Verbelen et al. (2018). More challenging are the former data, primarily
because there is no immediately obvious way to incorporate high-frequency sequential data of
unknown length into traditional pricing models relying on structured (tabular) data. We believe
that the development of techniques to allow for the analysis of these types of data (another exam-
ple being data from wearable devices) will be an important topic for actuarial science, given the
potential commercial applications. Indeed, as mentioned below, Gao et al. (2018) have already
shown the potential predictive power of features from telematics data.

Within the actuarial literature, Weidner et al. (2016b) analyse these high-frequency data using
the Discrete Fourier Transform and provide examples of how this analysis could be used.Weidner
et al. (2016a) simulate driving profiles using a random waypoint model and match profiles from
an empirical dataset back to the simulation model. A different approach that we focus on in the
next part of this section is described in a series of papers by Wüthrich (2017), Gao and Wüthrich
(2017) and Gao et al. (2018) who discuss the analysis of velocity and acceleration information
from a telematics data feed. We follow this discussion with an analysis of the data provided by
Wüthrich (2018b) using plain and convolutional auto-encoders. In the last part of the section, we
discuss the approach taken outside the actuarial literature.

2.3.1. v-a Heatmaps
Wüthrich (2017) introduced the concept of so-called velocity–acceleration (“v-a”) heatmaps. An
empirical global positioning system (GPS) location dataset, recorded at a 1-second frequency, of
1 753 drivers and 200 recorded trips was used to estimate the velocity and acceleration (i.e. change

https://doi.org/10.1017/S174849952000024X Published online by Cambridge University Press

https://doi.org/10.1017/S174849952000024X


Annals of Actuarial Science 241

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20
–2

–1

0

1

2

v-a heatmap of driver 20

Speed (km/h)

A
cc

el
er

at
io

n 
in

 (
m

/s
2 )

Figure 5. v-a heatmap generated using the code provided by Wüthrich (2018c). The x-axis is speed, the y-axis is acceleration
and the coloured scale shows the empirical density at each point.

in average speed) of the driver at each time point. The various speed profiles were distributed into
groups depending on the speed, for example, low speeds between 5–20 km/h and highway speeds
between 80 and 130 km/h. Two-dimensional heatmaps, with the x-axis representing velocity in
km/h and the y-axis representing acceleration in m/s2 of the density of the empirical observations,
were constructed (note that a discrete approach to building the heatmap was taken and another
possible approach is two-dimensional kernel density estimation). An example heatmap generated
using the code provided by Wüthrich (2018b) is shown in Figure 5.

An important practical result is in Gao et al. (2018), who provide a statistical analysis show-
ing that around 300minutes of telematics data is generally enough volume to build a stable v-a
heatmap in the 5–20 km/h category.

Wüthrich (2017) and Gao and Wüthrich (2017) then apply several unsupervised learning
methods to the v-a heatmaps. In Section 3 of Part 1 of this paper, unsupervised learning was
defined as the task of finding meaningful patterns within feature vectors X, which can then be
used to further understand the data. In this case, the v-a heatmap is the feature vector comprising
the empirical density of observations for each velocity and acceleration group. Wüthrich (2017)
applied the k-means algorithm (see James et al. (2013) for details) to derive 10 discrete clusters
into which the 1 753 v-a heatmaps were classified. Gao and Wüthrich (2017) took a different
approach and looked to derive low-dimensional continuous summaries of the v-a heatmaps using
principal components analysis (PCA) and shallow and deep auto-encoder neural networks. PCA
was applied to a matrix comprising a row for each driver and a column for each combination of
velocity and acceleration, and it was found that relatively good summaries of the heatmaps could
be formed using only two of the principal components. The shallow7 auto-encoder (called a bot-
tleneck network in this study) consisted of a hidden layer of two neurons, with hyperbolic tangent
activation functions and ending in a soft-max layer. The deep auto-encoder consisted of an extra

7 In Section 4.2 of Part 1 of this paper, we define a neural network as shallow if it contains only a single hidden layer, and
as deep if it contains two or more layers. Similarly, we define the auto-encoders as shallow or deep depending on the number
of hidden layers.
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Table 2. Structure of fully connected auto-
encoder applied to v-a heatmaps

Layer name Neurons

Input layer 400
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 1 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 2 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 3 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output layer 400

layer of seven neurons before and after the two neuron layer. The auto-encoder was trained using
greedy unsupervised learning (Goodfellow et al., 2016, p. Chapter 15) (see Section 4 of Part 1 for
more details). Both neural networks were trained using the Kullback–Leibler (K–L) loss function,
which, in summary, measures how far apart two distributions are, and amounts to maximising
the likelihood of a multinomial distribution on the data. On all the metrics considered, the deep
auto-encoder network outperformed the shallow auto-encoder, which in turn outperformed the
PCA.

Finally, Gao et al. (2018) use the features extracted from the v-a heatmaps in a GAM of claim
counts. The dataset considered in this study consists of 1 478 divers with 3 332 years of exposure
and a relatively high claims frequency of 23.56%. All four methods described above for extract-
ing features from the v-a heatmaps were applied to this new dataset. When applying the k-means
algorithm, the number of clusters (i.e. means) were chosen using 10-fold cross-validation (see
Friedman et al. (2009, p. Chapter 7) for more details) to estimate the out-of-sample Poisson
deviance. The continuous (PCA and auto-encoder) features were included directly in the GAM.
In a stunning result (recall that the features were extracted in an unsupervised manner), the con-
tinuous features are not only highly predictive but, by themselves, produce a better out-of-sample
deviance than the models including the traditional features of driver’s age and car’s age.

While Gao et al. (2018) do not attempt to explain why the features estimated using unsuper-
vised methods are highly predictive in a supervised context, some understanding is possible based
on Goodfellow et al. (2016, p. Chapter 15), who are concerned, in Section 15.1, primarily with
greedy unsupervised pre-training, and explain that “the basic idea is that some features that are
useful for the unsupervised task may also be useful for the supervised learning task,” that is, the
unsupervised representation that is learned may capture information about the problem that the
supervised learning algorithm can access.

2.3.2. Analysis using Keras
We show in this section how the v-a heatmaps can be analysed using auto-encoders in Keras. For
input data, 10,000 heatmaps were generated using the simulation machine of Wüthrich (2018b).
Since in any event the data are summarised in the parameters of the simulation machine, we
do seek to add much insight in understanding these data, but rather to understand how auto-
encoders can be applied.

Two different types of auto-encoder were applied – a basic fully connected auto-encoder, as well
as a convolutional auto-encoder. The convolutional auto-encoder uses several layers of learned
convolutional filters to derive the encoded heatmap, instead of fully connected layers, and rebuilds
the output from the encoded heatmap using transposed convolutions, which are effectively the
reverse operation. Both types of auto-encoders were applied with hyperbolic tangent activations.
We show the choice of structure for these auto-encoders in Tables 2 and 3.

To train these, a process of greedy unsupervised learning was followed. First, the outer layers
of each auto-encoder were trained. Then, the weights derived in the first step were held constant
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Table 3. Structure of convolutional auto-encoder applied to v-a heatmaps. For definition of the
terms used in this table, see Section 4.3.1 of Part 1

Layer name Width Height Number of filters Filter width Filter height

Input layer 20 20 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 1 11 11 8 10 10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 2 2 2 4 10 10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 3 1 1 2 2 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 4 2 2 2 2 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 5 11 11 4 10 10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 6 20 20 8 10 10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output layer 20 20 1 1 1

Figure 6. Heatmaps encoded using a fully connected auto-encoder and grouped by quantile of the encoded distribution.

(i.e. frozen) and a new layer was added and trained. This process was followed until the dimension-
ality of the heatmap had been reduced to a 1× 2 vector of codes. The fully connected auto-encoder
used two hidden layers between the input and the encoding, whereas the convolutional auto-
encoder used three layers of filters. The encoded heatmaps are shown in Figures 6 and 7, where
the two-dimensional encoded values have been grouped according to the quantiles of the encoding
distribution. Whereas the codes produced using the fully connected auto-encoder are relatively
highly correlated, with a correlation coefficient of 0.85, the codes produced by the convolutional
auto-encoder have a much lower correlation of 0.29, implying that the factors of variation describ-
ing the heatmap have been better disentangled by the convolutional auto-encoder. The mean
heatmaps in each quantile group are shown in Figures 8 and 9. The interpretation of the learned
codes is easier in the latter figure – moving from right to left in the encoded distribution shifts
density to a higher velocity, and from bottom to top shifts probability density from a wide area
to several key points – whereas in the former figure, it is harder to assign a definite interpreta-
tion. We conclude from this exercise that convolutional auto-encoders are a promising technique
that should be explored further in the context of telematics data. In particular, it would be inter-
esting to investigate the results of including the codes from the convolutional model in a claims
frequency model, as done with the codes from a fully connected auto-encoder in the study of Gao
et al. (2018).
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Figure 7. Heatmaps encoded using a convolutional auto-encoder and grouped by quantile of the encoded distribution.
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Figure 8. Mean heatmap for each group shown in Figure 6.
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Figure 9. Mean heatmap for each group shown in Figure 7.

2.3.3. Other sources
To summarise the approach discussed to this point, the high-dimensional and high-frequency
telematics data are first summarised in a v-a heatmap, which, compared to classical features in
motor pricing, is itself a relatively high-dimensional feature. The v-a heatmap can be used as a
feature in GLM rating models once the data have been summarised using dimensionality reduc-
tion techniques. During the (double) summarisation of the data, potentially some information is
lost, and, therefore, with enough data, one might expect the application of RNNs to the GPS data,
either raw or less summarised than the v-a heatmaps, to outperform approaches that rely on sum-
marised data. Therefore, for completeness, in this section, we discuss several recent applications
of neural networks to GPS or telematics data from outside the actuarial literature.

De Brébisson et al. (2015) discuss several deep networks applied to the problem of predicting
taxi destinations based on variable length GPS data, as well as meta-data describing driver, client
and trip features, covering 1.7 million trip records of taxis in Portugal. These meta-data were
modelled using embedding layers, while several approaches were taken to model the GPS data
directly. The simplest approach (which won the competition) was to use a fixed amount of the
GPS data as an input directly to a feed-forward network. More complicated models recognised
that the variable length GPS data could be modelled using RNNs, and, therefore, RNN and LSTM
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networks were calibrated on the rawGPS data, with the output of these networks fed into the same
network structure just mentioned (i.e. including embedding layers for the meta-data). A variant
of these was the highest ranked model within the authors’ test set.

Dong et al. (2016) find that deep learning applied directly to GPS data for the task of charac-
terising driving styles does not perform well (whereas in De Brébisson et al. (2015), the goal is
to predict the destination, that is, the output is in the same domain as the input data). Thus, in
a manner similar to Wüthrich (2017), they rely on a data summary approach (which Dong et al.
(2016) refer to as a “double windowing” approach) to process the raw GPS data, which is applied
in two steps. First, the raw GPS data are segmented into trip “windows,” meaning to say, that
segments of length 256 seconds are selected out of the raw GPS data and, within those segments
of 256 seconds of GPS data, the following basic features are calculated: speed and acceleration,
and the change in each of these components over time, and angular momentum. Then, the seg-
ments of 256 seconds are further segmented into a second measurement “window” of 4 seconds,
and within each measurement window, and for each of these basic features, summary statistics
(the mean, standard deviation, minimum, maximum, median, and 25th and 75 th percentiles)
are calculated. This approach thus leads to a matrix (or feature map) of basic movement statistics
for each trip window, where each row represents a movement statistic, and each column repre-
sents time (i.e. a new observation window). Since driver behaviour manifests itself over time, one
would expect that the movement statistics would have some sort of temporal structure, which is
analysed using either convolutional neural networks (CNNs) or RNNs, with a detailed description
of the application of both methods in the paper. Notably, cross-correlation between features is not
allowed for in either of these models, and, given the performance of the v-a heatmaps discussed
above, it would seem that this is an omission. The networks are trained on a dataset consisting of
driver trips with the goal of classifying the driver correctly; in a first example, only 50 drivers from
the dataset are used, and 1000 drivers are used in the second experiment. A variant of the RNN
network outperformed all other approaches, including a machine learning baseline. Investigating
the learned features, the study concludes that the network has automatically identified driving
behaviour, such as slowing down for sharp turns, or high-speed driving on straight roads.

Dong et al. (2017) extend the model of Dong et al. (2016) in several ways, in a new network
they call Autoencoder Regularized deep neural Network (ARNet). Their network design, applied
to the same movement statistic feature matrix, relies exclusively on RNNs (specifically, the GRU
of Chung et al. (2015)) for driver classification, in a similar setup to Dong et al. (2016), but also
includes an auto-encoder branch within the network that aims to reconstruct the (hidden) layer of
the network that represents driving style. The idea of adding the auto-encoder to the classification
model is explained as follows: the auto-encoder is regularised (i.e. the auto-encoder representation
is shrunk towards zero), which should improve the generalisation of the classification branch of
the network to unseen data, and the classification branch includes prior information about the
driver within the network structure, which should improve the auto-encoder representation of
driving style. ARNet outperforms on the two tasks tested in the research – driver classification
and driver number estimation, compared to both the shallow and deepmachine learning baselines
also tested in that research.

Wijnands et al. (2018) use an LSTM network to predict whether a driver’s behaviour has
changed, based on sequences of telematics data, containing, for each sequence, counts of accel-
eration, deceleration and speeding events. An LSTM is trained for each driver to classify these
sequences of events as belonging to one of three benchmarks, one for safe driving, one for unsafe
driving and one for the driver under consideration, where the benchmarks are themselves based
on an insurer’s proprietary scoring algorithm. If driver behaviour changes, then the LSTM classi-
fication is shown to be able to classify the driver’s behaviour as arising from the benchmarks, and
not as similar to the driver’s own previous driving style.

We refer the interested reader to the review in Ezzini et al. (2018) for more references of
applying machine learning and statistical techniques to these types of data.
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2.4. Mortality forecasting
Mortality rates are a fundamental input into actuarial calculations involving the valuation and
pricing of life insurance products. Mortality improvement rates are used by actuaries when mod-
elling annuity products and the results of these models are often highly sensitive to this input,
while the stochastic variation of the forecasts around the mean is used for regulatory and eco-
nomic capital modelling. Various methods are used for deriving mortality rate forecasts, with the
Lee and Carter (1992) and Cairns et al. (2006) models often used as standard reference points in
the actuarial literature. For a benchmark in this section, we focus on the Lee–Carter model, which
models log mortality rates (the force of mortality) as a set of baseline average (log) mortality rates
for a period which vary non-linearly through time at a rate of change determined for each age
multiplied by a time index, as follows:

ln(μx,t)= ax + κt .bx

where μx,t is the force of mortality at age x in year t, ax is the average log mortality rate during the
period at age x, κt is the time index in year in year t and bx is the rate of change of log mortality
with respect to the time index at age x. Often, mortality models are first fit to historical mortality
data, and the coefficients (in the case of the Lee–Carter model, the vector κ) are then forecast using
a time-series model, in a second step. Many popular mortality forecasting models can be fit using
GLMs and generalised non-linear models8 (GNMs) (Currie, 2016) and an R package, StMoMo,
automates the model fitting and forecasting process (Villegas, Kaishev, & Millossovich, 2015).

Hainaut (2018a) is a recent study that uses auto-encoder networks (see Section 4.2 in Part 1)
to forecast mortality (these are referred to as “neural network analyzers” in that paper). Mortality
rates in France in the period 1946–2014 are used, with the training set being the rates in the period
1946–2000 and the test set covering 2001–2014. The baseline models against which the neural
model is compared are the basic Lee–Carter model, fit using singular value decomposition, the
Lee–Carter model fit with a GNM and lastly, an enhanced Lee–Carter model with cohort effects,
again fit with a GNM.

For the neural model, several different shallow auto-encoders (similar to those shown in
Section 4.2 in Part 1) with varying numbers of neurons in the intermediate layers are tested (these
auto-encoders use the hyperbolic tangent activation function). In this study of Hainaut (2018a),
auto-encoders are viewed through the lens of non-linear PCA, and, for more details on this con-
nection, see Efron and Hastie (2016, p. Section 18). Before fitting the networks, the mortality rates
are standardised by subtracting, for each log mortality rate ln(μx,t), the average mortality over the
period, ax, and therefore, the aim of the model is to replace the simple linear time-varying com-
ponent of the Lee–Carter model, κt .bx, with a non-linear time-varying function learned using an
auto-encoder. Unlike most modern applications of neural networks, in this study, the calibration
is performed using genetic evolution algorithms, instead of backpropagation, which is justified in
the study since the input to the network is high dimensional. Another interesting aspect of this
network is that the network is not fully connected to the inputs, but rather the neurons in the first
hidden layers are assigned exclusively to a set of mortality rates, say those at ages 0–4 for the first
neuron, those at ages 5–9 for the second and so on (i.e. the neurons in the first layer are only locally
connected). This exploits the fact that mortality rates at nearby ages are similar and should lead to
a more easily trained network. The encoded mortality (in other words, the value of the neurons in
the bottleneck layers of the network) is then forecast using a random walk model with drift. The
study provides several examples that show that the predictive power of the mortality forecasts
based on neural models is as good as or better than the best performing of the Lee–Carter models.

8 Note that the Lee–Carter model cannot be fit with a GLM due to the multiplicative nature of the term κt .bx , which
is comprised of two variables that must each be estimated from the data. In the GLM formulation in R, an interaction term
between the variables year and age could be fit, but, for this term of the model, this specification would require t.x effects to
be fit compared to the t + x effects in the Lee–Carter model.
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Table 4. Structure of fully connected auto-encoder
applied to mortality data

Layer name Neurons

Input layer 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 1 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 2 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 3 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output layer 100

Table 5. Mortality forecasting – out-of-sample mean
squared error (MSE)

Model MSE – out of sample

Lee–Carter 0.2624
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Auto-encoder 0.1170
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Deep_reg 0.0814
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Deep_reg_hmd 0.1025

2.4.1. Analysis using Keras
In this section, we attempt to produce similar results with Keras, noting that the relatively compli-
cated genetic evolution optimisation scheme of Hainaut (2018a) is not supported within the Keras
package, but only backpropagation and associated optimisers are supported. We also note that the
network in the previous example benefits from substantial manual feature engineering, in that the
network is fit only to the time-varying component of mortality, and, furthermore, the first hidden
layer is only locally connected. The paradigm of representation learning would, however, seem to
indicate that the network should be left to figure out these features by itself, and perhaps arrive at
a more optimal solution in the process.

Therefore, a first attempt at the problem of mortality forecasting applied greedy unsupervised
learning to train fully connected auto-encoders on mortality data (the central rate of mortality,
mx) from England and Wales in the period 1950–2016, covering the ages 0–99, sourced from
the Human Mortality Database (HMD) (Wilmoth & Shkolnikov, 2010). The training dataset was
taken as mortality in the period 1950–1999, and the test dataset was in the period 2000–2016,
and the logarithm of mx was scaled so as to lie in the interval [0, 1]. The neural networks were fit
exclusively on this scaled dataset and were compared to a baseline Lee–Carter model fit directly
to the raw mx,t using the gnm package (Turner & Firth, 2007), and forecast using exponential
smoothing as implemented in the forecast package Hyndman et al. (2015).

The auto-encoders used hyperbolic tangent activations, and each layer was fit for 50,000 epochs
using the Adam optimiser (Kingma & Ba, 2014) implemented in Keras, with a learning rate sched-
ule hand designed to minimise the training error. Table 4 shows the structure of the auto-encoder.
The encoded mortality curves were forecast using a random walk with drift to produce forecasts
for each of the years in the period 2000–2016. These results, referred to as Auto-encoder, as well as
the Lee–Carter baseline are shown in Table 5. The auto-encoder forecasts outperform the baseline
Lee–Carter model, showing that a viable auto-encoder model can be fit in Keras without toomuch
manual feature engineering.

However, it is important to note that fitting the auto-encoders is difficult and computationally
expensive, and the results produced on the out-of-sample data can be variable, with worse per-
formance than reported in the table possible. One way of reducing the variability is to average
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Table 6. Structure of neural network fit to the
mortality data for England and Wales

Layer name Neurons

Age embedding 5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 1 32
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 2 32
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output layer 1

Table 7. Structure of neural network fit to the
mortality data for the HMD dataset

Layer name Neurons

Age embedding 20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gender embedding 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Country embedding 10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 1 128
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden layer 2 128
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output layer 1

the results of several deep models (Guo & Berkhahn, 2016), but a comparison of the resulting
ensemble model to the Lee–Carter model would be unfair. Therefore, we also demonstrate a
different approach using deep learning for mortality forecasting and, in the following, show how
the Lee–Carter model could be fit and extended using embedding layers.

The Lee–Carter model can be expressed in functional form as
ln (μx,t)= f (x, t) = ax + κt .bx

ax = g (x)

⎧⎪⎨
⎪⎩
a1, x= 1
a2, x= 2

...
an, x= n

up to a maximum age n, and similarly for κt and bx. Rather than specify this particular functional
form, a neural network can be used to learn the function f (x, t) directly, by using age and calendar
year as predictors in a neural network that is then trained to predict mortality rates. This network
was fit on the same dataset as the auto-encoders and consisted of an embedding layer for age and
two hidden layers of 32 neurons with the ReLu activation (between each hidden layer, dropout
(Srivastava et al., 2014) was applied to regularise the network). The year variable was left as a
numerical input to the network and is used to forecast future mortality rates. The structure of this
network is shown in Table 6 and is referred to as Deep_reg in Table 5.

A similar network was fit to the entire HMD dataset at once, with an embedding for the coun-
try to which the mortality rates relate. The structure of this network is shown in Table 7 and is
referred to as Deep_reg_hmd in Table 5. It can be seen that of all the networks tested, Deep_reg
outperforms the others, followed closely by Deep_reg_hmd. However, as discussed next, on the
long-term forecast of rates in 2016 (forecast using data up to 1999), the Deep_reg_hmd network
outperforms the other networks, followed closely by the auto-encoder.

Figures 10 and 11 show the forecasts of mortality in 2000 (i.e. a one-year horizon) and 2016
(i.e. a 16-year horizon) produced using the models described in this section. All of the models
are quite close to actual mortality in 2000, but some of the forecasts diverge compared to actual
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Figure 10. Forecasts of mortality in 2000 using the models described in this section, log scale.
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Figure 11. Forecasts of mortality in 2016 using the models described in this section, log scale.

mortality in 2016. In 2016, theDeep_reg_hmd forecasts follow the actual mortality curve closely at
almost all ages, while the Lee–Carter and auto-encoder forecasts appear too high inmiddle age. On
closer inspection, the Deep_reg forecasts in 2000 are quite variable at some ages, and by 2016 have
degraded over time and do not appear demographically reasonable, whereas the Deep_reg_hmd
forecasts have remained demographically reasonable.

The learned embedding for age from the Deep_reg_hmd network is shown in Figure 12. The
dimensionality of the embedding was reduced to 2 dimensions from 20 dimensions using PCA.
The first dimension is immediately recognisable as the basic shape of a modern lifetable, which is
effectively the function ax fit by the Lee–Carter model. The second dimension appears to describe
the relationship between early childhood, youngmiddle age, latemiddle age and old-agemortality,
with early childhood and late middle age mortality steepening as young middle age and old-age
mortality declines, and vice versa.
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Figure 12. Age embedding from the Deep_reg_hmdmodel, with dimensionality reduced using PCA.

We conclude from this brief study of mortality that deep neural networks appear to be a
promising approach for modelling and forecasting population mortality. The neural network
model presented in this sub-section is discussed in detail in Richman and Wüthrich (2018)9.

2.5. Approximating nested stochastic simulations with neural networks
Risk management of life insurance products with guarantees often requires nested stochastic sim-
ulations to determine the risk sensitivities (Greeks) and required capital for a portfolio. The first
stage of these simulations involves a real-word (i.e. P-measure) simulation of the risk factors in a
portfolio, such as the evolution of market factors, mortality and policyholder behaviour. Once the
real-world scenario has been run, a risk-neutral (i.e. Q-measure) valuation of the contracts is per-
formed, using the real-world baseline established in the first step as an input into the risk-neutral
valuation. This so-called “inner” step ideally consists of Monte Carlo simulations using a market-
consistent risk-neutral valuation model. Once the nested simulations have been performed, the
risk sensitivities of the portfolio can be calculated and dynamically hedged to reduce the risk of
the portfolio, and risk capital can be estimated by calculating risk measures such as value at risk or
expected shortfall. A major disadvantage of the nested simulation approach is the computational
complexity of the calculations, which may make it impractical for the sometimes intra-day valu-
ations required for the dynamic hedging of life insurance guarantees. As a result, approximation
methods such as least squares Monte Carlo, replicating portfolios or machine learning methods
may be applied to make the calculations more practical. For more detail and an overview of these
methods to approximate the inner simulations, the reader is referred to Gan and Lin (2015) and
the references therein.

A recent approach uses neural networks to approximate the inner simulations for variable
annuity10 (VA) risk management and capital calculations (Hejazi & Jackson, 2016, 2017). In this
section, we focus on the approximation of the Greeks described in Hejazi and Jackson (2016),
since the approximation of the capital requirements in Hejazi and Jackson (2017) follows almost
the same process. Instead of running inner simulations for the entire portfolio of the contracts, in

9 In that paper, the gender embedding has five dimensions, whereas in the network discussed here, the gender embed-
ding has only a single dimension. It was found that increasing the dimension of the embeddings layer leads to better predictive
performance.

10 Variable annuities are a North American product similar to unit-linked life insurance with guarantees, which may
cover minimum withdrawal and death benefits, amongst others.
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this approach, full simulations are performed for only a limited sample of contracts, against which
the rest of the contracts in the portfolio are compared using a neural network adaptation of kernel
regression, which we describe next based on Hazelton (2014).

Kernel regression is a non-parametric statistical technique that estimates outcomes y with an
associated feature vector X using a weighted average of values that are already known, as follows:

ŷ=
∑N

i=1 wiyi∑N
i=1 wi

where ŷ is the estimated value, yi is a known outcome of example, or point, i and wi is the kernel
function calculated for point i. wi is often chosen to be the Nadaraya–Watson kernel, which is
defined as

wi = 1
h
K

(
X − Xi

h

)

where K is a unimodal symmetrical probability distribution, such as a normal distribution, Xi
is the feature vector associated with point i and h is the bandwidth, which determines how
much weight to give to points which are distant from X. For the easy application of basic kernel
regression, we refer the reader to the np package in R (Racine & Hayfield, 2018).

The insight of Hejazi and Jackson (2016, 2017) is that kernel regression is unlikely to produce
an adequate estimate for complex VA products, and therefore they calibrate a kernel function
based on a one-layer neural network that is trained to measure the similarity of input VA contracts
with those in the training set, as follows:

ŷ=
∑N

i=1 Ghiyi∑N
i=1 Ghi

where Ghi is a function calibrated using a neural network that measures how close contract i with
feature vector Xi is to the contract with feature vector X. The neural network is set up by choosing
a sample ofN representative VA contracts, and an input contract against which the representative
contracts are compared. For each representative contract, a feature vector describing how similar
the input contract is to the representative contract i is calculated (e.g. if the contracts share a cat-
egorical feature, such as guarantee type, then this component of the vector is set to 1, otherwise
it is set to zero, and, for quantitative features, such as account value, the relevant component of
the feature vector is set to the normalised difference of the features), and the network’s output is
a vector of weights calibrated using a soft-max layer that describes how similar the input and rep-
resentative contracts are. For both the input and representative contracts, the Greeks/risk-neutral
value has already been calculated, and the network is trained to minimise the difference between
the Greeks/risk value neutral of the input contract and the weighted average of the Greeks/risk-
neutral value of the representative contracts, using the vector of weights described in the previous
step. The vector of weights required for the adapted kernel regression can be calculated quickly
using the trained network, thus dramatically reducing the calculation time for each contract.

Hejazi and Jackson (2016) report the outperformance of the neural network approach com-
pared to the traditional statistical approach, and Hejazi and Jackson (2017) show that the network
estimates the value of the liabilities and solvency capital requirements accurately.

2.6. Forecasting financial markets
Smith et al. (2016) attempt to apply neural networks to the challenging task of forecasting financial
markets using lagged data, based on their novel approach to parameterising and training neu-
ral networks. In short, instead of applying the (now) standard backpropagation algorithm (see
Section 3), they apply the resilient backpropagation (Rprop) algorithm (Riedmiller & Braun, 1993)
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within a systematic framework for choosing the design and hyper-parameters of the neural net-
works and use simple time-series models as benchmarks for comparing the performance of the
neural networks on South African financial market data. One interesting contribution is a so-
called “hybrid model” that first applies time-series models and then fits neural networks to the
residuals, which amounts to an attempt to apply boosting (see Friedman et al. (2009) for more
discussion) in the time-series context. Unfortunately, on this difficult task, the much simpler
time-series models perform as well or better than the neural networks.

Similar results of the relatively poor performance of basic machine learning methods, com-
pared to simple time-series models, when applied to time-series forecasting, are in Makridakis
et al. (2018b). A counterpoint, though, is the impressive performance of a hybrid exponen-
tial smoothing-Long Short Term Memory (LSTM) network model in the M4 competition
(Makridakis et al., 2018a), as well as the strong performance of boosting approaches in that
competition.

3. Discussion, Outlook and Conclusion
3.1. Discussion
Section 2 of this paper has presented recent examples of the application of neural networks in
actuarial science. In this section, we seek to distil some of the major themes of these applications
and place them within the wider context of deep learning.

In most of these examples, there is an emphasis on predictive performance and the potential
gains of moving from traditional actuarial and statistical methods to machine and deep learning
approaches. This is enabled by the measurement framework utilised within machine learning –
models are fit on one dataset (the training dataset) and then measured, more realistically, on
unseen data (the test dataset). The metrics used for these measurements, such as mean squared
error, are generally familiar to actuaries, but the focus on measuring predictive performance is
perhaps less well considered in the actuarial literature. The focus on predictive performance does
not necessarily come at a great cost to understanding the models, and, as shown above, the learned
representations from deep neural networks often have a readily interpretable meaning, which is
often not the case for shallowmachine learning techniques. In the wider deep learning context, the
focus on measurable improvements in predictive performance has led to many refinements and
enhancements of basic deep learning architectures, and this has propelled forward the progress of
deep learning research.

Notably, in most of the examples considered above, the deep learning and neural network
methods outperformed other statistical and machine learning approaches, thus, to the extent that
predictive performance is the key goal for an actuary, it makes sense to consider deep neural
networks when choosing a model. In light of this, the earlier assertion of this paper that actuar-
ies should pay attention to deep learning appears to be bolstered by these emerging, successful
applications within actuarial science. Of course, the cost of applying deep learning is that these
models are often harder to fit than simpler shallow models and one is often required to resort to
technically complicated approaches such as greedy unsupervised learning or choosing a particular
optimiser.

A further observation is that some of these examples focus on datasets that are more granular
and descriptive than traditional datasets analysed by actuaries. The advantage of these datasets is
the potential for greater accuracy in pricing and reserving, and an enhanced understanding of the
drivers of business performance. The disadvantage, from the standpoint of traditional actuarial
methods, is the increased complexity of the methods and their application.

The public availability of large, real-world datasets for research and benchmarking has been
important in the recent progress in deep learning, and, thus, the recent attempts within the actu-
arial community to provide granular claim (Gabrielli & Wüthrich, 2018), IBNR triangle (Meyers
& Shi, 2011) and v-a heatmap (Wüthrich, 2018b) datasets should be recognised and applauded
by the actuarial community of practitioners and researchers. As a case in point in the context
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of telematics data, the work of Dong et al. (2016) and Dong et al. (2017) appears to have been
supported by the availability of a large anonymised dataset as part of a Kaggle competition, but,
unfortunately at the time of writing, this dataset has been removed from the Kaggle website.

Some of the examples effectively combine deep learning together with traditional statistical
models – the IBNR reserving studyWüthrich (2018a) shows how to incorporate a neural network
into the traditional chain-ladder algorithm, the non-life pricing example of Gao et al. (2018) shows
how the outputs of unsupervised learning can be incorporated into a GLMmodel and Hejazi and
Jackson (2016, 2017) show how neural networks can be adapted to enhance kernel regression. The
combination of deep learning with statistical methods has shown promising results in the area of
time-series forecasting (Makridakis et al., 2018a), and it seems likely that more hybrid applications
of neural networks will emerge in the near future.

A theme running throughout the deep learning literature is that neural networks can be
designed to efficiently process and learn from different types of data. Some of the techniques
reviewed in Section 4 are relatively straightforward applications of basic designs such as RNNs,
auto-encoders and embedding layers, but new data types require some ingenuity to ensure that
the neural networks can be trained, for example, the v-a heatmaps of Wüthrich (2017) and the
movement domain feature matrices of Dong et al. (2016). As new data sources become available
to actuaries, the deep learning architectures described in this paper can be considered, but some
element of new design might also be necessary. Furthermore, the application of deep learning to
actuarial problems can be assisted with the application of, for example, the heuristic presented in
Section 2 of part 1 of this paper but novel approaches, such as unsupervised learning, should not
be ignored.

3.2. Outlook
The examples of Section 2 show that deep learning is a set of modern machine learning tech-
niques that can enhance the predictive power of models built by actuaries and provide the means
potentially to extend actuarial modelling to new types of data. In fact, moving from traditional
methods to those based on deep learning does not require much effort, beyond understanding the
basic principles of statistical and machine learning, neural networks and modern machine learn-
ing software (where effort is required, though, is in fitting the models and interpreting them).
The application of deep learning techniques to actuarial problems seems to be a rapidly emerging
field within actuarial science, and it appears reasonable to predict that more advances will occur
in the near term. Furthermore, the comparatively large element of expert judgement involved
in designing and fitting deep neural networks fits in well with the frameworks developed for
applying controlled expert judgement within the actuarial profession, such as peer review and
technical standards. This emerging field of deep learning is, therefore, an opportunity for actu-
aries to become experts in the application of artificial intelligence within Actuarial Science, and
for actuarial associations to lead their members with guidance on the application of machine and
deep learning techniques.

However, the challenge of non-actuary experts moving into the domain of actuaries should not
be ignored, and the examples of the advanced telematics models from outside the actuarial liter-
ature discussed in Section 4 should provide a warning that actuaries could become less relevant
as subject matter experts within insurance if modern techniques, such as those discussed in this
research, are not soon incorporated into the actuarial toolkit.

Among the examples surveyed in Section 4, the high-frequency and high-dimensional telem-
atics data are perhaps the most foreign to actuaries trained in analysing structured data. It could
be expected that these types of high-frequency data will become more common and applicable in
a number of types of insurance, for example, data from wearable devices, autonomous vehicles
or connected homes will likely become important in actuarial work in the future. Already, high-
frequency location and other data are available for ships and could be incorporated into pricing
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models for marine insurance, and similar considerations apply for aviation insurance. Therefore,
although the analysis of telematics data from human driven cars might potentially be somewhat
of an evolutionary dead end within actuarial science if autonomous vehicles replace human-
controlled vehicles, nonetheless the methods developed for these data are likely to be useful in
other contexts.

Public availability of benchmark datasets and models would encourage more applications of
machine and deep learning within actuarial science, and we believe that more actuaries should
work to make these available to the actuarial community and that actuarial bodies should commu-
nicate these initiatives to their membership. Tutorials, such as Noll et al. (2018), that benchmark
machine and deep learning against traditional actuarial methods contribute greatly to the body of
knowledge accessible to the actuarial profession.

Having promoted deep learning in actuarial science, nonetheless, it should be recognised that
deep learning is not a panacea for all modelling issues. Applied to the wrong domain, deep learn-
ing will not produce better or more useful results than other techniques, and, in this regard, the
example of Smith et al. (2016) who attempted to predict the South African market with neural
networks should be taken as a cautionary tale. Neural networks can be challenging to interpret
and explain, but techniques to allow for interpretability, such as showcased in Dong et al. (2017)
and implemented in Chollet (2017) and Chollet and Allaire (2018), are increasingly successful at
explaining what a neural network has learned. Lastly, deep networks can be challenging to fit and
often one needs to resort to complicated technical approaches to achieve optimal results.

As with any technique, whether traditional or based on machine learning, actuaries should
apply their professional judgement to consider if the results derived from deep neural networks
are fit for purpose and in the public interest.

3.3. Conclusion
This research has presented the major ideas of machine and deep learning within the context
of actuarial science and provided examples of applications of deep neural networks to practical
problems faced by actuaries in everyday practice. The code examples provided on GitHub accom-
panying this paper, together with the code in many of the papers cited above, should allow the
interested reader to apply deep learning models of their own to traditional actuarial problems.

Several avenues of future research could be pursued. A clear set of benchmark models for
actuarial problems could be established, thus making comparison of methods easier and more
concrete. The predictive performance of specific neural network architectures on actuarial prob-
lems should be investigated in detail, and the connections to traditional actuarial methods, such
as credibility, could be made. An important problem that requires more consideration is how
estimates of uncertainty might be produced when applying deep learning techniques. Lastly, the
professional implications of these techniques within the context of local regulatory environments
should be considered.
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