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THE FIELD OF p-ADIC NUMBERS WITH A PREDICATE
FOR THE POWERS OF AN INTEGER

NATHANAËLMARIAULE

Abstract. In this paper, we prove the decidability of the theory of Qp in the language
(+,−, ·, 0, 1, Pn(n ∈ N)) expanded by a predicate for the multiplicative subgroup nZ (where n is a
fixed integer). There are two cases: if vp(n) > 0 then the group determines a cross-section and we get an
axiomatization of the theory and a result of quantifier elimination. If vp(n) = 0, then we use the Mann
property of the group to get an axiomatization of the theory.

Let K be a p-adically closed field and L = (+,−, ·, 0, 1, Pn(n ∈ N)) be the
languageofp-adically closed fields (i.e.,Pn is interpreted by the groupofnth power).
Let G be a multiplicative subgroup of Qp. What can be said about the theory of
Th(K,GK ) in the languageL expanded by a unary predicate interpreted inQp asG?
Canwe give conditions onG so thatwe have axiomatization/decidability/quantifier
elimination or quantifier simplification?
IfK is real or algebraically closed, they are many results of this type: the first one
is due to L. van den Dries [10], he considers the theory of (R,+,−, ·, 0, 1, <, 2Z),
gives a result of quantifier elimination, and proves the decidability of the theory.
B. Zilber considers the case where G is the group of roots of unity in C (in the
language of fields [13] or in the field of reals where C is identified with the R-vector
space of dimension 2 [14]). Later on these results were generalised by A. Günaydin
and L. van den Dries [4] to subgroups of a real closed field or an algebraically
closed field with the Mann property and by O. Belegradek and B. Zilber [1] for
some subgroups of the unit circle in the field of reals. But so far, very little is known
about the case of valued fields.
In this article, we will consider the case where K = Qp and G = nZ, where n is
a fixed integer. Unlike [10] (where 2 can be replaced by any natural number), we
have two different cases: if vp(n) > 0 then nZ is a discrete subgroup (essentially
it determines a cross-section) while if vp(n) = 0 then nZ is dense in a (definable)
open subset of Z∗

p. We will treat the first case in Section 1 in the special case n = p.
In Section 3, we describe the second case (for n = 1 + p). For this we need some
results on the theory of the additive group of integers with the p-adic valuation
in the language of valued groups. These results are proved in Section 2. Finally in
Section 4, we give a description of the definable sets in our theories.
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Notation. Let A be a ring. We denote the set of invertible elements of A by A∗.
If K is a valued field, we denote its value group by v(K) or vK and its valuation
ring by OK . Kh denotes the henselization of K . If Γ is an ordered set, � ∈ Γ then
Γ≥� denotes the set of elements greater than � in Γ.

Remark. Let K be a p-adically closed then for all x, y ∈ K ,
vp(x) ≥ vp(y) iff y2 + px2 is a square in K if p �= 2, and
v2(x) ≥ v2(y) iff y3 + 2x3 is a cube in K (for p = 2).

So, in this context, we will consider L-formulas using valuations even though the
valuation symbol is not part of the language. Indeed, the valuation symbol can be
replaced by (quantifier-free) formulas in the language L according to the above
property.

§1. Case n = p. In the case n = p, the group nZ is discrete in Qp. Therefore
this case is similar to the structure (R,+,−, ·, 0, 1, <, 2Z) from [10]. We follow the
same strategy as that paper. The key property in our case is that pZ is an isomorphic
copy of the value group. Let Lp = (+,−, ·, 0, 1, Pn(n ∈ N), A) be the language of
p-adically closed fields expanded by a unary predicate A interpreted in Qp by pZ.
Let pCF (p) be the Lp-theory defined by: ifM = (M,+,−, ·, 0, 1, Pn,A) is a model
of pCF (p) then

• (M,+,−, ·, 0, 1, Pn) is a p-adically closed field;
• (A, ·, 1) is a subgroup of (M∗, ·, 1) and p ∈ A;
• ∀x(x �= 0→ ∃!yA(y) ∧ vp(x) = vp(y)).
Theorem 1.1. pCF (p) axiomatizes a complete theory.

Therefore, Th(Qp,+,−, ·, 0, 1, Pn, pZ) is decidable.
Let L′

p be the expansion of Lp by a function symbol for � :M∗ −→ A such that
�(x) is the unique element y of A such that vp(x) = vp(y). Let pCF (p)′ be the
expansion of pCF (p) by the definition of �.

Theorem 1.2. pCF (p)′ admits the elimination of quantifiers.
As any model of pCF (p) has a unique expansion to a model of pCF (p)′, it
is sufficient to prove the second theorem. We will use the following criterion of
quantifier elimination (from [10]):

Proposition 1.3. Let T be a L-theory where L has at least one constant. Then T
admits the elimination of quantifiers if

(i) for all modelsM of T∀,M admits a T -closureM i.e.,M ⊂ M � T andM
can be embedded overM in any model of T that containsM;

(ii) LetM � N be models of T then there is b ∈ N \M such that the T∀-model
generated byM and b can be embedded overM in an elementary extension
ofM.

Proof of condition (i). LetM = (M,+,−, ·, 0, 1, Pk ,A, �) be a model of T∀
contained inN = (N,+,−, ·, 0, 1, Qk, B, �) a model of pCF (p)′. Let Frac M ⊂ N
be the fraction field of M in N . Then Frac M is closed under �: �(a/b) =
�(a)/�(b) = �(a)/�(b) ∈ Frac M . SoAFrac M := B∩Frac M = {a/b | a, b ∈ A}.
LetM be thep-adic closure ofFrac M inN (i.e.,M = (Frac M )h the henselization
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of Frac M ). Then as v((Frac M )h) = v(Frac M ), M is closed under �: if
x ∈ (Frac M )h nonzero then there is y ∈ Frac M such that v(x) = v(y). So
�(y) = �(x) ∈ AFrac M . We take M := (M,+,−, ·, 0, 1, Qk ∩ M,�,AFrac M )
(where � is restricted toM ).
Proof of condition (ii). Let M = (M,+,−, ·, 0, 1, Pn,A, �) ⊂ N =
(N,+,−, ·, 0, 1, Qn,B, �) be models of pCF (p)′. Let M′ = (M ′,+,−, ·, 0, 1,
P′
n, A

′, �′) be an elementary |M |-saturated expansion of M. We want to find
b ∈ N \M so that we can embed the T∀-expansion ofM (b) inM′ overM.
Case 1: if v(M ) = v(N) then A = B and we can pick any b ∈ N \M and embed
M (b) overM : this is the classical quantifier elimination for p-adically closed fields
(see [8]).
Case 2: if v(M ) �= v(N), we make use of the proof of quantifier elimination in
[8]. In particular, in this case (Lemma 4.7 in [8]), there exists x ∈ N \M such that
v(M (x)) = v(M )+v(x)Z ⊂ v(N). Furthermore, v(∑aixi) = min{v(ai)+iv(x)}
for all a in M . Let b be the unique element of B such that v(b) = v(x). Also,
(Proposition 4.10B in [8]), there is � ∈ v(M ′) which realizes the same type as v(x)
over v(M ) and if z ∈ M ′ with v(z) = � then the map b �−→ z is an embedding
of valued fields ofM (b) intoM ′ over M . Let z be the unique element of A′ with
v(z) = �. Then we obtain an embedding in our language. This concludes the proof
of Theorem 1.2. �
Let us remark than in the two theorems of this section, we can replace the group
pZ by nZ for any integer n with positive valuation. If vp(n) = k > 0, we define the
theory pCF (n) using the same axioms as pCF (p) where we replace the third axiom
by ∀x(x �= 0→ ∃!yA(y)∧vp(xk) = vp(y)).We define the map �n according to this
new axiom and the proof of Theorem 1.1 and 1.2 are the same as in the case n = p.

§2. p-valued Z-groups. In the real case [4], the authors make use of results on
the model theory of abelian densely ordered groups [9][12]. In this section, we prove
similar results for a class of abelian groups with p-valuation.

Definition 2.1. Let G be an abelian group and V : G → Γ ∪ {∞} where Γ is a
discrete totally ordered set with no largest element. We say that (G,V ) is a p-valued
group if for all x, y ∈ G and all n ∈ Z,
• V (x) =∞ iff x = 0G ;
• V (nx) = V (x) + vp(n);
• V (x + y) ≥ min{V (x), V (y)};

where vp is the p-adic valuation, nx = x + · · ·+ x (n times) (if n ∈ N), nx = −nx
(if n < 0) and 0x = 0G ; if x ∈ G , V (x) + k denotes the kth successor of V (x) in
Γ ∪ {∞} (by convention the successor of∞ is∞).
Lemma 2.2. Let (G,V ) be a p-valued group. Then,
(a) G is torsion-free.
(b) For all x, y ∈ G , if V (x) �= V (y), then V (x + y) = min{V (x), V (y)}.
Proof. (a)Letx ∈ G .Assume that nx = 0G . Then,V (nx) = V (x)+vp(n) =∞.
So, V (x) =∞ and x = 0G .
(b) Assume that V (x) < V (y). Then,

V (x) ≥ min{V (x + y), V (−y)}.
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As V (−y) = V (y) + vp(−1), we have that

V (x) ≥ V (x + y) ≥ min{V (x), V (y)} = V (x). �
(Z, vp) is a p-valued group. We want to describe the first-order theory of this
structure. We will use a two-sorted language LpV := ((+,−, 0G, 1G,≡n (n ∈ N)),
(0,∞, S,<), V ). The first sort will be (Z,+,−, 0, 1,≡n) (≡n is interpreted by the
congruences relation) and the second sort will be (N ∪ {∞}, 0,∞,+1, <) and the
function symbol V is interpreted by vp. We also have the equality relation on each
sort (though we do not specify these relations in the language). The first sort is
called the group sort while the second is called the value sort (or value set).
We axiomatize Tp,Z, the theory of p-valued Z-groups as follows:
Let ((G,+,−, 0G , 1G,≡n), (VG ∪ {∞}, 0,∞, S,<), V ) be a LpV -structure. Then it
is a model for the theory Tp,Z iff the following conditions hold:

• (G,+,−, 0G, 1G,≡n) is a Z-group i.e., an abelian group such that 0G, 1G, 1G +
1G, . . . , (n−1) ·1G form a set of representatives of the cosets of nG . This means
that for all x ∈ G and n ∈ N there is a unique y ∈ G and a unique 0 ≤ i < n
such that x = ny + i · 1G . x ≡n y iff x − y ∈ nG .

• (VG, 0, <) is a discrete ordered set with first but no last element. 0 is the first
element.∞ is an element such that x < ∞ for all x ∈ VG . S is the successor
function i.e., S(x) = y iff x �= ∞ and x < y ≤ z for all z ∈ VG such that
x < z, S(∞) :=∞.

• V : G → VG ∪ {∞} satisfies the axioms of p-valued groups. Note that the
second axiom in our language is written asV (nx) = S(S(· · · S(V (x)))) where
we compose S vp(n) times.

• V (x) ≥ n iff x ∈ pnG and for all x, y if V (x) = V (y) then there is 1 ≤ i < p
such that V (x − iy) > V (x) = V (y).

• G is regularly dense i.e., nG is dense in {x ∈ G | V (x − 0G) ≥ vp(n)} i.e.,

∀x ∈ G V (x) ≥ vp(n)→
[
∀� ≥ vp(n) ∈ VG∃y ∈ nG V (x − y) = �

]
.

Remark. Let n ∈ Z, x ∈ G . We say that n divides x if there is y ∈ G such
that x = ny. In this case, by uniqueness of the composition x = ny + i · 1G , y is
unique.

Lemma 2.3. Let (G,V ) be a p-valued Z-group. Then for all n > 1, 1G is not
n-divisible.

Proof. Assume that 1G = nx for some x ∈ G \ {0G}. As 1G = n0G + 1G , we
obtain a contradiction with the uniqueness of the decomposition, 1G = ny+i ·1G . �
Note that for the rest of this paper, we will denote i · 1G by i and the set

{. . . ,−2 · 1G,−1 · 1G, 0G, 1 · 1G, 2 · 1G, . . .} by Z.
Theorem 2.4. Tp,Z is complete and model-complete.

As ((Z,+,−, 0, 1,≡n), (N∪{∞}, 0, <,+1), vp) is a prime model of this theory, it
is actually sufficient to prove the model-completeness.
First, let us recall a classical result on system of congruences (in the ring of
integers) that also holds for p-valued Z-groups.
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Proposition 2.5. LetM be a p-valued Z-group. Let a1, · · · , ak ∈M (actually we
can assume ai ∈ N). Then, the system⎧⎪⎨⎪⎩

x ≡n1 a1
...

x ≡nk ak
has a solution in M iff gcd (ni − nj) divides (ai − aj). In this case, the set of solution
is of the type x ≡n∗ a∗ for some a∗ ∈M and n∗ = lcm(n1, · · · , nk).
It is not hard to adapt classical proofs whenM = Z to our more general case.
We will now prove the result of model-completeness. We will use Robinson’s test
i.e., we will show that ifM ⊂M ′ are models of Tp,Z and if ϕ(x, y) is a quantifier-
free formula, then for all b inM ,M � ∃xϕ(x, b) iffM ′ � ∃xϕ(x, b). Let us remark
that ϕ is a disjunction of systems of the type

(α)

⎧⎨⎩
(¬)∑j qijxj = ai(1 ≤ i ≤ T1) (1)
(¬)V (∑ qijxj − ai) + ni �i V (∑ rijxj − bi) +mi (T1 < i ≤ T2) (2)
(¬)∑j qijxj ≡Ni ai (T2 < i ≤ T3), (3)

where a, b inM ,n,m ∈ Z ,q, r ∈ Z andN,T1, T2, T3 ∈ N and � i holds for< or =
(depending on i). Say, ϕ ≡ ∨l (α)l where (α)l is a system like above. Then we have
to show that any (α)l in ϕ realised inM ′ is realised inM i.e., the system (α)l has a
solution inM whenever it has a solution inM ′.
First, let us start with a simple case: a single equationmx = a.
Lemma 2.6. LetM ⊂M ′ be models of Tp,Z thenM is a pure subgroup ofM ′

Proof. Let x ∈ M and assume that there is y ∈ M ′ such that x = ny. Then
there is x0 ∈ M and 0 ≤ i < n such that x = nx0 + i . By uniqueness of this
decomposition (inM ′), we find that i = 0 and y = x0. �
We will now reduce the complexity of the systems (α)l at the price of a higher
number of disjunctions in ϕ. Let (α) = (α)l be a disjunct in ϕ.
• We can remove inequalities in (1). Indeed, x �= 0 is equivalent to V (x) < ∞
i.e., we replace inequalities by inequations of type (2).

• We can remove negations in (2). Indeed, ¬V (x) = � is equivalent to V (x) < �
or V (x) > �. So, if ¬V (∑ qijxj − ai) + ni = V (∑ rijxj − bi) + mi ap-
pear in the system (α), let (α′) be the system obtained when one remove
¬V (∑ qijxj − ai) + ni = V (∑ rijxj − bi) + mi from (α). Then (α) is
equivalent to[
(α′) ∧ V

(∑
qijxj − ai

)
+ ni < V

(∑
rijxj − bi

)
+mi
]

∨
[
(α′) ∧ V

(∑
qijxj − ai

)
+ ni > V

(∑
rijxj − bi

)
+mi
]
.

We replace (α) = (α)l by the above disjunction in ϕ. We repeat the argument
for any equation of the type ¬V (x) = � in (α)l and for all l . After rearranging
the formula ϕ, we see that it is equivalent to a disjunction of formulas of
type (α) where no negation of atomic formula of the type ¬V (x) = � appear.
Similarly, ¬V (x) < � is equivalent to V (x) = � or V (x) > �. So we may also
assume that the system (α) does not contain any negation of this type.
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• Similarly incongruences canbe replaced by congruences asx �≡n a iffx ≡n a+i
for some 0 < i < n − 1.

So, we have shown that we can assume that our formula ϕ is of the type ϕ ≡ ∨l (α)l
where for all l , (α) := (α)l is of the type:

(α)

⎧⎨⎩
∑
j qijxj = ai(1 ≤ i ≤ T1) (1)

V (
∑
qijxj − ai) + ni �i V (

∑
rijxj − bi) +mi (T1 < i ≤ T2) (2)∑

j qijxj ≡Ni ai (T2 < i ≤ T3). (3)

We will now remove equalities (1) in the group sort in our system (α) (this step
is the same as for ordered group see [12]):
AsM,M ′ are torsion-free, their divisible closure is a Q-vector space. Therefore,
we can apply the usual theory of linear equations over vector spaces (e.g., Cramer’s
rules) to show that (1) is equivalent inM (andM ′) to one of the following case:
(a) kxi = ci , ci ∈M , k ∈ Z for all 1 ≤ i ≤ l := |x|;
(b) kxm+j = cj +

∑m
i=1 kijxi for all 0 < j ≤ l −m;

(c) The system (1) has no solution inM ′.
In case (a), asM is a pure subgroup ofM ′, any solution of (1) actually belongs to
M . So, if (α) has a solution inM ′, it has a solution inM .
In case (b), we can remove (1) (at the price of extra congruences):
• Multiply by k each equation in (2) and (3) where xm+j is involved. It means
that we replace

V
(∑

qijxj − ai
)
+ ni �i V

(∑
rijxj − bi

)
+mi

by

V
(∑

k · qijxj − k · ai
)
+ni+vp(k)�i V

(∑
k · rijxj − k · bi

)
+mi+vp(k)

and ∑
j

qijxj ≡Ni ai

by ∑
j

k · qijxj ≡k·Ni k · ai

for all i such that qim+j or rim+j nonzero.
• Replace the variables kxm+j by cj +

∑m
i=1 kijxi in (2) and (3).

• Replace (3) by {∑m
j=1 qijxj ≡Ni ai (T2 ≤ i ≤ T3)

cj +
∑m
j=1 kijxi ≡k 0 (1 ≤ j ≤ l −m).

• Remove the equations (1) from the system (α).
Then the new system is equivalent to the old one i.e., any solution x1, . . . , xm of
the new system induces a solution x1, . . . , xl of the old one (where xm+j is uniquely
determined thanks to the above rule (b) and the congruences cj +

∑
kijxi ≡k 0).

By the above discussion, we can assume that our system (α) is of the type:

(α)
{
V (
∑
qijxj − ai) + ni �i V (

∑
rijxi − bi) +mi (1 ≤ i ≤ N) (2)∑

j qijxj ≡Ni ai (1 ≤ i ≤ N). (3)
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LetM ⊂M ′ be models of Tp,Z. Let x0 ∈M ′ \M . We define
M 〈x0〉 := {x ∈M ′ | nx = mx0 + y where y ∈M,n,m ∈ N}.

Lemma 2.7. Let M ⊂ M∗ be p-valued Z-groups. Let c ∈ M∗ \ M . Then
either V (M 〈c〉) = V (M ) or there exists d ∈ M 〈c〉 such that M 〈c〉 = M 〈d 〉
and V (M 〈d 〉) = V (M )∐V (d )⊕ Z.
In the above lemma,V (d )⊕Z := {V (d )+n | n ∈ Z} and∐ denotes the disjoint
union. V (d )−k denotes the kth predecessor ofV (d ) (k ∈ N). We will prove in the
lemma that such predecessor exists.
Proof. Assume that V (M 〈c〉) �= V (M ). Then, there is d ∈ M 〈c〉 such that
V (d ) /∈ V (M ). Say,Nd = Lc + y for some L,N ∈ Z, y ∈M .
Claim 1. M 〈c〉 =M 〈d 〉.
It is sufficient by symmetry of the problem to show one inclusion. Let x ∈M 〈c〉
then nx = mc + z for some m, n ∈ Z and z ∈M . So,

Lnx = mLc + Lz = mNd + Lz −my.
So, x ∈M 〈d 〉.
V (M 〈d 〉) ⊇ V (M )∐V (d ) ⊕ Z. Indeed, V (pnd ) = V (d ) + n for all n non-
negative and for all n ∈ N as V (d ) ≥ n (V (d ) /∈ VM ), there is d ′ ∈ M∗ such
that d = pnd ′. So d ′ ∈ M 〈d 〉 and V (d ′) = V (d ) − n. Note that V (d ) ⊕ Z is
disjoint from V (M ). Otherwise, V (d ) + n ∈ V (M ) for some n and therefore,
V (d ) ∈ V (M ).
Let x ∈ M 〈d 〉. Then, nx = md + y with y ∈ M . So, V (nx) = V (md + y)
i.e., V (nx) = V (md ) if V (y) > V (d ), m �= 0 and V (nx) = V (y) otherwise. This
implies that V (x) ∈ V (M )∐V (d )⊕ Z.
So,M 〈d 〉 = V (M )∐V (d )⊕ Z. �
Lemma 2.8. For all x ∈ M 〈c〉, for all � ∈ V (M 〈c〉) there is y ∈ M 〈c〉 such that
V (x − y) = �.
Proof. Let t ∈M 〈c〉 with V (t) = �. Take y = x + t. �
Lemma 2.9. Let M ′ be a model of Tp,Z and M be a pure subgroup of M ′. Let
a1, . . . , ak ∈M , n1, . . . , nk,m1, . . . , mk ∈ Z, �1, . . . , �k ∈ VM . Let (α) be the system

(α)
{
V (X − ai) + ni �ij V (X − aj) +mj (1 ≤ i ≤ k) (2)
V (X − ai)�i �i (1 ≤ i ≤ k). (3)

If (α) has a solution in M ′, then it has a solution in M . Furthermore, if c is a
solution of the system inM such that c �= ai and c �= bi for all i then there is � ∈ VM
such that for all

y ∈ B(b, �) := {z ∈M | V (c − z) > �}
y is a solution of (α).
Proof. Let x be a solution of (α) in M ′. First if V (x − ai) /∈ VM for some
i . Then without loss of generality, we can assume that x ∈ M 〈c〉 \ M with
VM 〈c〉 = VM ∐V (c)⊕Z and nx = lc + r. So, V (x− ai) = min{V (lc), V (nai −
r)}− vp(n) = V (c)+vp(l)− vp(n) (as V (x−ai) /∈ VM ). We will pick y such that
V (y − ai) = �̃ ∈ VM with �̃ < V (c) for some �̃ large enough (to be deter-
mined) and �̃ �i �i . For fixed �̃, we can find such a y by density. Then V (x − y) =
V (x − ai + ai − y) = �̃.
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Let j �= i . There are 3 cases:
(1) V (x − aj) > V (c) and V (x − aj) ∈ VM . Therefore, V (x − aj) > V (c) + k
for all k ∈ Z. But, V (nx − naj) = V (lc + r − naj) = min{V (lc), V (r − naj)}.
This gives a contradiction. Therefore this case never happens.
(2) V (x − aj) < V (c) and V (x − aj) ∈ VM . Therefore, V (x − aj) < V (c) + k
for all k ∈ Z. So, the condition V (x − ai) + mi �ij V (x − aj) + nj is of
the type V (x − ai) + mi > V (x − aj) + nj . Take �̃ so that V (c) > �̃ >
V (x − aj) + nj − mi . Then, V (y − aj) = V (y − x + x − aj) = V (x − aj).
So, V (y − ai) +mi �ij V (y − aj) + nj holds by choice of �̃.
(3) V (x − aj) /∈ VM . Then V (x − aj) = V (lc) − vp(n) = V (x − ai). So,
V (x− ai) + ni �ij V (x− ai) +mj is equivalent to ni �ij mj . So, it is sufficient that
V (y−aj) = V (y−aj). As we haveV (y−aj) = V (y−x+x−aj) = V (y−x) =
�̃ = V (y − ai), this is the case.
So, we see that �̃ needs to satisfy only finitely many conditions

�̃ > V (x − aj) + nj −mi �̃ �i �i ,
for all j such that situation (2) holds. And asV (lc)−vp(n) satisfies these conditions,
it is obvious that we can find �̃ such that these conditions holds: take �̃ < V (c)
large enough in VM .
Now, ifV (x−ai) ∈ VM for all i . Then, without loss of generality we can assume
that � := V (x − a1) = · · · = V (x − ak) > V (x − ai) for all i > k. If we find y
such that V (y − aj) = V (x − aj) for all j we are done. For it is sufficient to find
y such that V (y − aj) = � for all j ≤ k. Indeed, in this case if l > k, V (y − al ) =
V (y − x + x − al ) = V (x − al ) as V (x − y) = V (x − a1 + a1 − y) > V (x − al ).
(1) If V (x) > � then V (ai) = � for all i ≤ k and we just have to pick y such that
V (y) > �.
(2) If V (x) = � then if we find y such that V (y) = � then for all i ≤ k such
that V (ai) > �, V (y − ai) = �. So we can assume that V (ai) = � for all i ≤ k
if we require the extra-condition on y: V (y) = V (y − ai) = �. By the axioms of
p-valued Z-groups there is 0 < i < p such that V (x − ia1) > �. As V (x − a1) = �,
i > 1. Take y = ia1. Then V (y−x) > � and for all 1 < j ≤ k,V (y−aj) = V (y−
x+ x− aj) = V (x− aj). Also, V (y − a1) = V (ia1− ai) = V (a1)+ vp(i − 1) = �
and V (y) = V (ia1) = V (a1) = �. This complete the proof of the first assertion.
Let c ∈ M be a solution of (α) distinct from ai , bi . Let � = max{V (c − ai),
V (c − bi)}+ 1 <∞. Let z ∈ B(c, �). Then,

V (z − ai) = min{V (z − c), V (c − ai)} = V (c − ai).
Similarly, V (z − bi) = V (c − bi) and therefore z is a solution of (α) �
Proposition 2.10. LetM∗, N∗ be models of Tp,Z,M,N be pure subgroups ofM∗

andN∗ resp. Assume thatN∗ is |M |-saturated. Let h :M −→ N be an isomorphism
of p-valued groups. Let a ∈ M∗ \M . Then there is b ∈ N∗ \ N such that for all
n ∈ N, k ∈ Z, x ∈M, � ∈ VM

ka − x ≡n 0 iff kb − h(x) ≡n 0) (1)

V (ka − x)� � iff V (kb − h(x))� h(�). (2)

Furthermore h can be extended to an isomorphism of p-valued groups h̃ :M 〈a〉 −→
N〈b〉 such that h̃(a) = b.
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Proof. To prove the existence of b it is sufficient to prove that the partial type

p(y) ={ky − h(x) ≡n 0 | M∗ � ka − x ≡n 0, x ∈M,k, n ∈ Z}
∪ {V (ky − h(x))� h(�) | M∗ � V (ka − x)� �, x ∈M, � ∈ VM,k ∈ Z}

is finitely satisfied inN∗ (by |M |-saturation) i.e., that any finite collection of formulas
in p, say {

kiy − h(xi) ≡ni 0 (1 ≤ i ≤ T ) (a)
V (kiy − h(xi))� h(�i) (1 ≤ i ≤ T ) (b)

is realised in N∗. First, let us remark that V (kiy − h(xi)) < +∞. Indeed, if this is
not the case, then kiy − h(xi) = 0 i.e., kia − xi = 0. AsM is a pure subgroup of
M∗, this implies that a ∈ M . Then, we multiply each equation in (a) and (b) by∏
j �=i kj . Then the above collection of formulas is equivalent to⎧⎨⎩

y − h(∏j �=i kjxi) ≡ni ∏j �=i kj 0(1 ≤ i ≤ T ) (a)
y ≡K 0 (a2)
V (y − h(∏j �=i kjxi))� h(�i ) + vp(∏j �=i kj)(1 ≤ i ≤ T ), (b)

where K =
∏
i ki . Then by Proposition 2.5 (a)− (a2) is equivalent to

y ≡S h(x)
for some x ∈M and S = lcm(ni

∏
j �=i kj,K). Let (α) be the system{

V (y − h(x)) ≥ vp(S) (a′)
V (y − h(∏j �=i kjxi))� h(�i ) + vp(∏j �=i kj)(1 ≤ i ≤ N). (b′)

By Lemma 2.9 and its proof, the existence of a solution of (α) only depends on the
centres and on the radii. As these centres and radii belongs to N and as (the image
by h−1 of) the system is realised inM∗, it is realised in N∗. Furthermore, let c be a
solution of the system (α) then there is a ball B such that any element of B is a
solution of (α). As B is contained in B(h(x), vp(S)) and by regular density, the set
of points in N∗ congruent to h(x) modulo S is dense in B. Take b in B such that
b − h(x) ≡S 0. Then b is a solution of (a) and (b).
It remains to prove that h̃ is indeed an isomorphism. It is not hard to see that this
is in fact a morphism of groups.
h̃ is a morphism of p-valued groups: If V (M 〈a〉) = V (M ), there is nothing
to show: By condition (2), for all x ∈ M 〈a〉, V (h(x)) = h(�), where � = V (x).
So let assume that V (M 〈a〉) �= V (M ). Then, we can assume that V (M 〈a〉) =
V (M )

∐
V (a) ⊕ Z (if necessary change a and b like in Lemma 2.7). Let x, y ∈

M 〈a〉.
Then nx = ka + c and my = la + d for some n,m, k, l ∈ Z and c, d ∈ M . We
have to show that

V (x)�V (y) iff V (h̃(x))� V (h̃(y)).
If V (y) = � ∈ V (M ), (then V (h̃(y)) = h(�) by condition (2)), we have

V (x)� � iff V (nx)� � + vp(n)
iff V (ka + c)� � + vp(n)
iff V (kb + h(c))� h(� + vp(n))
iff V (h̃(x))� h̃(�)
iff V (h̃(x))� V (h̃(y)).
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If V (x), V (y) /∈ V (M ), then V (x) + vp(n) = V (a) + vp(k) and V (y) + vp(m) =
V (a) + vp(l). So,

V (x)� V (y) iff vp(k) + vp(m)� vp(l) + vp(n).

Similarly, V (h̃(x))+ vp(n) = V (b)+ vp(k) and V (h̃(y))+ vp(m) = V (b)+ vp(l).
So,

V (x̃)� V (ỹ) iff vp(k) + vp(m)� vp(l) + vp(n).

h̃ is surjective: let y ∈ N〈b〉. Then ny = kb+ h(c) for some n, k ∈ Z and c ∈M .
Therefore, ny = kb + h(c) iff kb + h(c) ≡n 0 iff ka + c ≡n 0 iff there is x ∈ M∗

such that nx = ka + c. Then h̃(x) = y.
h̃ is injective: let x, x′ ∈ M 〈a〉. Then nx = ka + c and n′x′ = k′a + c′. Let us
note that asM is a pure subgroup ofM∗, we can assume that (k, n) = (k′, n′) = 1.
Assume that h̃(x) = h̃(x′). Then, nn′h̃(x) = nn′h̃(x′). So, n′kb + n′h(c) = nk′b +
nh(c). Therefore (n′k−nk′)b = nh(c)−n′h(c). As b /∈ N , it implies that n′k = nk′.
So as (n, k) = (n′, k′) = 1, n = n′ and k = k′. So n′h(c) − nh(c′) = 0. Therefore
c = c′ and x = x′. �
We can now prove the model-completeness result:

Proof. Let M ⊂ M ′ be models of Tp,Z. By the discussion of the beginning of
this section, it is sufficient to prove that the following system

(α)
{
V (
∑
qijxj − ai) + nj �j V (

∑
rijxj − bi) +mj (1 ≤ i ≤ N) (2)∑

j qijxj ≡Ni ai (1 ≤ i ≤ N) (3)

(where ai , bi ∈ M , qij, rij , nj,mj,Ni ∈ Z, N ∈ N) has a solution in M if it has a
solution inM ′. Let d be a solution of the system inM ′, say d ∈M 〈c1, . . . , cl 〉. Let
M∗ be a |M ′|-saturated elementary extension ofM . Then, if we apply inductively
Proposition 2.10, we can construct an elementary embedding ofM 〈c1, . . . , cl 〉 into
M∗. So the system (α) has a solution inM∗ and therefore inM . �
Using Proposition 2.10, one can also prove:

Corollary 2.11. Tp,Z admits the elimination of quantifiers.

Remark. In the late stage of the redaction of this paper, the author was in-
formed that the quantifier elimination and a similar axiomatizationhavebeen proved
independently by F. Guignot [3].

§3. Case n = (1 + p). Unless specified, in this section, we assume that p �= 2.
First, we will see that (1 + p)Z carries the structure of a p-valued Z-group.
Furthermore, we will also see that this structure is axiomatizable in the language of
p-adically closed fields. Let n ∈ Z then

(1 + p)n = exp(log(1 + p)n),

where exp, log are the p-adic exponential (resp. p-adic logarithm). Let us note that
this is well-defined as p �= 2. As vp(exp(x)−1) = vp(x) and vp(log(1+x)) = vp(x)
for all x ∈ pZp,

vp((1 + p)n − 1) = vp(n) + 1.
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So, we can define a structure of p-valued group: let

V : (1 + p)Z −→ N ∪ {∞} : x �−→ vp(x − 1)− 1.
Then ((1 + p)Z, V ) is a p-valued Z-group (isomorphic to (Z, vp).
Let L1+p = (+,−, ·, 0, 1, Pn(n ∈ N), U,≡n (n ∈ N)) (where U is a predicate
interpreted in Qp by (1 + p)Z). Let (K,G) be a L1+p-structure. Assuming thatK is
p-adically closed we can express the property that G is a p-valued Z-group in the
language L1+p. As the p-adic valuation ring is definable in the language of rings we
can interpret a map

VK : G −→ vK ∪ {∞} : x �−→ v
(
x − 1
p

)
,

which coincides with the map V on (1+p)Z. Then one can express in the language
L1+p that (G,V ) is a p-valued Z-group:
• (G, ·, 1, (1 +p),≡n) is a Z-group can be expressed in the language of rings and
with the predicates ≡n. These latters are interpreted in G by x ≡n y iff there is
g ∈ G such that x = gny (as we are now using multiplicative notation for the
group operation);

• (VG, 0, <) is a discrete ordered set with first but no last element. For these
axioms, we express that VG = vK≥0 i.e.,

∀x
[
v(x) ≥ 0→ ∃yU (y) ∧ v(x) = v

(
y − 1
p

)]
,

or more formally

∀x
[
P2(1 + px2)→ ∃yU (y) ∧ P2

(
x2 + p

(
y − 1
p

)2)
∧P2
((
y − 1
p

)2
+ px2

)]
.

Then (VG, 0, <) is a discrete ordered set as K is p-adically closed. Note that
the successor function is determined by S(V (x)) = V (xp).

• V : G −→ VG ∪ {∞} satisfies the axioms of p-valued groups can be also
expressed using the predicates Pn . We proceed similarly for the rest of the
axioms.

A crucial property of (1 + p)Z that will be used in our axiomatization is that this
group satisfies Mann property. We define now this property: let K be a field and G
a subgroup of its multiplicative group. Let a1, . . . , an nonzero in the prime field of
K and consider the equation

a1x1 + · · ·+ anxn = 1.
Asolution (g1, . . . , gn) inG of this equation is called nondegenerate if

∑
i∈I aigi �= 0

for all non-empty I ⊂ {1, . . . , n}.We say thatG has theMann property (inK) if any
equation like above has finitely many nondegenerate solutions in G . This property
was isolated by H. Mann [7] who proved that U the group of roots of unity in
C has Mann property. More generally, any multiplicative group of finite rank in
any field of characteristic zero has Mann property; see [2,6,11] (where the rank of
an abelian group G is the dimension of the Q-vector space Q ⊗ G where G is seen
as a Z-module and the tensor product is over Z). In particular, aZ has the Mann
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property for any a in a field of characteristic zero. An alternative proof for the
Mann property of aZ is given in [4]. This last proof has the advantage to be effective
(this is necessary to prove that our theory is decidable).
A part of the axiomatization says that is that if (K,G) is a model of the theory
of (Qp, (1 + p)Z) then G has the same nondegenerate solutions as in (1 + p)Z.
Formally, let a1, . . . , an ∈ Q∗ and let g1 := (g11, . . . , g1n), . . . , gk be the list of the
nondegenerate solutions in (1 + p)Z of the equation

a1x1 + · · ·+ anxn = 1.

The corresponding Mann axiom is

∀ y
⎡⎣⎛⎝∧

i

U (yi) ∧
∑
i

aiyi = 1 ∧
∧

∅ �=I⊂{1,...,n}

∑
i∈I
aiyi �= 0

⎞⎠→
k∨
i=1

y = gi

⎤⎦ .
In [4], the authors prove the following results that will be useful later:

Lemma 3.1 (Lemmas 5.12 and 5.13 in [4]). Let Γ be a subgroup ofG such that for
all a1, . . . , an ∈ Q∗ the equation a1x1 + · · ·+ anxn = 1 has the same nondegenerate
solutions in Γ as in G . Then we have for any g, g1, . . . , gn ∈ G :
• if g is algebraic over Q(Γ) of degree d then gd ∈ Γ;
• if g1, . . . , gn are algebraically dependent over Q(Γ) then they are multiplicatively
dependent over Γ.

If furthermoreΓ is pure inG . ThenG∩Q(Γ) = Γ andQ(G) is a purely transcendental
extension of Q(Γ).

The second property from [4] that we will use is the notion of smallness. In
general, this notion can be defined as follow: let L be a language, letM = (M, . . .)
be a L-structure and G ⊂ M . By f : X n−→ Y we denote a map from X to the
subsets ofY of size at most n. We say thatG is large inM if there is f :Mm n−→M
definable such that f(Gm) :=

⋃
x∈Gm f(x) =M . We say thatG is small if G is not

large. In particular, if |M | is infinite and |G | < |M | then G is small. So, (1 + p)Z
is small in (Qp,+, ·, 0, 1, Pn). Note that ifM is a p-adically closed field (so we have
definable Skolem functions) then we can assume that the map f in the definition
of large is of the type f : Mm −→ M . Furthermore, the property of smallness
is first-order: we can axiomatize this property in L(U ) where U is a predicate
interpreted inM by G . The axioms are as follow: for all L(U )-formula Φ(x, y, z),
we add

∀ z [(∀x∃!yΦ(x, y, z))→ ∃y∀xU (x) ∧ ¬Φ(x, y, z)] .
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In the main theorem of this section, we will use the following consequence of
smallness:

Lemma 3.2. Let K ⊂ K ′ be p-adically closed fields. Let G be a subgroup of K ′∗

such that G is small in K ′. Assume that K ′ is |K |-saturated (in the language of
p-adically closed fields expanded by a predicate for G). Then K(G)h �= K ′.

Proof. We show that the type transcendental over K(G) is realised in K∗. Let
p(x) be the type consisting of the formulas

∀ g ∈ Glf(g, x) :=
∑
j

(∑
i

aijgi

)
xj �= 0

for all a inK . Let us show that this type is finitely satisfiable. Then by saturation it is
realised in K ′. Note that any realisation of p is transcendental over K(G). Assume
that this is not the case. Then there isf1(z, y), . . . , fn(z, y) polynomials inK [Z,Y ]
such that for all y ∈ K there is g ∈ G such that fi(g, y) = 0 for some i . Let

F : K ′m n−→ K ′ : x �−→ {y ∈ K ′ | ∨if(x, y) = 0}.
So, F (Gn) = K ′ i.e., G is large in K ′: contradiction. �
Remark. In the above lemma, we can also pick the transcendental number such
that it realises a fixed cut overK (i.e., the set of formulas v(x − a)� � with a ∈ K ,
� ∈ vK satisfied by a fixed element in a saturated expansion of K). For, like in the
lemma, we can show (by contradiction) that G is large in a ball B definable with
parameters in K (for any ball B that determines the cut). Then as B is large in K ′,
we would obtain that G is large in K ′.

LetpCF (1+p)be the theorydeterminedby: if (K,G,+,−, ·, 0, 1, Pn ,≡n (n ∈ N))
is a model of pCF (1 + p) then

• (K,+, ·, 0, 1, Pn) is a p-adically closed field;
• 1G := (1+p) ∈ G , (G,V ) is a p-valuedZ-group (whereV (g) = vp(g−1)−1)
and V : G → vK≥0 is surjective;

• G is dense in 1 + pOK ;
• (K,G) satisfies the Mann axioms of (1 + p)Z;
• G is small in K .
Problem. If K is algebraically closed or real closed and G is a subgroup of K∗

with the Mann property then it is proved in [4] that G is small. Is it also the case if K
p-adically closed?

Theorem 3.3. pCF (1 + p) = Th(Qp, (1 + p)Z,+,−, ·, 0, 1, Pn,≡n).
The proof is now a straightforward translation of the proof of theorem 7.1 in [4]
for real closed fields. In the proof, we will use the notions of free, linearly disjoint
and regular extensions. We refer to [5] for the definitions and properties.

Proof. Let (K,G), (L,H ) be two models of pCF (1 + p) κ-saturated for some
κ > ℵ0. Let Sub(K,G) be the collection of L1+p-structures (K ′, G ′) where

• K ′ is a p-adically closed field, |K ′| < |K |;
• G ′ is a pure p-valued subgroup of G ;
• K ′ andQ(G) are free over Q(G ′).
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Sub(L,H ) is defined similarly. Let Γ be the set of isomorphisms between elements of
Sub(K,G) andSub(L,H ). ThenΓ is non-empty since (Qh , (1+p)Z) is inSub(K,G)
and Sub(L,H ). It remains to prove that Γ is a back-and-forth system to prove the
theorem. Let 
 : (K ′, G ′) −→ (L′,H ′) in Γ. Let α ∈ K \ K ′. We have to find an
extension of 
 which contains α in its domain. There are three cases:
(1) α ∈ G . We need to find � ∈ H such that � realises the same Z-type overH ′ as
tpZ(α/G ′) (i.e., the formulas of Proposition 2.10) and � realises the same cut as α
overK ′ (i.e., the set of formulas vp(x−
(c))� 
(�) such that (K ′, G ′) � vp(α−c)� �
for all c ∈ K ′, � ∈ vK ′). By density ofG in 1+pOK , we can assume that the cut of
α overK ′ is determined by the cut over G ′: indeed, vp(α − c)� � iff vp(α − g)� �
for all g ∈ G such that vp(g−c) > �. (Note that if c /∈ 1+pOK , then vp(α−c) = 0
if vp(c) ≥ 0 and vp(α − c) = v(c) otherwise i.e., in this case the valuation does
not depends on the choice of α ∈ G .) Furthermore, vp(α − g) = vp(αg−1 − 1) =
VG(α − g) + 1. So, the cut in the group determines the cut in the field. Let �
given by Proposition 2.10. Let K ′′ = K ′(α)h , G ′′ = G ∩ K ′′, L′′ = L′(�)h and
H ′′ = H ∩L′′. By the properties of p-valued Z-groups, p-adically closed fields and
Lemma 3.1, (K ′′, G ′′) ∈ Sub(K,G) and (L′′,H ′′) ∈ Sub(L,H ) and we have an
isomorphism 
′ : (K ′′, G ′′) −→ (L′′,H ′′).
(2) α ∈ K ′(G)h . Then, α ∈ K ′(g1, . . . , gn)h and we can apply case (1) n times.
(3) α /∈ K ′(G)h . Consider the cut of α over K ′. By saturation and smallness of
H , L′(H )h �= L and there is � ∈ L \ L′(H ) which realises the corresponding cut
(remark following Lemma 3.2). Take K ′′ = K ′(α)h , L′′ = L′(�)h . Note that by
Lemma 3.1Q(G) is a regular extension ofQ(G ′) and thusK ′ andQ(G) are linearly
disjoint over Q(G ′). By linear disjointness, we can extend 
 to an isomorphism

′ : (K ′′, G ′) −→ (L′′,H ′) : α �−→ � . The freeness of K ′′ and Q(G) over Q(G ′)
follows from the assumption that α /∈ K ′(G)h . �
Let us note that the above theorem can be adapted for any n ∈ Z:
If n = 1+x where vp(x) > 0. Then this is immediate: we can define the valuation
V (g) by vp(g− 1)− vp(x) as vp((1+x)n)− 1) = vp(log(1+x))+vp(n). Then one
can adapt the axiomatization pCF (1+x) in a obvious way and prove an equivalent
to the above theorem.
If n = i + x where 1 < i < p and vp(x) > 0 then there is k ∈ N such that
(i + x)k = 1 + y with v(y) > 0 (take k minimal for this property). So, (K,G) is a
model of Th(Qp, (1 + x)Z) iff (K,Gk) is a model of pCF (1 + y).
If p = 2, for n = 1 + p2, we have that vp((1 + p2)n − 1) = vp(exp(log(1 +
p2)n) − 1) = vp(n) + 2. So one can proceed like for the case n = (1 + p),
p �= 2: define pCF (1 + p2) using the same set of axioms and prove the above
theorem in the same way. Similarly, if n = (1 + x) where v2(x) > 1. For
n = (1 + x) with v2(x) = 1, let us remark that n2 = (1 + 2x + x2) and
vp(2x+x2) = 2. So, (K,G) is a model of Th(Q2, (1+x)Z) iff (K,G2) is a model of
pCF (1 + 2x + x2).

§4. Definable sets. In the case vp(n) > 0, we can use the result of quantifier
elimination to describe definable sets. In particular,

Proposition 4.1. The Lp-definable sets in Qp are boolean combinations of open
sets and discrete countable sets.
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In the case vp(n) = 0, we don’t have a result of quantifier elimination but it is
straightforward to adapt the description from [4]:
Let (K,G) be a model of pCF (1 + p). Let LpV (Σ) be the expansion of LpV (see
Section 2) by predicates Σk for all k ⊂ Z interpreted in G by: for all g ⊂ G

Σk(g)↔ k1g1 + · · ·+ kngn = 0.
LetL1+p(Σ) = (+,−, ·, 0, 1, Pn,U,≡n (n ∈ N),Σk(k ⊂ Z)). Note thatLpV (Σ) is not
a sublanguage of L1+p(Σ) but any symbol of the language LpV (Σ) is quantifier-free
definable in L1+p(Σ). Let Φ be a LpV (Σ)-formula. Then the U -restriction ΦU is:
• If Φ is atomic, ΦU = Φ;
• If Φ = ¬Φ′, ΦU = ¬Φ′

U ;
• If Φ = Φ′ ∨Φ′′ (resp. Φ = Φ′ ∧Φ′), ΦU = Φ′

U ∨Φ′′
U (resp. ΦU = Φ

′
U ∧Φ′′

U );
• If Φ = ∃xΦ′ (resp. Φ = ∀xΦ′), ΦU = ∃xU (x) ∧ Φ′

U (resp. ΦU = ∀xU (x) ∧
Φ′
U ).

In other words, for all g in G ,

G(Σ) � Φ(g) iff (K,G) � ΦU (g),

whereG(Σ) is the L1+p(Σ)-expansion of the L1+p-structureG . A special formula in
x is a L1+p(Σ)-formula of the type

∃yU (y) ∧ΦU (y) ∧ �(x, y),
where Φ is a LpV (Σ)-formula and � is a L1+p-formula.
Lemma 4.2. Each L1+p(Σ)-formula Ψ(x) is equivalent in pCF (1 + p,Σ) to a
boolean combination of special formulas in x.

The proof is word for word the same as Lemma 7.6 in [4].

Proof. Let (K,G) and (L,H ) be two ℵ1-saturated models of pCF (1 + p,Σ).
Let α ∈ Kn and � ∈ Ln satisfying the same special formulas in x. Then, it is
sufficient to prove that tp(K,G)(α) = tp(L,H )(�). Let Γ be the back-and-forth system
of Theorem 3.3. We have to find 
 ∈ Γ such that 
(α) = �.
Assume that Q(G)(α) has transcendence degree r over Q(G).
Then Q(H )(�) has transcendence degree r over Q(H ). Indeed, suppose this is
not the case. Then without loss of generality we can assume that α1, . . . , αr are
algebraically independent over Q(G) and �1, . . . , �r are algebraically dependent
over Q(H ). Say �r ∈ Q(H )(�1, . . . , �r−1)alg . Then there is a formula ϕ(x, y) and h
in H such that

(L,H ) � ϕ(h, �1, . . . , �r) ∧ ∃≤nxrϕ(h, �1, . . . , �r−1, xr),
i.e.,

(L,H ) � ∃yU (y) ∧ ϕ(y, �1, . . . , �r) ∧ ∃≤nxrϕ(y, �1, . . . , �r−1, xr).
So (the last formula is a special formula),

(K,G) � ∃yU (y) ∧ ϕ(y, α1, . . . , αr) ∧ ∃≤nxrϕ(y, α1, . . . , αr−1, xr).
This is a contradiction.
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Let G ′ = {g1, g2, . . .} be a countable subgroup ofG such thatG ′(Σ) � G(Σ) and α
has transcendence degree r over Q(G ′).
Let �1, . . . , �n be LpV (Σ)-formulas and Φ1, . . . ,Φk be L-formulas such that

G(Σ) � �i(g) and K � Φj(α, g), (∗)
i.e.,

(K,G) � ∃yU (y) ∧ �U (y) ∧Φ(α, y),
where � = ∧i �i and Φ = ∧iΦi . So,

(L,H ) � ∃yU (y) ∧ �U (y) ∧Φ(�, y).
Then,

{U (y)} ∪ {�U (y)} ∪ {Φ(�, y)}
(where we take all formulas �U and Φ that satisfy (∗)) forms a partial type over � .
Let h = (h1, h2, . . .) be a realization of this type in (L,H ). Then there is a partial
elementary map between G(Σ) and H (Σ) sending gi to hi . Let H ′ = {hi}. Then
H ′ is a subgroup of H such that H ′(Σ) � H (Σ) and � has transcendence degree
r over Q(H ′). And we have an isomorphism 
 between Q(G ′)(α) and Q(H ′)(�)
sending αi to �i and gi to hi . Let K ′ = Q(G ′)(α)h and L′ = Q(H ′)(�)h . Then
(K ′, G ′) ∈ Sub(K,G), (L′,H ′) ∈ Sub(L,H ) and 
 ∈ Γ. This concludes the proof
of the lemma. �
Theorem 4.3. Every definable subset of (K,G) is a boolean combination of subsets
of Kn defined by formulas ∃yU (u) ∧ Φ(x, y) where Φ(x, y) is quantifier-free in the
language of p-adically closed fields.

Again the proof is similar to the Theorem 7.5 in [4].

Proof. We know by the last lemma that any formula is equivalent to a special
formula in x i.e., formula of the type

Ψ(x) ≡ ∃yU (y) ∧ �U (y) ∧Φ(x, y).
By quantifier elimination for p-valued Z-groups

{g ∈ Gn | G � �(g)}
is equivalent to a boolean combination of

(1) {g | k(g) := gk11 · · · gknn = 1};
(2) {g | V (k(g)) + r� V (k′(g)) + s};
(3) {g | k ∈ (1 + p)iGn}.
As any of these LpV -definable set is definable using a quantifier-free L-formula and
existential quantifiers over G and by quantifier elimination for p-adically closed
field, Ψ is equivalent to

Ψ′(x) ≡ ∃zU (z) ∧Φ′(x, z),

where Φ′ is a quantifier-free L-formula. �
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