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A multiplier theorem for one-sided Hardy spaces
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In this paper we give a multiplier theorem for one-sided Hardy spaces which
generalizes the results given by Strömberg and Torchinsky for two-sided weights. Also
we state the Lp

ω version with a Sawyer’s weight ω.

1. Introduction

Many operators that are bounded on weighted Lebesgue spaces Lp
ω for weights ω on

the Muckenhoupt class have one-sided versions that are bounded for the wider class
of Sawyer’s weights. Good examples are the one-sided singular integral operators
introduced in [1]. A one-sided singular integral is a Calderón–Zygmund singular
integral whose kernel K has support in (−∞, 0] or [0, ∞).

The purpose of this paper is to study the one-sided version of multiplier opera-
tors. By Plancharel’s theorem, a bounded measurable function m(ξ) on R

n defines
a bounded operator Tm on L2(Rn) through the Fourier transform given by the
expression

T̂mf(ξ) = m(ξ)f̂(ξ).

It is said that m(ξ) is a multiplier on Lp if ‖Tmf‖p � c‖f‖p, where the constant c
does not depend on f ∈ L2 ∩ Lp, and thus Tm can be extended to a bounded
operator on Lp. A classical result states that if m(ξ) is a bounded C1 function on
R−{0} such that |Dm(ξ)| � c|ξ|−1, then m(ξ) is a multiplier on Lp for 1 < p < ∞.
For the R

n version of this result see [13, ch. IV]. The multiplier theory for weighted
Lebesgue spaces Lp

ω and for weighted Hardy spaces Hp
ω, where the weight ω belongs

to some Muckenhoupt class As, can be found in [14, ch. XI].
Given a multiplier m(ξ), let Km ∈ S ′ be the associated kernel, that is K̂m = m

in the sense of distributions. We shall say that m(ξ) is a one-sided multiplier if Km

has support in (−∞, 0] or [0, ∞). In [12] the Fourier transforms of distributions
with support in a half-line are characterized. For the sake of completeness we show
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in the example given in § 6 that if m(ξ) can be extended to a bounded analytic
function on the upper half-plane, then supp(Km) ⊂ (−∞, 0].

In [4] a one-sided multiplier theorem for Lp
ω with a weight ω in the Sawyer

class A+
p is obtained. In [15] a one-sided multiplier theorem for one-sided Hardy

spaces H1
+(ω) with ω ∈ A+

1 is given.
In this paper we prove a rather general one-sided multiplier theorem for one-

sided Hardy spaces Hp
+(ω), 0 < p < ∞, with weight ω in some Sawyer class A+

s

(theorem 3.1) that generalizes the results given in [14] for two-sided weights. Also
we state the Lp

ω version in theorem 3.2. We follow the ideas of [14] and in order
to overcome the difficulties that appear working with one-sided weights we use a
special atomic decomposition of the one-sided Hardy spaces where for each atom
of the decomposition there is another atom supported contiguously at the right of
its support and with their supports having equivalent sizes [9].

2. Definitions

Let f(x) be a Lebesgue measurable function defined on R. The one-sided Hardy–
Littlewood maximal functions M+f(x) and M−f(x) are defined as

M+f(x) = sup
h>0

1
h

∫ x+h

x

|f(t)| dt and M−f(x) = sup
h>0

1
h

∫ x

x−h

|f(t)| dt.

As usual, a weight ω is a measurable and non-negative function. If E ⊂ R is a
Lebesgue measurable set, we denote its ω-measure by ω(E) =

∫
E

ω(t) dt. A function
f(x) belongs to Lp

ω, 0 < p < ∞, if

‖f‖Lp
ω

=
( ∫ ∞

−∞
|f(x)|pω(x) dx

)1/p

is finite.
The class of weights ω for which M+ is a bounded operator on Ls

ω, 1 < s < ∞,
is called the A+

s class. This class has been characterized by Sawyer in [11], as the
weights ω such that( ∫ b

a

ω(t) dt

)( ∫ c

b

ω(t)−1/(s−1) dt

)s−1

� Cω,s(c − a)s

holds for some constant Cω,s and for every −∞ < a < b < c < ∞. In the limit case of
s = 1 we say that ω belongs to the class A+

1 if M−ω(x) � Cω,1ω(x) a.e. By Hölder’s
inequality it follows that A+

s1
⊂ A+

s2
for s1 < s2. If a � 1 and I = (x0 − t0, x0), the

left a-dilation of I is the interval (x0−at0, x0), which we denote by aI. Given θ � 1,
we say that a weight ω satisfies a one-sided doubling condition D+

θ if there exists
a constant c such that ω(aI) � caθω(I) holds for every interval I and every a � 1.
It is well known that if ω ∈ A+

s , then ω ∈ D+
s , and thus it can be assumed that

θ satisfies θ � s. Given r > 1 we say that a weight ω satisfies a one-sided reverse
Hölder condition RH+

r if for every ρ > 0 there exists a constant c = c(ρ) such that(
1
|I|

∫
I

ω(t)r dt

)1/r

� c
1

|I+|

∫
I+

ω(t) dt,
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where I = (x0 − t0, x0) and I+ = (x0, x0 +ρt0). It is not hard to see that if ω ∈ A+
s ,

then ω ∈ RH+
r for some r > 1. The RH+

r condition given here is equivalent [2, 10]
to the one given in [6, lemma 5], where it is used to prove that ω ∈ A+

s implies
ω ∈ A+

s−ε for some ε > 0.
A weight ω belonging to the A+

s class can be equal to zero in a set with positive
measure. For simplicity, we shall assume throughout that all weights are positive
almost everywhere. For this case, and for 0 < p < ∞, we shall define Hp

+(ω) as
in [5]. Let S be the space of C∞(R) functions with rapidly decreasing derivatives
of all orders. The topology of S is given by the family of norms

‖ϕ‖α,β = sup
x∈R

[
(1 + |x|)β

α∑
k=0

|Dkϕ(x)|
]
,

where α is a non-negative integer and β � 0. Let Sc = {ϕ ∈ S : supp(ϕ) ⊂ [c,+∞)}
for any c ∈ R, and let S ′

c be its dual space. If we define S+
−∞ as the union

S+
−∞ =

⋃
−∞<c

Sc,

we shall denote by (S+
−∞)′ the set of linear functionals of S+

−∞ that, restricted to
Sc, belong to S ′

c for every c > −∞. Given φ ∈ S with supp(φ) ⊂ (−∞, 0] and
f ∈ (S+

−∞)′, in [5] the maximal is defined as

M+
1 f(x) = sup

0�y−x<t
|f ∗ φt(y)|,

where f ∗ φt(y) = 〈f, φt(y − ·)〉 and φt(u) = (1/t)φ(u/t). For 0 < p < ∞ and
ω ∈ A+

s , it is said that f ∈ (S+
−∞)′ belongs to Hp

+(ω) if

‖f‖Hp
+(ω) =

( ∫ +∞

−∞
M+

1 f(x)pω(x) dx

)1/p

< ∞.

It is shown in [5] that the definition of Hp
+(ω) does not depend on the choice of φ.

Note that ‖ · ‖Hp
+(ω) is a norm for 1 � p < ∞ and a p-norm for 0 < p < 1. In both

cases ‖ · ‖Hp
+(ω) gives to Hp

+(ω) a structure of complete metric space.
Let N be an integer and 1 � q � ∞. A function a(x) defined on R is called a

(q, N)-atom if there exists an interval I containing the support of a(x) such that
‖a‖q � ‖χI‖q, and it satisfies N+1 null-moment conditions, that is

∫
I
yka(y) dy = 0

for every k, 0 � k � N . Atomic decompositions for Hp
+(ω) are given in [3, 9].

We denote by |x| ∼ R the set {x ∈ R : R/2 < |x| < 2R}. Let � � 0 and 1 � q � 2,
we say that a bounded function m(ξ) satisfies the condition M(q, �) if( ∫

|ξ|∼R

|Dαm(ξ)|q dξ

)1/q

� cR1/q−α, (2.1)

for all R > 0 and 0 � α � [�], where [�] is the integer part of �, and if � = [�] + γ
with γ > 0, then we also require( ∫

|ξ|∼R

|D[�]m(ξ) − D[�]m(ξ − z)|q dξ

)1/q

� c

(
|z|
R

)γ

R1/q−[�]

for |z| < 1
2R.
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We say that an interval J ‘follows’ the interval I if I = (c, d) and J = (d, e). If
p > 1, then its conjugate exponent will be p′ = p/(p − 1). The c that appears in
inequalities represents a positive constant not necessarily the same at each occur-
rence.

3. Statement of the main result

We state a multiplier theorem on Hp
+(ω) which is the one-sided version of [14,

theorem 6, p. 162]. This theorem will be proved in § 5.

Theorem 3.1. Let ω ∈ A+
s ∩ D+

θ ∩ RH+
r , 1 � θ � s, r > 1. Let 1 � q � 2,

0 < p < ∞ and m ∈ M(q, �), where

� � (θ − 1)(s − p)
p(s − 1)

+ max
(

1
q
,

1
p′ +

1
rp

)
if 1 < p < s,

� >
θ

p
− 1

q′ if 0 < p � 1,

� � θ

p
− 1

r′p
if 0 < p � 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

Also assume that the associated kernel Km, K̂m = m, has support in (−∞, 0]. Then
m is a multiplier on Hp

+(ω); that is to say that the operator Tm defined by

T̂mf(ξ) = m(ξ)f̂(ξ)

for f ∈ L2∩ Hp
+(ω) can be extended to a bounded operator in Hp

+(ω).

It may be seen that if s � p and ω ∈ A+
s , then Hp

+(ω) coincides with Lp
ω and the

norms in both spaces are equivalent. In this case we have the following result.

Theorem 3.2. Let ω ∈ A+
s ∩ RH+

r , 1 � q � 2, s � p < ∞ and let m ∈ M(q, �),
where � > 1/q and � � min(s/p, 1/p′+1/pr). Also assume that the associated kernel
Km has support in (−∞, 0]. Then the multiplier operator associated with m is a
bounded mapping from Lp

ω into itself.

This result is the one-sided version of [14, theorem 5, p. 161] and can be proved
similarly to theorem 3.1. We therefore omit the proof here.

4. Previous results and lemmas

For m ∈ M(q, �) with 1 � q � 2 let Km ∈ S ′ be the associated kernel, that
is K̂m = m. We shall assume that supp(Km) ⊂ (−∞, 0]. The following lemma
summarizes lemmas 2 and 3 in [14, pp. 157, 158]. Since no weights are involved,
the proof is the same as in [14]. Because of the support of Km, the only difference
is that the atom’s support dilates only to the left.

Lemma 4.1. Let m ∈ M(q, �), � > 1/q and with Km as above and let 1 � p0 < ∞
and �̃ = �−max(1/q, 1/p′

0). If a is a (p0, N0)-atom supported in I, then there exists
a constant c such that

Km ∗ a = c

∞∑
i=0

1
c̃i

bi,
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where bi are (p0, N0)-atoms supported in 2i+4I − 2i+1I for every i � 1, and b0 is a
(p0, N0)-atom supported in 23I. We also have that, for i � 1,

c̃i =

⎧⎪⎨
⎪⎩

2i(N0+2) if �̃ > N0 + 1,

2i(�̃+1)/i if �̃ � N0 + 1 and �̃ is integer,
2i(�̃+1) if �̃ � N0 + 1 and �̃ is non-integer.

The following atomic decomposition for Hp
+(ω) was given in [9].

Theorem 4.2. Let ω ∈ A+
s and 0 < p < ∞. Then there is a integer N(p, ω) with the

following property: given any f ∈ Hp
+(ω) and N � N(p, ω), we can find a sequence

{λk} of positive coefficients and a sequence {ak,j(x)} of (∞, N)-atoms with support
contained in intervals {Ik,j} respectively such that

∑
k,j λkak,j converges uncondi-

tionally to f both in the sense of distributions and in the Hp
+(ω)-norm. Moreover,

Ik,j+2 follows Ik,j, |Ik,j+2| � |Ik,j | � 4|Ik,j+2| for every j, k, and∥∥∥∑
k,j

λkχIk,j

∥∥∥
Lp

ω

� ‖f‖Hp
+(ω).

Remark 4.3. In the same way that the above decomposition is obtained in [9], it
can be proved that ∥∥∥∑

k,j

λτ
kχIk,j

∥∥∥1/τ

L
p/τ
ω

� cτ‖f‖Hp
+(ω) (4.1)

holds for every 0 < τ < ∞. In fact, an atomic decomposition for f ∈ Hp
+(ω) satisfy-

ing this inequality can be obtained as in [3] by following the ideas in [14, ch. VIII].
Then, by breaking up each atom of the decomposition as in [9], we obtain (4.1).

The following lemmas will be needed throughout the paper.

Lemma 4.4. Let r > 1 and ω be a weight such that ωr ∈ A+
s for some s > 1. Then

ω ∈ RH+
r .

Proof. Let I = (x0 − t0, x0) and I+ = (x0, x0 + ρt0) for some ρ > 0. From the A+
s

condition we have

1
|I|

∫
I

ωr =
1
|I|

∫
I

ωr

(
1

|I+|

∫
I+

ω−r/(s−1)
)s−1( 1

|I+|

∫
I+

ω−r/(s−1)
)−(s−1)

� c

(
1

|I+|

∫
I+

ω−r/(s−1)
)−(s−1)( 1

|I+|

∫
I+

ω

)−r( 1
|I+|

∫
I+

ω

)r

.

Then, by Hölder’s inequality,

1
|I|

∫
I

ωr � c

(
1

|I+|

∫
I+

ω

)r

.

Lemma 4.5. For ω ∈ A+
s ∩ D+

θ and 0 < ε < 1 let ωε(y) = ω(y)ε, then ωε ∈
D+

1+ε(θ−1).
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Proof. First note that, applying lemma 4.4 to ωε with r = 1/ε, it follows that for
any ρ > 0 there exists a constant c such that for every interval J = (x − t, x) we
have (

ω(J)
|J |

)ε

� c
ωε(J+)
|J+| , (4.2)

where J+ = (x, x + ρt).
Let a � 1 and I = (x0 − t0, x0). If we consider intervals J = (x0 − t0, x0 − t0/2)

and J+ = [x0 − t0/2, x0), then aI ⊂ (2aJ) ∪ J+. By Hölder’s inequality, the fact
that ω ∈ D+

θ and by (4.2), we have

ωε(aI) � ωε(2aJ) + ωε(J+)

� |2aJ |1−ε(ω(2aJ))ε + ωε(J+)

� ca1+ε(θ−1)|J |1−εω(J)ε + ωε(J+)

� ca1+ε(θ−1)ωε(J+) + ωε(J+)

� ca1+ε(θ−1)ωε(J+) � ca1+ε(θ−1)ωε(I).

Lemma 4.6. Let ω ∈ A+
s ∩ D+

θ , 1 < p < ∞ and ρ > 0. There exists a constant c
such that, for any a > 1, any sequence of positive numbers λk and any sequence of
intervals Ik = (xk − tk, xk), we have that∥∥∥∑

λkχaIk

∥∥∥
Lp

ω

� caδ
∥∥∥∑

λkχI+
k

∥∥∥
Lp

ω

holds, where I+
k = (xk, xk + ρtk) and

δ =

⎧⎨
⎩1 +

(θ − 1)(s − p)
p(s − 1)

if 1 < p < s,

1 if s � p < ∞.

Proof. We shall consider the case 1 < p < s. Let ωε(y) = ω(y)ε for

ε =
(

1 − p − 1
s − 1

)
1
p
.

Note that 0 < ε < 1/p < 1. For any G ∈ Lp′

ω with ‖G‖
Lp′

ω
= 1, let g = Gω1−ε.

Since, by lemma 4.5, ωε ∈ D+
1+ε(θ−1) and δ = 1 + ε(θ − 1), for any z ∈ I+

k we have∫
χaIk

(y)G(y)ω(y) dy =
∫

χaIk
(y)g(y)ωε(y) dy

� ωε(aIk ∪ I+
k )

ωε(xk − atk, z)

∫ z

xk−atk

g(y)ωε(y) dy

� caδωε(I+
k )M−

ωε
g(z),

where

M−
ωε

g(z) = sup
h>0

1
ωε(z − h, z)

∫ z

z−h

g(y)ωε(y) dy.
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Then ∫ ( ∑
λkχaIk

(y)
)

G(y)ω(y) dy

� caδ

∫ ( ∑
λkχI+

k
(y)

)
M−

ωε
g(y)ωε(y) dy

� caδ
∥∥∥∑

λkχI+
k

∥∥∥
Lp

ω

( ∫
M−

ωε
g(y)p′

ω(y)(ε−1/p)p′
dy

)1/p′

� caδ
∥∥∥∑

λkχI+
k

∥∥∥
Lp

ω

,

which implies the lemma for 1 < p < s. The last inequality above follows from the
fact that ∫

M−
ωεg(y)p′

ω(y)(ε−1/p)p′
dy � c

∫
g(y)p′

ω(y)(ε−1/p)p′
dy = c,

which is equivalent to ω(ε−1/p)p′
satisfying the A−

p′(ωε) condition

( ∫
I

ω(y)(ε−1/p)p′
dy

)( ∫
I−

(ω(y)(ε−1/p)p′−ε)−1/(p′−1)ω(y)ε dy

)p′−1

� cωε(I ∪ I−)p′
, (4.3)

where I follows I− and |I−| = |I| [7, 8]. In order to verify (4.3), we first note that(
ε − 1

p

)
p′ = − 1

s − 1
and ε − 1

p′ − 1

((
ε − 1

p

)
p′ − ε

)
= 1,

so the left-hand side of (4.3) is equal to

( ∫
I

ω(y)−1/(s−1) dy

)( ∫
I−

ω(y) dy

)p′−1

=
[( ∫

I−
ω(y) dy

)( ∫
I

ω(y)−1/(s−1) dy

)s−1]1/(s−1)( ∫
I−

ω(y) dy

)(p′−1)−1/(s−1)

,

which, as ω ∈ A+
s , can be estimated by a constant times

|I ∪ I−|s/(s−1)
( ∫

I−
ω(y) dy

)(p′−1)−1/(s−1)

.

Using (4.2), the latter expression is dominated by a constant times

|I ∪ I−|s/(s−1)
(

1
|I|

∫
I

ω(y)ε dy

)((p′−1)−(1/(s−1)))/ε

|I|(p′−1)−1/(s−1)

= c

( ∫
I

ω(y)ε dy

)p′

,

which gives (4.3).
The case when s � p < ∞ can be obtained in a similar way by taking ε = 0.
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Lemma 4.7. Let b be a (p0, N0)-atom supported in I = (x0 − t0, x0). Then, for
x � x0 − 2t0,

M+
1 b(x) � c

(
|I|

x0 − x

)N0+2

� c(M+χI(x))N0+2.

Proof. We shall estimate

M+
1 b(x) = sup

0�y−x<t
|b ∗ φt(y)|

for x � x0 − 2t0, where φ ∈ S, supp(φ) ⊂ (−∞, 0] and
∫

φ(t) dt �= 0. If PN0(u) is
the Taylor’s polynomial of order N0 of φ((y − u)/t) at u = x0, by the null-moment
conditions we have

|b ∗ φt(y)| =
1
t

∣∣∣∣
∫

I

b(u)
(

φ

(
y − u

t

)
− PN0(u)

)
du

∣∣∣∣
� c

1
tN0+2

∫
I

|b(u)|
∣∣∣∣DN0+1φ

(
y − ξ

t

)∣∣∣∣|u − x0|N0+1 du (4.4)

with u < ξ < x0. Since φ ∈ S, we have∣∣∣∣DN0+1φ

(
y − ξ

t

)∣∣∣∣ � c
tN0+2

((t2 + |y − ξ|2)1/2)N0+2 � c
tN0+2

(ξ − x)N0+2 .

The latter inequality holds due to the fact that (t2 + |y − ξ|2)1/2 is the distance
from (ξ, 0) to any point of the semi-cone 0 � y − x < t and thus

0 <
ξ − x√

2
� (t2 + |y − ξ|2)1/2.

Then, for x � x0 − 2t0, 0 < y − x < t and ξ ∈ I, we have∣∣∣∣DN0+1φ

(
y − ξ

t

)∣∣∣∣ � c
tN0+2

(x0 − x)N0+2 ,

and, substituting this into (4.4), since
∫

I
|b(u)| du � |I|, we obtain

M+
1 b(x) � c

|I|N0+1

(x0 − x)N0+2

∫
I

|b(u)| du � c

(
|I|

x0 − x

)N0+2

� c(M+χI(x))N0+2.

Lemma 4.8. Let ω ∈ A+
s ∩ RH+

r , where s � 1 and r > 1. For 0 < p < ∞, let
p0 > 1 such that p0 > pr′ and N0 is an integer satisfying p(N0 + 2) > s. Then,
given ρ > 0, there exists a constant c > 0 such that

‖b‖p
Hp

+(ω) � cω(I+)

holds for every (p0, N0)-atom b supported in I = (x0 − t0, x0), and I+ = (x0, x0 +
ρt0).
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Proof. We shall estimate ‖M+
1 b‖p

Lp
ω
, where

M+
1 b(x) = sup

0�y−x<t
|b ∗ φt(y)|,

with φ ∈ S, supp(φ) ⊂ (−∞, 0] and
∫

φ(t) dt �= 0. Due to the support of φ we
get that M+

1 b(x) = 0 for x � x0. By lemma 4.7 and since ω ∈ A+
s ⊂ A+

p(N0+2), it
follows that∫ x0−2t0

−∞
M+

1 b(x)pω(x) dx � c

∫
(M+χI(x))p(N0+2)ω(x) dx � cω(I) � cω(I+).

Since b is a (p0, N0)-atom, ω ∈ RH+
r and p0 > pr′, we can estimate∫

2I

M+
1 b(x)pω(x) dx � c

∫
2I

Mb(x)pω(x) dx

� c

( ∫
2I

Mb(x)pr′
dx

)1/r′( ∫
2I

ω(x)r dx

)1/r

� c

(( ∫
Mb(x)p0 dx

)pr′/p0

|2I|1/(p0/pr′)′
)1/r′

ω(I+)
|I+| |2I|1/r

� c

(( ∫
|b(x)|p0 dx

)pr′/p0

|I|1/(p0/pr′)′
)1/r′

ω(I+)
|I+| |I|1/r

� c(|I|pr′/p0 |I|1/(p0/pr′)′
)1/r′ ω(I+)

|I+| |I|1/r

� cω(I+).

The lemma follows from the estimations above. This lemma also holds for p0 = ∞;
moreover, in this case one can obtain ‖b‖p

Hp
+(ω) � cω(I).

Lemma 4.9. Let ω ∈ A+
s ∩ RH+

r , where s � 1 and r > 1. For 1 < p < ∞, let
p0 > 1 be such that p0 > pr′. Given ρ > 0, there exists a constant c > 0 such that,
for any sequence of positive numbers λk and p0-atoms ak supported in intervals
Ik = (xk − tk, xk), we have∥∥∥∑

λkak

∥∥∥
Lp

ω

� c
∥∥∥∑

λkχI+
k

∥∥∥
Lp

ω

,

where I+
k = (xk, xk + ρtk).

Proof. Since p0 > pr′, we can choose q0 such that p0/r′ > q0 > p. Note that since
p0/q0 > r′ we get

p0

p0 − q0
=

(
p0

q0

)′
< r

and, therefore, ω ∈ RH+
p0/(p0−q0)

.

First, we will prove that, for any g ∈ Lp′

ω with ‖g‖
Lp′

ω
= 1,∣∣∣∣

∫
Ik

ak(x)g(x)ω(x) dx

∣∣∣∣ � c

∫
I+

k

Mω(|g|q′
0)(x)1/q′

0ω(x) dx (4.5)
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holds, where

Mωf(x) = sup
x∈I

1
ω(I)

∫
I

f(y)ω(y) dy.

By Hölder’s inequality and the definition of atom, the left-hand side of the above
inequality is less than

|Ik|1/p0

( ∫
Ik

|g(x)|p
′
0 ω(x)p′

0 dx

)1/p′
0

.

This expression can be estimated using Hölder’s inequality with exponents q′
0/p′

0
and (q′

0/p′
0)

′ = q′
0/(q′

0 − p′
0) by

|Ik|1/p0

( ∫
Ik

|g(x)|q′
0ω(x) dx

)1/q′
0
( ∫

Ik

ω(x)(p
′
0/q0)(q′

0/(q′
0−p′

0)) dx

)((q′
0−p′

0)/q′
0)/p′

0

.

Since
p′
0q

′
0

q0(q′
0 − p′

0)
=

p0

p0 − q0
,

the expression above can be written as

|Ik|1/p0

( ∫
Ik

|g(x)|q′
0ω(x) dx

)1/q′
0
( ∫

Ik

ω(x)p0/(p0−q0) dx

)((p0−q0)/p0)/q0

.

The fact that ω ∈ RH+
p0/(p0−q0)

allows us to estimate the last expression by

c|Ik|1/p0

( ∫
Ik

|g(x)|q′
0ω(x) dx

)1/q′
0
(

1
|I+

k |

∫
I+

k

ω(x) dx

)1/q0

|Ik|1/q0−1/p0

� cω(I+
k )1/q0ω(Ik ∪ I+

k )1/q′
0

(
1

ω(Ik ∪ I+
k )

∫
Ik∪I+

k

|g(x)|q′
0ω(x) dx

)1/q′
0

� cω(I+
k )Mω(|g|q′

0)(x)1/q′
0 ,

for any x ∈ I+
k , which implies (4.5). Then, from (4.5) and since the maximal theorem

for Mω works on the real line even if ω is not doubling, by applying Hölder’s
inequality we have∣∣∣∣

∫ ∑
λkak(x)g(x)ω(x) dx

∣∣∣∣ � c

∫ ∑
λkχI+

k
(x)Mω(|g|q′

0)(x)1/q′
0ω(x) dx

� c
∥∥∥∑

λkχI+
k

∥∥∥
Lp

ω

( ∫
Mω(|g|q′

0)(x)p′/q′
0ω(x) dx

)1/p′

� c
∥∥∥∑

λkχI+
k

∥∥∥
Lp

ω

,

and the lemma follows readily.

Lemma 4.10. Let ω ∈ A+
s ∩ D+

θ ∩ RH+
r , where s � 1, θ � 1 and r > 1. For 1 <

p < ∞, let p0 > 1 such that p0 > pr′ and let N0 be an integer such that N0 +2 > δ,
where δ is as in lemma 4.6. Given ρ > 0, there exists a constant c > 0 such that,
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for any finite sequence of (p0, N0)-atoms bk supported in intervals Ik = (xk −tk, xk)
and positive numbers λk, we have

∥∥∥ J∑
k=1

λkbk

∥∥∥
Hp

+(ω)
� c

∥∥∥ J∑
k=1

λkχI+
k

∥∥∥
Lp

ω

,

where I+
k = (xk, xk + ρtk). The constant c does not depend on the non-negative

integer J .

Proof. First, we shall estimate

M+
1 bk(x) = sup

0�y−x<t
|bk ∗ φt(y)|

with φ ∈ S, supp(φ) ⊂ (−∞, 0], and
∫

φ(t) dt �= 0. Since M+
1 bk(x) � cMbk(x), we

have

‖χ2Ik
M+

1 bk‖Lp0 � c‖Mbk‖Lp0 � c‖bk‖Lp0 � c|Ik|1/p0 � c|2Ik|1/p0 .

Thus, ak,0 = c−1χ2Ik
M+

1 bk is a p0-atom supported in 2Ik. If x � xk − 2tk, by
lemma 4.7, we have

M+
1 bk(x) � c

(
|Ik|

xk − x

)N0+2

,

and taking into account the fact that M+
1 bk(x) = 0 for x � xk, we get

M+
1 bk(x) � cak,0(x) + c

∞∑
j=1

(
|Ik|

xk − x

)N0+2

(χ2j+1Ik
(x) − χ2jIk

(x))

� cak,0(x) + c

∞∑
j=1

2−j(N0+2)χ2j+1Ik
(x), (4.6)

for every x ∈ R. Since M+
1 is subadditive, by applying the above estimate we obtain

∥∥∥ J∑
k=1

λkbk

∥∥∥
Hp

+(ω)
�

∥∥∥ J∑
k=1

λkM+
1 bk

∥∥∥
Lp

ω

� c
∥∥∥ J∑

k=1

λkak,0

∥∥∥
Lp

ω

+ c

∞∑
j=1

2−j(N0+2)
∥∥∥ J∑

k=1

λkχ2j+1Ik

∥∥∥
Lp

ω

. (4.7)

Since, by lemmas 4.9 and 4.6,

∥∥∥ J∑
k=1

λkak,0

∥∥∥
Lp

ω

� c
∥∥∥ J∑

k=1

λkχI+
k

∥∥∥
Lp

ω

and
∥∥∥ J∑

k=1

λkχ2j+1Ik

∥∥∥
Lp

ω

� c2jδ
∥∥∥ J∑

k=1

λkχI+
k

∥∥∥
Lp

ω

,

and N0 + 2 > δ by (4.7), we have

∥∥∥ J∑
k=1

λkbk

∥∥∥
Hp

+(ω)
� c

∥∥∥ J∑
k=1

λkχI+
k

∥∥∥
Lp

ω

with a finite constant c.
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5. Proof of the main result

In this section we prove theorem 3.1. Throughout this proof, given a bounded
interval I, we denote by I+ the interval that follows I, with |I+| = 2−6|I|.

Since ω ∈ A+
s−ε ∩ RH+

r+ε for some ε > 0, we can assume that the inequalities
in (3.1) are strict. Let

δ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 +
(θ − 1)(s − p)

p(s − 1)
if 1 < p < s,

θ

p
if 0 < p � 1.

Then (3.1) can be written as � > δ − (1/q′) and � > δ − (1/r′p) in both cases. We
can choose p0 > 1 such that

� > δ − 1
p0

and p0 > r′p. (5.1)

This is possible since if δ−� � 0, then any p0 > max{1, r′p} works, and if δ−� > 0,
taking into account

1
δ − �

> 1 and
1

δ − �
> pr′,

then any p0 > 1 such that 1/(δ − �) > p0 > pr′ satisfies (5.1).
By theorem 4.2, for some integer N0 > max{δ−2, (s/p)−2}, given any f ∈ Hp

+(ω)
there is an atomic decomposition f =

∑
λkak,j , where λk > 0 and ak,j are (∞, N0)-

atoms supported in Ik,j , such that it satisfies (4.1) and Ik,j+2 follows Ik,j , with
|Ik,j+2| � |Ik,j | � 4|Ik,j+2|. Also, by lemma 4.1,

Km ∗
J∑

k,j=1

λkak,j = c

J∑
k,j=1

λk

∞∑
i=0

1
c̃i

bk,j,i.

Then, for 0 < p � 1, we have

∥∥∥Km ∗
J∑

k,j=1

λkak,j

∥∥∥p

Hp
+(ω)

� c

J∑
k,j=1

λp
k‖bk,j,0‖p

Hp
+(ω) +

∞∑
i=1

c

c̃p
i

J∑
k,j=1

λp
k‖bk,j,i‖p

Hp
+(ω)

= S0 + S1.

Since p0 > r′p, p(N0 + 2) > s and since the bk,j,0 are (p0, N0)-atoms with support
in 24Ik,j and (24Ik,j)+ ⊂ Ik,j+2, we can apply lemma 4.8, obtaining ‖bk,j,0‖p

Hp
+(ω) �

cω(Ik,j+2). Using this estimate and (4.1) we have

S0 � c

J∑
k,j=1

λp
kω(Ik,j+2) = c

∥∥∥ J∑
k,j=1

λp
kχIk,j+2

∥∥∥
L1

ω

� c
∥∥∥∑

k,j

λp
kχIk,j

∥∥∥
L1

ω

� c‖f‖p
Hp

+(ω).

To estimate S1, note that for i � 1 the supports of the (p0, N0)-atoms bk,j,i are
contained in 2i+4Ik,j − 2i+1Ik,j and, since (2i+4Ik,j − 2i+1Ik,j)+ ⊂ 2i+1Ik,j by
lemma 4.8, we have

‖bk,j,i‖p
Hp

+(ω) � cω(2i+1Ik,j) � c2iθω(Ik,j).
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Using this and (4.1) we have

S1 =
∞∑

i=1

1
c̃p
i

J∑
k,j=1

λp
k‖bk,j,i‖p

Hp
+(ω)

� c

∞∑
i=1

2iθ

c̃p
i

J∑
k,j=1

λp
kω(Ik,j)

= c

∞∑
i=1

(
2iδ

c̃i

)p∥∥∥ J∑
k,j=1

λp
kχIk,j

∥∥∥
L1

ω

� c

∞∑
i=1

(
2iδ

c̃i

)p

‖f‖p
Hp

+(ω). (5.2)

For the case p > 1, we have

∥∥∥Km ∗
J∑

k,j=1

λkak,j

∥∥∥
Hp

+(ω)
� c

∥∥∥ J∑
k,j=1

λkbk,j,0

∥∥∥
Hp

+(ω)
+

∞∑
i=1

c

c̃i

∥∥∥ J∑
k,j=1

λkbk,j,i

∥∥∥
Hp

+(ω)

= S0 + S1.

Recalling that p0 > r′p, N0 +2 > δ and that the bk,j,0 are (p0, N0)-atoms supported
in 24Ik,j and since (24Ik,j)+ ⊂ Ik,j+2, we can apply lemma 4.10 to estimate S0:

S0 � c
∥∥∥ J∑

k,j=1

λkχIk,j+2

∥∥∥
Lp

ω

� c
∥∥∥ ∞∑

k,j=1

λkχIk,j

∥∥∥
Lp

ω

� c‖f‖Hp
+(ω).

For i � 1 the bk,j,i are (p0, N0)-atoms with support in 2i+4Ik,j −2i+1Ik,j , and since
(2i+4Ik,j − 2i+1Ik,j)+ ⊂ 2i+1Ik,j , applying lemma 4.10 and lemma 4.6 to estimate
S1, we obtain

S1 � c

∞∑
i=1

1
c̃i

∥∥∥ J∑
k,j=1

λkχ2i+1Ik,j

∥∥∥
Lp

ω

� c

( ∞∑
i=1

2iδ

c̃i

)∥∥∥ J∑
k,j=1

λkχI+
k,j

∥∥∥
Lp

ω

� c

( ∞∑
i=1

2iδ

c̃i

)∥∥∥ J∑
k,j=1

λkχIk,j+2

∥∥∥
Lp

ω

� c

( ∞∑
i=1

2iδ

c̃i

)
‖f‖Hp

+(ω). (5.3)

To complete the proof we shall see that the series in (5.2) and in (5.3) are con-
vergent. Let �̃ = � − max(1/q, 1/p′

0) be as in lemma 4.1. Since � > δ − 1/q′, and
� > δ − 1/p0, in the case when 1/q > 1/p′

0 we have

�̃ + 1 = � − 1
q

+ 1 > δ − 1
q′ − 1

q
+ 1 = δ,

while if 1/q < 1/p′
0,

�̃ + 1 = � − 1
p′
0

+ 1 > δ − 1
p0

− 1
p′
0

+ 1 = δ.

Then �̃ + 1 > δ and N0 + 2 > δ. Thus, by lemma 4.1 we have c̃i � c2i(δ+ε) for some
ε > 0, and therefore the series are convergent.
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6. An example

For fixed t ∈ R and u � 0, let m(ξ) = (ξ +ui)it. The complex power is defined with
the argument determination − 1

2π < arg z < 3
2π. So m(ξ) is the boundary value of

a bounded analytic function on the upper half-plane.
First we prove that supp(Km) ⊂ (−∞, 0] by showing that 〈Km, ψ̂〉 = 0 for every

ψ ∈ S with supp(ψ̂) ⊂ (0, ∞). By the Fourier inversion formula we have

ψ(ξ) = c

∫ ∞

0
ψ̂(s)eiξs ds.

For z ∈ C, Im(z) � 0, we consider

ψ(z) = c

∫ ∞

0
ψ̂(s)eizs ds,

and, since supp(ψ̂) ⊂ (0, ∞), by integrating by parts twice we get

z2ψ(z) = −c

∫ ∞

0
D2ψ̂(s)eizs ds.

Thus, we have that

|z2ψ(z)| � c

∫ ∞

0
|D2ψ̂(s)||eizs| ds � C < ∞.

The above estimation and the fact that m(z) is bounded imply that

lim
R→∞

∫ π

0
m(Reiθ)ψ(Reiθ)Rieiθ dθ = 0,

and, by Cauchy’s theorem, it follows that

〈Km, ψ̂〉 = 〈m, ψ〉 = lim
R→∞

∫ R

−R

m(ξ)ψ(ξ) dξ = 0.

Finally, for any non-negative integer α,

|Dαm(ξ)| � (|t| + α)α exp(π|t|)|ξ|−α,

which implies (2.1) for every α and 1 � q � 2.
Therefore, by theorem 3.1, m(ξ) is a multiplier on Hp

+(ω) for every 0 < p < ∞
and ω ∈ A+

s . Moreover, if we denote by Tm the multiplier operator defined by m(ξ),
then

‖Tmf‖Hp
+(ω) � c(|t| + α)α exp(π|t|)‖f‖Hp

+(ω).
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