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A multiplier theorem for one-sided Hardy spaces
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In this paper we give a multiplier theorem for one-sided Hardy spaces which
generalizes the results given by Strémberg and Torchinsky for two-sided weights. Also
we state the LE, version with a Sawyer’s weight w.

1. Introduction

Many operators that are bounded on weighted Lebesgue spaces L?, for weights w on
the Muckenhoupt class have one-sided versions that are bounded for the wider class
of Sawyer’s weights. Good examples are the one-sided singular integral operators
introduced in [1]. A one-sided singular integral is a Calderén-Zygmund singular
integral whose kernel K has support in (—oo, 0] or [0, co).

The purpose of this paper is to study the one-sided version of multiplier opera-
tors. By Plancharel’s theorem, a bounded measurable function m(£) on R™ defines
a bounded operator T;, on L?(R™) through the Fourier transform given by the
expression

T f(€) = m(€) f(£).

It is said that m(&) is a multiplier on L? if ||T, f||, < ¢|| f|p, where the constant ¢
does not depend on f € L? N LP, and thus T}, can be extended to a bounded
operator on LP. A classical result states that if m(¢) is a bounded C* function on
R—{0} such that |Dm(¢)| < ¢|¢| 71, then m(€) is a multiplier on LP for 1 < p < oo.
For the R™ version of this result see [13, ch. IV]. The multiplier theory for weighted
Lebesgue spaces LP, and for weighted Hardy spaces HP, where the weight w belongs
to some Muckenhoupt class Ag, can be found in [14, ch. XI].

Given a multiplier m(¢), let K,,, € &’ be the associated kernel, that is I/(\m =m
in the sense of distributions. We shall say that m(&) is a one-sided multiplier if K,
has support in (—o0,0] or [0,00). In [12] the Fourier transforms of distributions
with support in a half-line are characterized. For the sake of completeness we show
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in the example given in §6 that if m(£) can be extended to a bounded analytic
function on the upper half-plane, then supp(K,,) C (—o0,0].

In [4] a one-sided multiplier theorem for LP with a weight w in the Sawyer
class A; is obtained. In [15] a one-sided multiplier theorem for one-sided Hardy
spaces H! (w) with w € AT is given.

In this paper we prove a rather general one-sided multiplier theorem for one-
sided Hardy spaces HY (w), 0 < p < oo, with weight w in some Sawyer class AF
(theorem 3.1) that generalizes the results given in [14] for two-sided weights. Also
we state the LP version in theorem 3.2. We follow the ideas of [14] and in order
to overcome the difficulties that appear working with one-sided weights we use a
special atomic decomposition of the one-sided Hardy spaces where for each atom
of the decomposition there is another atom supported contiguously at the right of
its support and with their supports having equivalent sizes [9].

2. Definitions

Let f(z) be a Lebesgue measurable function defined on R. The one-sided Hardy—
Littlewood maximal functions M f(x) and M~ f(x) are defined as

1 x
M™Tf(z) =sup — / (t)|dt and M~ f(z )—supf/ |f(®)|dt.
h>0 I h>0 v Jo_p

As usual, a weight w is a measurable and non—negative function IfECRisa
Lebesgue measurable set, we denote its w-measure by w(F) = [, w 5 w(t)dt. A function
f(x) belongs to LP, 0 < p < oo, if

00 1/p
1flly = < | vwprew d:r,)
is finite.

The class of weights w for which M ™ is a bounded operator on L, 1 < s < oo,
is called the AT class. This class has been characterized by Sawyer in [11], as the
weights w such that

ij(t) ) ([ e dt>s_l < Cunle—a)’

holds for some constant C,, s and for every —oo < a < b < ¢ < 00. In the limit case of
s = 1 we say that w belongs to the class Af if M~w(z) < C,, 1w(z) a.e. By Holder’s
inequality it follows that AT C Af, for s; < sy. If a > 1 and I = (¢ — to, o), the
left a-dilation of I is the interval (xg — at, o), which we denote by al. Given 6 > 1,
we say that a weight w satisfies a one-sided doubling condition D;‘ if there exists
a constant ¢ such that w(al) < ca’w(I) holds for every interval I and every a > 1.

It is well known that if w € A}, then w € DY, and thus it can be assumed that
0 satisfies 6 < s. Given r > 1 we say that a weight w satisfies a one-sided reverse
Holder condition RH, if for every p > 0 there exists a constant ¢ = ¢(p) such that

1 L/ 1
_ T < c——
(|I|/1w(t) dt) \C|I | ”w(t)dt,
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where I = (zg—to,z0) and I = (g, o+ pto). It is not hard to see that if w € A,
then w € RH," for some r > 1. The RH;} condition given here is equivalent [2,10]
to the one given in [6, lemma 5|, where it is used to prove that w € A implies
w € A for some € > 0.

A weight w belonging to the Al class can be equal to zero in a set with positive
measure. For simplicity, we shall assume throughout that all weights are positive
almost everywhere. For this case, and for 0 < p < oo, we shall define HY (w) as
in [5]. Let S be the space of C*°(R) functions with rapidly decreasing derivatives
of all orders. The topology of S is given by the family of norms

1llas = sup [(1 TS |Dkso<x>|],
rER k—0

where « is a non-negative integer and 3 > 0. Let S, = {p € S : supp(p) C [¢, +00)}
for any ¢ € R, and let S., be its dual space. If we define Sfoo as the union

Ste= U S
—oo<c
we shall denote by (ST )" the set of linear functionals of ST_ that, restricted to
S., belong to S! for every ¢ > —oo. Given ¢ € S with supp(¢) C (—o0,0] and
f€(St..), in [5] the maximal is defined as

M f(z)= sup |f*ou(y)l,

oLy—x<t

where f + éu(y) = {f, éu(y — )} and du(u) = (1/9)6(u/t). For 0 < p < oo and
w € Af, it is said that f € (ST_)" belongs to HY (w) if

+oo 1/p
o = ([ M flapwyae) - <o,
It is shown in [5] that the definition of HY (w) does not depend on the choice of ¢.
Note that || - || (o) is a norm for 1 < p < oo and a p-norm for 0 < p < 1. In both
cases || - || H? (w) 8ives to H ? (w) a structure of complete metric space.

Let N be an integer and 1 < ¢ < co. A function a(x) defined on R is called a
(¢, N)-atom if there exists an interval I containing the support of a(z) such that
lallq < |Ix1]lq, and it satisfies N+1 null-moment conditions, that is [, y*a(y)dy =0
for every k, 0 < k < N. Atomic decompositions for HY (w) are given in [3,9].

We denote by |z| ~ R theset {t e R: R/2 < |x| < 2R}.Let £ > 0and 1 < ¢ < 2,
we say that a bounded function m(€) satisfies the condition M(q, ¢) if

— 00

1/q
([, Ipem@irae) " < cmvioe, 1)

for all R > 0 and 0 < a < [¢], where [{] is the integer part of ¢, and if £ = [¢] + v
with v > 0, then we also require

1/
([ 1pm(e) - Dlmic — ayprae) " < o Y o
€I~ R R

for |2| < iR.
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We say that an interval J ‘follows’ the interval I if I = (¢,d) and J = (d,e). If
p > 1, then its conjugate exponent will be p’ = p/(p — 1). The ¢ that appears in
inequalities represents a positive constant not necessarily the same at each occur-
rence.

3. Statement of the main result

We state a multiplier theorem on HY (w) which is the one-sided version of [14,
theorem 6, p. 162]. This theorem will be proved in § 5.

THEOREM 3.1. Let we ATNDF NRHF, 1 <0 < s, r>1 Let1l < q<2,
0<p<oo and m € M(q,t), where

0—1 — 11 1
E}Hw+max<,,+) if 1 <p<s,
p(s—1) qg'p rp
60 1 .
€>§—? Zf0<p<1, (31)
0 1

Also assume that the associated kernel K,,, .f(; = m, has support in (—oo,0]. Then
m is a multiplier on HY (w); that is to say that the operator T,, defined by

T f(€) = m()f(©)
for f € L*N HY (w) can be extended to a bounded operator in HY (w).

It may be seen that if s < p and w € Af, then HY (w) coincides with L, and the
norms in both spaces are equivalent. In this case we have the following result.

THEOREM 3.2. Let w€ ATNRHT, 1 <q<2,s<p<ooandletme M(ql),
where £ > 1/q and ¢ > min(s/p, 1/p'+1/pr). Also assume that the associated kernel
K,, has support in (—00,0]. Then the multiplier operator associated with m is a
bounded mapping from L into itself.

This result is the one-sided version of [14, theorem 5, p. 161] and can be proved
similarly to theorem 3.1. We therefore omit the proof here.
4. Previous results and lemmas

For m € M(gq,¢) with 1 < ¢ < 2 let K,,, € S’ be the associated kernel, that

is K, = m. We shall assume that supp(K,,) C (—o0,0]. The following lemma
summarizes lemmas 2 and 3 in [14, pp. 157, 158]. Since no weights are involved,
the proof is the same as in [14]. Because of the support of K,,, the only difference
is that the atom’s support dilates only to the left.

LEMMA 4.1. Let m € M(q,t), £ > 1/q and with K, as above and let 1 < py < 00
and £ = —max(1/q,1/pg). If a is a (po, No)-atom supported in I, then there exists

a constant ¢ such that
=1
K,*xa=c E_O abi,

https://doi.org/10.1017/50308210507000017 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210507000017

A multiplier theorem for one-sided Hardy spaces 213

where b; are (po, No)-atoms supported in 20441 — 2T for every i > 1, and by is a
(po, No)-atom supported in 231. We also have that, fori > 1,

2iNo+2) 0> Ny +1,
&= 2D /i if I < No+1 and 0 is integer,
2i(£+1) if £ < Ny + 1 and 0 is non-integer-

The following atomic decomposition for HY (w) was given in [9].

THEOREM 4.2. Letw € A} and 0 < p < co. Then there is a integer N (p,w) with the
following property: given any f € HY (w) and N > N(p,w), we can find a sequence
{Ax} of positive coefficients and a sequence {ax ;(x)} of (00, N)-atoms with support
contained in intervals {Ij, ;} respectively such that Zk Akax,; converges uncondi-
tionally to f both in the sense of distributions and in the HY (w)-norm. Moreover,
It j42 follows Iy j, |1 jyo| < Ik ;| < 4|1k 42| for every j, k, and

H Z )\kXIk,j
k,j

REMARK 4.3. In the same way that the above decomposition is obtained in [9], it

can be proved that
|23,
k,j

holds for every 0 < 7 < co. In fact, an atomic decomposition for f € HY (w) satisfy-
ing this inequality can be obtained as in [3] by following the ideas in [14, ch. VIII].
Then, by breaking up each atom of the decomposition as in [9], we obtain (4.1).

ANl w w)-

L

1/7
e S crllf s ) (4.1)

The following lemmas will be needed throughout the paper.

LEMMA 4.4. Letr > 1 and w be a weight such that w” € AY for some s > 1. Then
w € RH.

Proof. Let I = (zg — to,z0) and I = (xq,x¢ + pto) for some p > 0. From the A
condition we have

1 s—1 1 —(s—1)
7/ / < wr/(sn) ( wr/(sn)
1l FRgivyes (] s
—(s—1) —r r
1 1
/(1) 1 1
w w w | .
<|f+| I+ ) <|f+| I+ ) (|I+| I+ >

Then, by Hoélder’s inequality,
w .
1 I/ (f e )

LEMMA 4.5. For w € AF N DJ and 0 < ¢ < 1 let w.(y) = w(y)°, then w. €

D1++e(0 1)°

O
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Proof. First note that, applying lemma 4.4 to w, with » = 1/e, it follows that for
any p > 0 there exists a constant ¢ such that for every interval J = (z — t,x) we

have

(7)<

where JT = (z,z + pt).

Let a > 1 and I = (a0 — to, xg). If we consider intervals J = (zg — tg, 2o — t0/2)
and J* = [z9 — to/2,70), then al C (2aJ) U JT. By Holder’s inequality, the fact

that w € D and by (4.2), we have

we(al) < w-(2aJ) +w(JT)
12a 1 ¢ (w(2aJ)) + w.(JT)
calte =D | J 1= ()E 1w (J*)
ca1+e(0—1)ws(J+) + WE(J+)

/

NN CIN N

Q

a1+s(9—1)wE(J+) < ca1+8(9_1)w5(1).

LEMMA 4.6. Let w € AT N D;’, 1 <p< oo and p>0. There exists a constant c
such that, for any a > 1, any sequence of positive numbers A, and any sequence of

intervals I, = (x), — tg, xk), we have that

HZAanzk S Ca(sHZ/\szg

L%
holds, where I,j' = (zg, ) + ptg) and
0-1(s—p) .
14— 1
5 + P51 if 1 <p<s,
1 if s <p<oo.

Proof. We shall consider the case 1 < p < s. Let we(y) = w(y)® for

p—1\1
=(1- =
: ( S—l)p

Note that 0 < ¢ < 1/p < 1. For any G € L? with |G|l »» =1, let g = Guw'~=.
Since, by lemma 4.5, w. € D1++€(671) and 6 =14 ¢(f — 1), for any z € I" we have

/ Xar, ()G ()w(y) dy = / Xate @)9(0)we () dy

o we(al U L) /Z
= wE(mk —atk,Z) T —aty
< ca’we (I )M, g(2),
where ) ;
M, g(z zsupi/ w dy.
_9(2) e pemy Z_hg(y) =(y) dy
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Then

[ (E Mon ) )Gt
< Ca&/ (ZMXI; (y)>M;g(y)wa(y) dy

, , 1/p’
o (/M;g(y)” w(y)let/pr dy)

)
P
L

< Ca‘SH Z)\kXI;

< ca‘sH ZMXI;

which implies the lemma for 1 < p < s. The last inequality above follows from the
fact that

/ M.g(y)” w(y) PP dy < e / g(y)? w(y) VP qy = ¢,

which is equivalent to w(e=1/P)?" satisfying the A, (we) condition

(/Iw(y)@—l/p)p/ dy) (/(w(y)(s—l/p)p'—s)_1/(p/_1)w(y)sdy)p'—l
S (TUI)Y, (43)

where I follows I~ and |I~| =|I] [7,8]. In order to verify (4.3), we first note that

1 1 1 1
e—=|)p=- and € — e—=|)p —¢) =1,
p s—1 =1 p

so the left-hand side of (4.3) is equal to

(/Iw(y)l/(sl) dy> (/_ o) dy)p'1
S N

which, as w € AY, can be estimated by a constant times

ror e ([ wway

Using (4.2), the latter expression is dominated by a constant times

. (' —D=(/G=))fe
TU -/ ( /w(y)sdy) 1@ =01/
I

]
p/
—o( [twran)
I
which gives (4.3).

The case when s < p < co can be obtained in a similar way by taking e = 0. 0O

)(p'—l)—l/(s—l)
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LEMMA 4.7. Let b be a (po, No)-atom supported in I = (xg — to,x0). Then, for
x < o — Qto,

1|

No+2
P ik B, < M+ N0+2'
) <o)

M b(z) < c(
Proof. We shall estimate

Mib(z) = sup [bxd(y)]
0<y—x<t

for x < xg — 2tp, where ¢ € S, supp(¢) C (—o0,0] and [ ¢(¢t)dt # 0. If Py, (u) is
the Taylor’s polynomial of order Ny of ¢((y —u)/t) at u = xg, by the null-moment
conditions we have

b iy ‘/ ( ( “>PNO(U)) du

o —§
<z [ bol|p¥is( 1)

with u < £ < xg. Since ¢ € S, we have

Yy — é‘ tN0+2 tN0+2
DN°+1¢ <ec <ec .
oIS @y —epeE S e

lu — 20N du (4.4)

The latter inequality holds due to the fact that (t2 + |y — £|?)'/? is the distance
from (£,0) to any point of the semi-cone 0 < y — 2 < t and thus

0< S8 (2 fy— ey

Vo

Then, for x < zg — 2tp, 0 <y —x <t and £ € I, we have

‘DN0+1¢<?/ §>‘<C No+2
S

; (o o
and, substituting this into (4.4), since [, [b(u)| du < |I|, we obtain
+ |1|N0+1 Y™™ v (o) Mo
Mive) < et nos [ians o 1) <oty
O

LEMMA 4.8. LetweA*ﬂRHj, where s > 1 and r > 1. For 0 < p < oo, let

po > 1 such that py > pr’ and Ny is an integer satisfying p(No + 2) > s. Then,
given p > 0, there exists a constant ¢ > 0 such that

101l < (T

holds for every (po, No)-atom b supported in I = (xo — to, o), and It = (zg, 19 +
pto)-
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Proof. We shall estimate || M;"b[", , where

Mib(z) = sup |b=*¢u(y)l,

oy—x<t

with ¢ € S, supp(¢) C (—o0,0] and [ ¢(¢)dt # 0. Due to the support of ¢ we
get that M b(x) =0 for x > zo. By lemma 4.7 and since w € A C AP(N by b
follows that

o 2t0
/ M b(z)Pw(z) dz < ¢ / (M Ty (2))PPNo+t2y(2) da < cw(I) < ew(IT).
Since b is a (po, No)-atom, w € RH,;" and py > pr’, we can estimate

M b(z)Pw(z)dr < ¢ [ Mb(z)Pw(z)dr
21 21

c Mb(z)P" da " w(z)" da o
27 27

pr’/po ST ( +)
c((/Mb(m)pO dx) 2]|1/(P0/PT)> |I+| ‘21|1/T

pr’ /po 1/r' +
o VI
c((/b(x)|p0 dx) |I|1/(po/p )) e |]|1/

T/ T T/w( ) T
(P ooy =

<cw(Ih).

The lemma follows from the estimations above. This lemma also holds for pg = oc;

moreover, in this case one can obtain ||b||Hp () S cw(I). O

LEMMA 4.9. Let w € A"‘ORH;", where s > 1 andr > 1. For 1 < p < oo, let
po > 1 be such that pg > pr’. Given p > 0, there exists a constant ¢ > 0 such that,
for any sequence of positive numbers A\ and pg-atoms ay supported in intervals

I, = (xg — tg, x), we have

|32,

where I," = (i, z + pty).

CH Z)\kXIIj

Ly’
Proof. Since py > pr’, we can choose gg such that py/r’ > go > p. Note that since
Po/qo > ' we get
bo  _ (po) <r
Po — qo do
and, therefore, w € RH "

po/(Po—qo0)” ,
First, we will prove that, for any g € LE, with [|g||,,» =1,

‘ / au(@)g(r)e(e) dr| <

C/I+ M. (19]%) ()" 9w () do (4.5)
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holds, where

Mo f(z) = sup —— / e

xzel w

By Holder’s inequality and the definition of atom, the left-hand side of the above
inequality is less than

, , 1/1‘70
T ( l9(2) 7 ()7 d:c) .
Iy

This expression can be estimated using Holder’s inequality with exponents ¢ /pj
and (¢0/pp)" = 40/ (40 — po) by

1/4; ((¢6—p5)/40) /¢
IIkll/”"(/ |g(a:)|q6w(x)d;c> 0(/ w(x)(pé/qo)(qé/(qé—pé))dx) co 0_
Ik Ik

Since .,
Podo _ _ Do
q(g6 —Po)  Po—qo’

the expression above can be written as

1/qq
|Ik|1/l70( |g(x)|‘10w(;17) d;p) </ W(I)Po/(pofqo) dz
Iy

Iy

)((po—qo)/po)/qo

The fact that w € RHp J(po—ao0) allows us to estimate the last expression by

, 1/ 1 1/qo0
C|Ik‘1/p0 </I lg(x)|%w(z) dx) <|]+ /ﬁ w(x) dx) \Ik|1/q°’1/p0
k k &

1/q,

’ 1 4 0

o)l 0 ) (s [ ottty d
k kA

< caw ()M (|g|%0) (a) /D,

for any « € I;7, which implies (4.5). Then, from (4.5) and since the maximal theorem
for M,, works on the real line even if w is not doubling, by applying Holder’s
inequality we have

‘/Z)‘kak(x)g(iv)w(x) dz

S C/ZAkxf,j(w)Mw(\gl%)(fv)l/%w(x) da

1/p'
S rwe], ([ ety ey as
CHZ)\ICXL:r L

and the lemma follows readily. O

LEMMA 4.10. LetweA"’ﬁDJrﬁRH;“, where s > 1,0 >1andr > 1. For1 <
p < 0o, let pg > 1 such that pg > pr’ and let Ny be an integer such that Ng+2 > 0,

where § is as in lemma 4.6. Given p > 0, there exists a constant ¢ > 0 such that,
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for any finite sequence of (po, No)-atoms by, supported in intervals I, = (xy, —tg, 1)
and positive numbers A\, we have

J J
DRELE AL PIER
k=1 k=1

where Ilj = (z,zk + pti). The constant ¢ does not depend on the non-negative
integer J.

)
LY

Proof. First, we shall estimate

Miby(e) = sup b+ 6u(y)]

oy—x<t

with ¢ € S, supp(¢) C (—00,0], and [ ¢(t)dt # 0. Since M by (z) < cMbg(x), we
have

X2z, My br | Lo < cl|Mbgl|zro < cllbel|zro < o Ii|/P0 < cf2@i[V/7e.
Thus, aro = C71X2]kM1+bk is a pg-atom supported in 2. If z < xp — 2tx, by
lemma 4.7, we have
‘Ik| No+2
M by (x) < c() )
T — X

and taking into account the fact that M; by (z) = 0 for = > x, we get

00 No+2
M by (z) < cago(z) + CZ ('Ik'> (Xoi+11,, (%) = Xoi1, (2))

=1 T — X
> .

< cago(x) + CZ 271Nty iy (), (4.6)
j=1

for every « € R. Since M. 1+ is subadditive, by applying the above estimate we obtain
J J
ebi|| <D
HZkkH};(w)\ 2N L Ly
k=1 k=1

J o) J
< CH Z )\kak,OHLE + CZ 2~i(Not+2) H Z AkX2i+11,
k=1 j=1 k=1

Since, by lemmas 4.9 and 4.6,

J J
E AQ <ec E A

H kAEk,0 e X kX];r
k=1 k=1

(4.7)

L§

J J
) Jjo
Lpand H E AkX2i+1], v < c2 H E /\ch[k+
¢ k=1 e k=1

Ly’
and Ny + 2 > 0 by (4.7), we have
J J
/\kbk‘ < CH ALX 7+
H kz::l HP (w) kz::l Tellzy
with a finite constant c. O
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5. Proof of the main result

In this section we prove theorem 3.1. Throughout this proof, given a bounded
interval I, we denote by It the interval that follows I, with [IT| = 275|I|.
Since w € AT .NRH +€ for some € > 0, we can assume that the inequalities
n (3.1) are strict. Let

r

1+w ifl1<p<s,
p(s—1)
(5:
0 .
- if0<p<l.
p

Then (3.1) can be written as £ > 6 — (1/¢’) and £ > § — (1/7'p) in both cases. We
can choose pg > 1 such that

1
0>86—— and py>r'p. (5.1)
Po
This is possible since if 6 — ¢ < 0, then any py > max{1,r'p} works, and if § —£ > 0,
taking into account

1 1
m>1 and m>p7”

then any po > 1 such that 1/(6 — ¢) > po > pr’ satisfies (5.1).

By theorem 4.2, for some integer Ny > max{d—2, (s/p)—2}, given any f € HY (w)
there is an atomic decomposition f = >~ Apag, j, where A, > 0 and ag, ; are (0o, No)-
atoms supported in I ;, such that it satisfies (4.1) and Iy ;1o follows Iy ;, with
Tk j12| < |[Ik;| < 4|1k j42|. Also, by lemma 4.1,

Z)\ka;”—cZ)\kz kaz

k,j=1 k,j=1 =0

Then, for 0 < p < 1, we have

oo J
HKm* Z Akark7j” <c Z AP ||bkjo||Hp(w -I-Z% Z AP |bkg1||HP(w)

k,j=1 k,g=1 =1 k,j=1
=Sy + 51.

Since po > r'p, p(Ny + 2) > s and since the by, ;o are (po, No)-atoms with support
in 2413, ; and (244 ;)" C Iy j1+2, we can apply lemma 4.8, obtaining ||by,;, 0||Hp @) <
cw(Iy j+2). Using this estimate and (4.1) we have

<c Z /\ w Ik ]+2 = CH Z /\kXIk j+2

k,j=1 k,j=1

<o A,

To estimate Si, note that for ¢ > 1 the supports of the (po, Ny)-atoms by ;,; are
contained in 20t4[ ; — 2°H1], o and, since (27741, ; — 20T )T C 20T 0 by
lemma 4.8, we have

A c”fHHP (w)"
u)

@) < cw(2i+1Ik,j) < c2i9w(Ik’j).

1%, I
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Using this and (4.1) we have

00 J
S1 = Z@ Z Xello 5.4l
. 7]
Z kw IkJ

+(W)

<>
i=1 Cf k,j=
°° 8
Z (5) o |,
) 916

s
Il
—

For the case p > 1, we have

HK Z Akam” H Z )\kbk]oH y Z f
+ Ld

k,j=1 k,j=1 1=1 Jj=1

=S50+ 51.

Recalling that py > r'p, Ny +2 > § and that the by ;¢ are (po, No)-atoms supported
in 24Ik7j and since (241;6, )t C Iy j+2, we can apply lemma 4.10 to estimate Sp:

H Z )‘kXIk it2 e X CH Z )\k‘XIk]

k,j=1 k,j=1

I HE (@)

< [ fllme (w)-

P
L

For i > 1 the by, ;; are (py, No)-atoms with support in 27741 ; — 27T, ;. and since
(2”4[;6, — 201, )t C 20H1, 5, applying lemma 4.10 and lemma 4.6 to estimate
S, we obtain

(o]
1
FO )

J
E AkX2i+1T,,
Ci =1

i
T
k,j=1

=1

215
< A \
(D)) X

k,j=1

215
< c(z Nl 63)
“ =1

To complete the proof we shall see that the series in (5.2) and in (5.3) are con-
vergent. Let £ = ¢ — max(1/q,1/p}) be as in lemma 4.1. Since £ > § — 1/¢’, and
£ > 8§ —1/pg, in the case when 1/q > 1/p{, we have

- 1 1 1
I4l=l—=4+1>6————+1=3
q q q

while if 1/q < 1/p),
11
e+1_£——+1>6————+1—5
D) Po Do

Then £ +1> & and Ny +2 > 6. Thus, by lemma 4.1 we have & > ¢2/(®t¢) for some
€ > 0, and therefore the series are convergent.

https://doi.org/10.1017/50308210507000017 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210507000017

222 C. Segovia and R. Testoni
6. An example

For fixed t € R and u > 0, let m(&) = (£ +ui)'. The complex power is defined with
the argument determination —%ﬂ‘ <argz < %71'. So m(§) is the boundary value of
a bounded analytic function on the upper half-plane.

First we prove that supp(K,,) C (—o0,0] by showing that (K, 1/3) = 0 for every

1 € § with supp(¢) C (0,00). By the Fourier inversion formula we have

0
v = [ b as
For z € C, Im(z) > 0, we consider
v =e [ i ds
and, since supp(¢) C (0, 00), by integrating by parts twice we get
22(2) = —C/OOQ D2y (s)el** ds.
Thus, we have that
2ol <e [T IDMds < ¢ < .

The above estimation and the fact that m(z) is bounded imply that

s

lim m(Re'®)h(Re'?)Rie? d§ = 0,

R—oo /g

and, by Cauchy’s theorem, it follows that
R

(K, ) = (m,yp) = lim [ m(E)(€)dE =0.

R— o0 —R
Finally, for any non-negative integer «,
[D*m(&)] < ([t] + a)* exp(r|t])|§]7,

which implies (2.1) for every o and 1 < g < 2.

Therefore, by theorem 3.1, m(€) is a multiplier on HY (w) for every 0 < p < oo
and w € A. Moreover, if we denote by T,,, the multiplier operator defined by m/(€),
then

1T L1z ) < ([t + @) exp(rltDI| Lz -
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