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This paper offers an account of data manipulation in scientific experiments. It will be shown

that in many cases raw, unprocessed data is not produced, but rather a form of processed data

that will be referred to as a data model. The language of data models will be used to provide

a framework within which to understand a recent debate about the status of data and data

manipulation. It will be seen that a description in terms of data models allows one to

understand cases in which data acquisition and data manipulation cannot be separated into

two independent activities.

1. Introduction. This paper will offer an account of data manipulation in
scientific experiments. It will be shown that many cases of data acquisition
and processing in science are poorly described in terms of the treatment of
raw, uninterpreted data. Instead, such cases should be described in terms of
interpreted data models. The language of data models will be used to
provide a framework within which to understand a recent debate about the
status of data and data manipulation, and to better place the role of
theoretical goals and assumptions in the acquisition and manipulation of
data. In particular, it will be seen that a description in terms of data models
allows one to understand cases in which data acquisition and data
manipulation cannot be separated into two independent activities.

2. Suppes and the Idea of a Data Model. The concept of a data model can
be traced back to a paper by Patrick Suppes titled ‘‘Models of Data’’ (1962).
In this paper Suppes describes a hierarchy of models that connect data to
theory. There are three features of the Suppean hierarchy that are important
to this paper. First, there are three levels of models in Suppes’s system,
models of theory, models of experiment, and models of data. Models of
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theory andmodels of experiment are associated with theories,1 while models
of data describe data gathered in a particular experiment. For example, a
model of theory can be based on a scientific theory such as the ideal gas law.
Models of experiment are based on theories of experiment.2 Models of data
describe data taken in a particular experiment. I will not devote time
discussing the relationship between Suppean models and their associated
theories as Suppes provides little information about this relationship in this
article. However, it is important to note that both models of theory and
models of experiment are associated with theories.

Second, unlike the theory to be tested and its associated model, the
theory of experiment and its associated model contain references to exper-
iment. For instance, a model of theory might include variables specified in
the ideal gas law such as the temperature, pressure, and volume of an ideal
gas. The theory of experiment might then specify the relation between the
temperature and pressure of a Nobel (nonideal) gas when the volume is held
constant in a possible experiment. The model of experiment would then
contain possible values of the temperature and pressure in this experiment.
The model of data would then contain readings of temperature and pressure
taken during a particular run of this experiment.

Third, in Suppes’s original formulation, not all data sets collected in a
given experiment count as a model of data. In order for a data set to count
as a model of data, certain conditions specified in the theory of experiment
must hold within an acceptable margin of error. There are also statistical
tests that one can perform on data sets that determine whether or not a
given data set constitutes a model of data.

3. Data Models. Models represent inexactly. For example, a ball-and-stick
chemistry set can be used to construct models that represent certain chem-
ical compounds. Notice that the chemical model is said to represent a
particular compound because it is similar to that compound in a relevant
respect. Inaccuracies are allowed. A chemical compound has many prop-
erties lacking in the ball-and-stick model, and the model has many
properties, such as color, that the real-world object lacks.

One can find parallels in every science. One example is Mendel’s
principle of independent assortment. Put in modern terms, this principle
states that the genes that encode for certain traits such seed color or seed
type (e.g., smooth seed or wrinkled seed) segregate independently of each
other. For example, if a smooth yellow parent and a wrinkled green parent
are crossed, there are four possibilities for the next generation: smooth
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yellow, smooth green, wrinkled yellow and wrinkled green, and each of
these possibilities have an equal probability of occurring (25 percent). How-
ever, when one examines biological systems one finds that this principle
does not hold. One exception is that some genes exhibit linkage, which
means there is a higher probability those genes will be passed together to
the progeny than predicted by Mendel’s principle of independent assort-
ment. Returning to the seed example, if the yellow and wrinkled genes are
linked, then there is a much higher probability that the next generation will
contain yellow wrinkled progeny than the other possibilities. Rather than
claim that Mendel’s principle has been refuted by this observation, one
could claim that it is a model of inheritance of traits that has certain
similarities and certain dissimilarities with biological systems depending on
the context.

Turning to data, when one has what one would count as raw data, it is
usually not in a form usable by scientists. For this reason, data must
undergo some degree of processing before it can be analyzed. A first step
in data processing is often aimed at eliminating noise in the data set. For
instance, if one was plotting the positions of planets as they move through
the nighttime sky, one would find that there is a certain amount of error
associated with each of the measurements, due to flaws in the telescope,
human error, atmospheric conditions, or other factors in the environment.
Before one plotted the trajectory of a given planet, one would want to do
two things: (1) eliminate certain points that were the result of error (for
example, one saw a planet where there wasn’t one), and (2) draw a smooth
curve through the remaining points, so that the resulting path of the planet
did not jump from point to point. In sum, you would process the data, and
produce a smooth, continuous path for a planet from a collection of dis-
crete data points. When information counts as raw data, it must almost
always go through some such processing step before it is in a usable form.

This final plotted path of the planet can be considered a data model.
Many changes have been made in the original data set. Some data points
have been thrown out, and the discrete values have been replaced by a
smooth, continuous curve. The first step is called data reduction, and the
second can be called curve fitting. These two steps are often used when
one constructs data plots in chemistry or physics lab classes, such as a
temperature versus resistivity plot in a solid-state physics experiment, or a
temperature versus pressure plot in a test of the ideal gas law. The result-
ing curves are similar to the original data set, but also different, being
continuous, and usually not coinciding exactly with most of the retained
original data points. The curve is now a model of the data, constructed by
the scientist to be similar to the original data set in relevant respects.

An account of data that employs data models can address the role of
theoretical goals and assumptions in the processing and interpretation of
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data in a number of ways. For example, it is acknowledged that there are
different ways to model data and that these different ways of modeling
result in data models that have differing known similarities and dissim-
ilarities with the real-world objects they are intended to represent. When a
two-dimensional world map is created, there are a number of possible map
projections a cartographer can choose, such as an orthomorphic projection,
which retains the correct shape but changes the relative areas of the
continents, or an equivalent projection, which preserves the correct relative
sizes of the continents but distorts their shape. The cartographer chooses a
particular projection with a goal in mind. Similarly, when scientists choose
to produce a histogram rather that a smooth curve from a particular data
set, they know that certain regularities in the data will be highlighted, while
other information will be lost. Scientists make decisions regarding the
construction and processing of a data model knowing some of the dis-
similarities, as well as some of the similarities between the data model and
the real-world object it is intended to represent.

As the concept of raw data plays a role in the debate that is presented in
the next section, it is important to note that in many cases the data that has
traditionally been referred to as raw is in fact a data model. For example, it
will become clear that data such as micrographs are not raw data, but
instead data models. Because this might raise an immediate objection, it is
worthwhile to examine why researchers refer to some data as being raw.

One possibility is that it is believed that certain data has not been pro-
cessed, or manipulated by scientists. By this standard, and in any plausible
way of understanding manipulation and processing, it is often the case that
data models do not represent anything that could be thought of as unma-
nipulated or unprocessed data. For example, an electron micrograph is the
product of an astonishingly complex instrument that requires a specimen to
undergo a lengthy preparation procedure. Scientists will change many
aspects of this specimen preparation procedure as well as settings on the
microscope in order to achieve a desired effect in the resulting micrograph.
Because of this purposeful manipulation of both the microscope and the
specimen, the electron micrograph cannot be said to be unprocessed data.

A second possibility is that it is believed that certain data is raw because
it is not influenced by theory. Using the same example, in many types of
microscopy, including electron microscopy, scientists make decisions
effecting the micrograph based on their assumptions about the real-world
system being tested. These will usually be theoretical assumptions, such as
lipids are hydrophobic, or glutaraldehyde covalently cross-links proteins.

A third possibility is that certain data is believed to be raw because it is
in a unique position between the real-world system and what is considered
to be the first-level data model. Michael Lynch has pointed out (Lynch
1990) that there is often a hierarchy of representations between highly
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processed data models and what is commonly called raw data, each level in
some way dependent on the previous level. Many situations are more
complex, involving a range of different kinds of levels of representation of
the data with models. Each of these models will be variously helpful in
achieving the goals of the scientist. It is possible that some of these levels
are not arranged in a linear hierarchy. In these cases, some might find it
tempting to call the lowest level or first-data model the raw data, but this
will no longer mean unmanipulated, uninterpreted data, as many intend
when they use the term ‘‘raw data.’’ Because of this, I think that many
cases should be described as not involving raw data of any kind.

Notice that in these cases the process of data acquisition cannot be
separated from the process of data manipulation. From the outset the data
must be considered to be the product of a certain amount of purposeful
manipulation. This can occur even when simple instruments are used. Two
examples involving familiar measuring devices provide cases in which
instruments do not produce uninterpreted or ‘‘raw’’ data. At first it might
seem as if one could directly read the voltage of a circuit off of the dial of a
voltmeter, or the temperature of a liquid off of the mercury column of a
thermometer. However, both instruments require a certain amount of
learned skill to be properly read. A mercury column can be hard to line
up with the temperature scale printed on the thermometer due to the
meniscus at the top of the column and the refractive effects of the glass or
plastic that holds the mercury. Reading an analog voltmeter also presents
difficulties. An analog voltmeter’s needle does not hold still, so the
observer must learn how to determine the average reading of the needle
over a period of time. Until one learns the skills necessary to make these
readings, neither instrument will yield an acceptable data model.

When one moves from these relatively simple instruments to an
instrument such as an electron microscope, it becomes obvious that the
instrument is not producing raw data (in the sense of being unprocessed),
but data that has been interpreted and manipulated, in short, a data model.
The lack of raw data in many scientific experiments complicates a debate
that has recently occurred over the acquisition and manipulation of data.

4. A Recent Debate Concerning Raw Data and Data Manipulation.
James Bogen and James Woodward have been concerned with the relation
between data, theory, and what they term ‘‘phenomena.’’ ‘‘We expect phe-
nomena to have stable, repeatable characteristics which will be detectable
by means of a variety of different procedures, which may yield quite dif-
ferent kinds of data’’ (Bogen and Woodward 1988, 317). Phenomena
include such things as the quantum tunneling, or the breeding patterns of
sharks. When scientists study phenomena, data is produced. ‘‘Data, which
play the role of evidence for the existence of phenomena, for the most part
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can be straightforwardly observed’’ (Bogen and Woodward 1988, 306).
Data provides evidence for claims about phenomena.

In a later article entitled ‘‘Data and Phenomena,’’ Woodward makes the
point that data is usually processed in some manner by the investigators
before it is in an acceptable form:

Moreover, data must be made to occur in a form which is tractable
with respect to the demands of data-reduction and statistical analysis—
a consideration which is crucially important in high energy physics (cf.
Section VI). Data must also result from processes in which there has
been adequate control for various kinds of experimental error (cf.
Section VI). Here again, data having these desirable features rarely
occurs naturally. Instead, it is typically the product of laborious, elab-
orate, and carefully planned contrivance on the part of the investigator.
(Woodward 1989, 321)

During this process of data manipulation, scientists are looking for features
of their observations or experimental outcomes that they can take to be
evidence for claims about phenomena.

Bogen and Woodward also discuss how scientists determine if their
observations provide reliable evidence for claims about phenomena. They
give several methods by which scientists ‘‘control confounding factors’’ in
their observations. To give the reader some indication of what control of
confounding factors includes, the example of calibration will be mentioned
here, which is credited to Allan Franklin (Bogen and Woodward 1988,
327). Calibration is the use of an instrument to detect phenomena of
known characteristics in order to gauge the accuracy of that instrument.
One of Franklin’s examples involves using a spectrometer to determine
known spectra such as the Balmer series of hydrogen (Franklin 1990, 104–
105). By doing this, scientists can look for errors or deviations from the
reported series in the output of the spectrometer. Another example is
putting a thermometer in boiling water (which one knows boils at 100jC at
1 atm) to check if the thermometer is accurate.

Edward McAllister criticizes Bogen and Woodward in ‘‘Phenomena and
Patterns in Data Sets.’’ In this paper McAllister notes that Bogen and
Woodward do not explain how scientists choose which features of their
observations or experimental outcomes they will accept as being reliable
evidence of phenomena:

Some of these patterns are taken by investigators as corresponding to
phenomena, not because they have intrinsic properties that other
patterns lack, but because they play a particular role in the inves-
tigators’ thinking or theorizing. The two accounts [Bogen and Wood-
ward’s and McAllister’s] differ also in their epistemological and
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methodological implications. Bogen and Woodward hold that inves-
tigators discover from data sets which phenomena there exist; on my
account, investigators discover the patterns that are exhibited in data
sets, but stipulate that some of these correspond to phenomena.
(McAllister 1997, 224)

McAllister gives the example of a hypothetical situation in which
Newton and Kepler are examining a data set consisting of the positions
of the planets observed at different times (1997, 226). Depending on the
amount of noise allowed, this data set could be used to support either
Kepler’s ellipses, or Newton’s more complicated model in which grav-
itational effects between the planets cause their paths to deviate from
perfect ellipses. In McAllister’s terms, both patterns exist in the data, and it
is the scientist who stipulates which pattern or patterns will be taken to
correspond to the phenomena of interest by specifying the acceptable noise
level.

McAllister’s objection is that Bogen and Woodward have minimized the
role of interpretation in their theory of data. It is true that scientists look for
a particular kind of pattern when examining their data. Another example of
this is X-ray crystallography, where electron density maps are processed by
a computer to produce three dimensional pictures of macromolecules such
as proteins. A certain amount of information not contained in the electron
density map must be added before one gets a clear three-dimensional
output from the computer. For instance, until one tells the computer that
the proteins are expected to be in an ordered crystal lattice (among other
things) the computer will not pick out a peptide chain from the data. As
McAllister points out, there are always competing patterns in data. A
scientist must choose one pattern over the other competing patterns.

5. Data Models and Theoretical Objectives. An account of data that
utilizes data models can accommodate McAllister’s observation regarding
the role of interpretation in data processing. Bogen and Woodward claim
that scientists use a number of procedures to eliminate confounding fac-
tors, and that this process of elimination results in reliable data (Bogen and
Woodward 1988, 392). As pointed out by McAllister, Bogen and Wood-
ward’s formulation assumes that there is only one reliable data model,
given the data. This is not the case. Consider, for example, an electron
micrograph of a cross section of a kidney cell.3 This data could be pro-
cessed to produce a variety of data models. Scientists could create a chart
that shows the probability of finding a mitochondria in different regions of
cell (e.g., close to the Golgi or near the plasma membrane). Another
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possible data model would be a histogram displaying the average distance
between mitochondria in different regions of the cell. Finally, a line could
be drawn through the long axis of each mitochondria to create a vector
representing the orientation of that mitochondria relative to a designated
axis in the cell, then the average orientation of mitochondria in different
regions of the cell could be presented in a graph.

Each of these possible data models would be produced with a theo-
retical objective in mind. One would not want to claim that one of these
data models is the acceptable data model, and the rest are unacceptable. In
order to understand why each of these data-manipulation processes results
in an acceptable data model, one must examine the theoretical objectives
that guided the production of each data model.4 For example, the first data
model might be acceptable if scientists were interested in studying the
fission and fusion of mitochondria, while the last data model might be
acceptable if they were studying the transport of mitochondria. In general,
data models are acceptable relative to a theoretical goal, and cannot be
evaluated independently from that goal.

Rather than say that scientists stipulate patterns in data (as McAllister
does), one should say that the construction of data models involves inter-
pretation. In many cases what has traditionally been taken to be raw data
already embodies theoretical principles, or at least is a manufactured object
that contains input from nature, but is also the product of a number of
decisions scientists have made. Such cases are better described in terms of
data models that involve interpretation from the start, and are to be
evaluated for reliability by various standards, depending differentially on
the theoretical objectives in question.

Given this account, some will worry about the influence of scientists’
interests on their judgments about what counts as relevant similarity be-
tween a data model and its target. As shown above, judgments concerning
data models involve theoretical assumptions. Using McAllister’s terms, the
theoretical assumptions and interests of the scientists will influence the
patterns they stipulate. Similarly, Mary Morrison has pointed out that not
all theoretical models are models of theory in the sense of being derived
from theory, nor is every phenomenological model free from theoretical
concepts and parameters (Morrison 1999, 44). In particular, as scientists
construct data models they use elements of theory to guide the production
of data models. Nancy Cartwright has emphasized that many models are
used to get beyond theory to better represent physical systems:
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I want to argue that the fundamental principles of theories in physics
do not represent what happens; rather, the theory gives purely abstract
relations between abstract concepts: it tells us the ‘‘capacities’’ or
‘‘tendencies’’ of systems that fall under these concepts. No specific
behavior is fixed until those systems are located in very specific kinds
of situations. When we want to represent what happens in these situa-
tions we need to go beyond theory and build a model. (Cartwright
1999, 242)

Along these lines one can note that a data model can be the lowest level
of representation of what happens. It is specific to the experiment at hand.
However, it is not simply a copy of what happens. Instead it incorporates
elements of theory to create a representation that contains features of inter-
est to the scientist.

A description in terms of data models facilitates an improved under-
standing of the interplay between theoretical principles, the theoretical
interests of scientists, and aspects of the data model that are due to exper-
imental constraints imposed by nature. When one is faced with complex
experiments involving multiple instruments, each producing manipulated
data, an account of scientific methodology that requires the identification
of raw, unprocessed data will be inadequate. As McAllister points out, we
will be left to explain how scientists identify patterns in that data, and
given the fact that a number of patterns exist in a given data set, this will
be challenging, if not impossible. Instead, we should realize that experi-
ments will often contain a number of data models. The task then becomes
to identify the theoretical assumptions and objectives that produced these
data models. The data-model approach can accommodate the wide range
of situations one encounters in laboratory science, including cases in
which there is no raw data, in other words, cases in which data acqui-
sition, manipulation, and elements of interpretation are not independent
activities.

references

Bogen, James, and James Woodward (1988), ‘‘Saving the Phenomena’’, Philosophical Re-
view 97: 303–352.

Cartwright, Nancy (1999), ‘‘Models and the Limits of Theory: Quantum Hamiltonians and
the BCS Models of Superconductivity’’, in Mary S. Morgan and Margaret Morrison
(eds.), Models as Mediators. Cambridge: Cambridge University Press, 241–281.

Franklin, Allan (1990), Experiment, Right or Wrong. Cambridge: Cambridge University
Press.

Lynch, Michael (1990), ‘‘The Externalized Retina: Selection and Mathematization in the
Visual Documentation of Objects in the Life Sciences’’, in Steve Woolgar and Michael
Lynch (eds.), Representation in Scientific Practice. Cambridge: MIT Press, 153–186.

McAllister, James W. (1997), ‘‘Phenomena and Patterns in Data Sets’’, Erkenntnis 47: 217–
228.

Morrison, Margaret (1999), ‘‘Models as Autonomous Agents’’, in Mary S. Morgan and

#03170 UCP: PHOS article # 700554

1516 todd harris

https://doi.org/10.1086/377426 Published online by Cambridge University Press

https://doi.org/10.1086/377426


Margaret Morrison (eds.), Models as Mediators. Cambridge: Cambridge University
Press, 38–65.

Suppes, Patrick (1962), ‘‘Models of Data’’, in Ernest Nagel, Patrick Suppes, and Alfred Tarsi
(eds.), Logic, Methodology, and Philosophy of Science. Stanford: Stanford University
Press, 252–261.

Woodward, Jim (1989), ‘‘Data and Phenomena’’, Synthese 79: 393–472.

#03170 UCP: PHOS article # 700554

1517the acquisition and manipulation of data

https://doi.org/10.1086/377426 Published online by Cambridge University Press

https://doi.org/10.1086/377426

