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Abstract

We study negative association for mixed sampled point processes and show that negative
association holds for such processes if a random number of their points fulfils the ultra
log-concave (ULC) property. We connect the negative association property of point
processes with directionally convex dependence ordering, and show some consequences
of this property for mixed sampled and determinantal point processes. Some applications
illustrate the general theory.
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1. Introduction

The questions studied in this paper are motivated by several negative dependence properties
which are present in combinatorial probability, stochastic processes, statistical mechanics,
reliability, and statistics. We focus our study on the theory of point processes because it is
a natural tool in many of these fields. For each of these fields, it seems desirable to get a
better understanding of what it means for a collection of random variables to be repelling or
mutually negatively dependent. It is known that it is not possible to copy the theory of positively
dependent random variables.

Negative association was introduced by Joag-Dev and Proschan [11]. Negative association
has a distinct advantage over the other types of negative dependence, namely, nondecreasing
functions of disjoint sets of negatively associated random variables are also negatively
associated. This closure property does not hold for other types of negative dependence.

Pemantle [25] in his negative dependence study confined himself to binary-valued random
variables. The list of examples that motivated him to develop techniques for proving that
measures have negative dependence properties, such as negative association, include uniform
random spanning trees, simple exclusion processes, random cluster models, and the occupation
status of competing urns.

In Borcea et al. [6] several conjectures related to negative dependence made by Liggett
[20], Pemantle [25], and Wagner [30] were solved; also Lyons’ main results [21] on negative
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140 G. LAST AND R. SZEKLI

association for determinantal probability measures induced by positive contractions were
extended. The authors used several new classes of negatively dependent measures for zero–
one valued vectors related to the theory of polynomials and to determinantal measures (for
example, strongly Rayleigh measures related to the notion of proper position for multivariate
stable polynomials).

For point processes, a negative association result is known in a fairly general setting for
determinantal point processes on locally compact complete separable metric spaces generated
by locally trace-class positive contractions on natural L2-space (see, e.g. [22, Theorem 3.7]).
A broad list of interesting examples of determinantal point processes can be found in [28].
Negative dependence for finite point processes via determinantal and/or strongly Rayleigh
measures has interesting applications in various applied fields, such as machine learning,
computer vision, computational biology, natural language processing, combinatorial bandit
learning, neural network compression, and matrix approximations (see, e.g. [2], [13], [17],
[18], and the references therein).

Another approach to the study of dependence has been used in finance models. Positive and
negative dependences for a random vector may be seen as some stochastic ordering relations of
this vector with some vector with independent coordinates. Such stochastic orderings are called
dependence orderings (see [12] or [23]). Related results in the theory of point processes and
stochastic geometry, where directionally convex ordering is used to express more clustering in
point patterns, have been obtained in [4] and [5].

Apart from the negative association property of determinantal point processes, not much
is known about the negative association property of other point processes. We show the
negative association property for mixed sampled point processes under an ultra log-concave
(ULC) assumption on the distribution of the number of points in these point processes. In
order to obtain the negative association property in this general class of point processes,
we use some results from the theory of strongly Rayleigh measures on the unit cube (see
Theorems 3.2 and 3.3). Consequences of the negative association property of point processes
in the theory of dependence orderings of point processes are described in a separate section
(see Proposition 4.1). We stress that in order to obtain comparisons in terms of dependence
orderings, it is enough to use a weaker property than negative association, which we denote by
wNA.

2. Negative association and related definitions

We recall the definition and basic properties of negative association.

Definition 2.1. A random vector X = (X1, . . . , Xn) is negatively associated (NA) if, for every
subset A ⊆ {1, . . . , n},

cov ((Xi, i ∈ A), g(Xj, j ∈ Ac)) ≤ 0,

whenever f and g are real nondecreasing Borel functions for which the covariance exists.

We also use negative association to refer to the set of random variables {X1, . . . , Xn}, or to
the underlying distribution of X.

Negative association possesses the following properties (see [11]).

(i) A pair (X, Y) of random variables is NA if and only if

P(X ≤ x, Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y),

i.e. (X, Y) is negatively quadrant dependent (NQD).
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Negative association of point processes 141

(ii) For disjoint subsets A1, . . . , Am of {1, . . . , n}, and nondecreasing positive Borel
functions f1, . . . , fm, X is NA implies that

E

m∏
i=1

fi(XAi ) ≤
m∏

i=1

E fi(XAi ),

where XAi = (Xj, j ∈ Ai).

(iii) Any (at least two-element) subset of NA random variables is NA.

(iv) If X has independent components then it is NA.

(v) Increasing (nondecreasing) real functions defined on disjoint subsets of a set of NA
random variables are NA.

(vi) If X is NA and Y is NA, and X is independent of Y, then (X, Y) is NA.

We shall utilize a slightly broader class than NA in our formulations on dependence
orderings. We define this new class of distributions as an analogue of the weak association
in sequence (WAS) class introduced in [27]. We say that a random vector X (or its distribution)
is weakly negatively associated (wNA) if

cov (1{Xi>t}, f (Xi+1, . . . , Xn)) ≤ 0 (2.1)

for all real nondecreasing functions f and t ∈R, i = 1, . . . , n − 1.
This condition is equivalent to [(Xi+1, . . . , Xn) | Xi > t)]<st (Xi+1, . . . , Xn) for all t ∈R

and i = 1, . . . , n − 1, where ‘<st’ denotes the usual strong stochastic ordering on Rn. For the
definitions of stochastic orderings; see [29, Chapter 2]. A number of positively or negatively
dependent systems of random variables is considered in [7] and [23].

3. Negative association for mixed sampled point processes

We first introduce some basic point process notation; see, e.g. [15]. Let (�,F , P) be a
probability space, and let X be a complete separable metric space equipped with the Borel
σ -field X . Denote by N the space of all measures μ on (X,X ) such that μ(B) ∈N0 :=N∪ {0}
for all bounded B ∈X . An example is the Dirac measure δx for a point x ∈X, given by δx(B) :=
1B(x). A more general example is a finite sum of Dirac measures. A point process η is a
measurable mapping from (�,F , P) to (N,N ), where N is the smallest σ -field on N such
that μ �→μ(B) is measurable for all B ∈X .

We define the negative association property of point processes as follows.

Definition 3.1. A point process η is NA if, for each collection of disjoint bounded sets
B1, . . . , Bn ∈X , the vector (η(B1), . . . , η(Bn)) is NA as defined for random vectors.

For a Borel set A ⊆X, let NA denote the σ -field on N generated by the functions μ �→μ(B)
for Borel B ⊆ A. The natural (inclusion) partial order on N allows us to define f : N →R,
which is increasing. We say that a point process η has negative associations if E( f (η)g(η)) ≤
E( f (η))E(g(η)) for every pair f , g of real bounded increasing functions that are measurable
with respect to complementary subsets A, Ac of X, meaning that a function is measurable with
respect to A if it is measurable with respect to NA. Clearly, if η has negative associations then
η is NA. In the case of a locally compact space X the converse was shown in [22, Lemma 3.6,
Theorem 3.9]; see also [26, Theorem A.1] for the case X=Rd. A different proof which works
for general random measures on general Polish spaces is given in [16].
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142 G. LAST AND R. SZEKLI

Let us recall Theorem 3.7 of [22]. Let λ be a Radon measure on a locally compact complete
separable metric space X. Let K be a locally trace-class positive contraction on L2(X, λ). By
ηK we denote the determinantal point process generated by K; for details, see [22, Section 3.2].

Theorem 3.1. The determinantal point process ηK defined above has negative associations.

Apart from determinantal point processes not much is known about the negative association
property of point processes. Therefore we concentrate our efforts on characterizing the negative
association property for an elementary but very useful class of finite point processes with an
independent and identically distributed (i.i.d.) location of points. More precisely, our main
focus in this paper is on the class of so-called mixed sampled point processes on (X,X ),
defined by

η=
τ∑

i=1

δXi , (3.1)

where (X)i≥1 is i.i.d. with distribution F, and τ is an N0-valued random variable, independent
of (Xi)i≥1. For such a process, given any finite partition A1, . . . , Ak ∈X of X, conditionally on
τ , the joint distribution of the number of points is given by

P(η(A1) = n1, . . . , η(Ak) = nk | τ = N) =
( N

n1 · · · nk

)
F(A1)n1 · · · F(Ak)nk ,

and, unconditionally,

P (η(A1) = n1, . . . , η(Ak) = nk)=
∞∑

N=0

P(τ = N)
( N

n1 · · · nk

)
F(A1)n1 · · · F(Ak)nk .

The joint probability generating function is therefore given for z1, . . . , zn ∈ [0, 1] by

E (zη(A1)
1 · · · zη(Ak)

k ) = Pτ (F(A1)z1 + · · · + F(Ak)zk),

where Pτ (z) =E (zτ ), z ∈ [0, 1].
First, we consider mixed point processes defined by (3.1) for which random variables τ are

of the form

τ =
n∑

i=1

Ui,

where n ∈N and U1, . . . ,Un are independent Bernoulli variables with possibly different
success probabilities. The class of random variables which are the sums of n independent
Bernoulli variables we denote by Qn. Moreover, we let

Q := cl
( ∞⋃

n=1

Qn

)
(3.2)

denote the class of all random variables with values in {0, 1, . . .} appearing as limits in
distribution of variables from Qn, n ≥ 1, i.e. the weak closure of

⋃∞
n=1 Qn. The main results

of this paper are contained in Theorems 3.2 and 3.3.

Theorem 3.2. Suppose that η is a mixed sampled point process on (X,X ), defined by (3.1),
for which τ ∈Q. Then η is NA.
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Proof. Let B1, . . . , Bn ∈X be a partition of X, and qi := F(Bi), i = 1, . . . ,m. Define

Zi := (1{Xi∈B1}, . . . , 1{Xi∈Bm}) (3.3)

to be the vector generated by the ith sample Xi ∈X, i ≥ 1. Note that each Zi has multinomial
distribution with success parameters q1, . . . , qm, and the number of trials equals 1, and as such
is NA. Moreover, the Zi, i ≥ 1, are independent. Let U = (U1, . . . ,Un) be a vector of zero–one
valued, independent random variables which is independent of Zi, i ≥ 1. The vector composed
as (U, Z1, . . . , Zn) is NA because of properties (iv) and (vi) of negative association.

Now, using property (v), we find that the vector (U1Z1, . . . ,UnZn) is NA as a monotone
transformation (multiplication) of disjoint coordinates of (U, Z1, . . . , Zn). Again, using
property (v), this time for (U1Z1, . . . ,UnZn), and using appropriate addition, we deduce that
the vector

∑n
i=1 UiZi is NA. It is clear that

∑n
i=1 UiZi has the same distribution as

∑τ
i=1 Zi,

where τ := ∑n
i=1 Ui. Defining η by (3.1) we hence see that (η(B1), . . . , η(Bm)) is NA. This

completes the proof for τ ∈Qn for arbitrary n ∈N.

For τ ∈Q, there exists a sequence τk
D−→ τ, k → ∞, for τk ∈ ⋃∞

n=1 Qn, and

E

(
f

( τk∑
i=1

Zi

)
g

( τk∑
i=1

Zi

))
≤E

(
f

( τk∑
i=1

Zi

))
E

(
g

( τk∑
i=1

Zi

))

for f , g supported by disjoint coordinates, which are nondecreasing and bounded. Letting
k → ∞ gives

E

(
f

( τ∑
i=1

Zi

)
g

( τ∑
i=1

Zi

))
≤E

(
f

( τ∑
i=1

Zi

))
E

(
g

( τ∑
i=1

Zi

))
.

Since each nondecreasing function can be monotonically approximated by nondecreasing and
bounded functions, we obtain the negative association property of η. �

The class Q can be completely characterized; see, e.g. [1].

Lemma 3.1. We have
τ ∈Q if and only if τ

D= τ1 + τ2,

where τ1 and τ2 are independent, τ1 has a Poisson distribution, and τ2
D= ∑∞

i=1 Ui

for independent zero–one valued variables Ui with P(Ui = 1) ≥ 0, i ≥ 1, and such that∑∞
i=1 P(Ui = 1)<∞.

It is interesting to note that hypergeometric random variables belong to the class Q; see,
e.g. [10].

We say that a real sequence (ai)n
i=0 has no internal zeros if the indices of its non-ero terms

form a discrete interval. Following [25] we shall use the following class of sequences and
distributions.

Definition 3.2. A finite real sequence (ai)n
i=0 of nonnegative real numbers with ai �= 0 for 1 ≤

i ≤ n − 1 (no internal zeros) is ultra log-concave (ULC(n)) if

(
ai(n
i

)
)2

≥ ai−1( n
i−1

) ai+1( n
i+1

) , i = 1, . . . , n − 1.
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144 G. LAST AND R. SZEKLI

Define
Sn := {τ : (P(τ = i))n

i=0 is ULC(n)}
to be the class of random variables whose probability functions have the above property. It is
known that if a nonnegative sequence (ai)n

i=0 is ULC(n) and a nonnegative sequence (bi)m
i=0 is

ULC(m), then the convolution of these sequences is ULC(m + n) (see [19, Theorem 2]). Let

S := cl

( ∞⋃
n=1

Sn

)
. (3.4)

Sums of independent variables from the class S are in S . We shall see below that Q⊆ S .
Utilizing the class S , Theorem 3.2 can be generalized with the use of elementary symmetric
functions.

Theorem 3.3. Suppose that η is a mixed sampled point process on (X,X ), defined by (3.1),
for which τ ∈ S . Then η is NA.

Proof. Assume first that τ ∈ Sn. Let B1, . . . , Bn ∈X be a partition of X, and let qi :=
F(Bi), i = 1, . . . ,m. Let Zi, i ≥ 1 be defined by (3.3). Note that each Zi has multinomial
distribution with success parameters q1, . . . , qm, and the number of trials equals 1, and as
such is NA. Moreover, Zi, i ≥ 1, are independent. For fixed n ∈N, we now define a vector
U = (U1, . . . ,Un) with {0, 1}-valued coordinates, independent of Zi, i ≥ 1. It is enough to
define the distribution of U. For the generating function of τ , Pτ (z) =E(zτ ), we define the
distribution of U by providing its multidimensional generating function. It is obtained by
substituting in Pτ (z) for each k = 0, . . . , n,

zk :=
(

n

k

)−1

ek(z1, . . . , zn),

where ek(z1, . . . , zn) is the kth elementary symmetric polynomial. Note that, by the definition
of the elementary symmetric polynomials, for each k, the function

(n
k

)−1
ek(z1, . . . , zn) of

variables z1, . . . , zn is the multivariate generating function of a vector of n {0, 1}-valued
variables which contains exactly k values 1 with the same probability

(n
k

)−1 defined for all
possible selections of the k coordinates at which the values 1 occur. The distribution of U
defined in such a way is the mixture with the coefficients ak := P(τ = k) of the distributions
corresponding to

(n
k

)−1
ek(z1, . . . , zn), k = 0, . . . , n. Since each function ek is symmetric

in variables z1, . . . , zn, the same is true for the generating function of U = (U1, . . . ,Un);
therefore, (U1, . . . ,Un) are exchangeable. Moreover,

∑n
i=1 Ui

D= τ , since, by setting z1 =
· · · = zn := z, we obtain Pτ (z). The sequence (P(τ = i))n

i=0 is called the rank sequence of the
vector U = (U1, . . . ,Un) (see [6, Definition 2.8]).

From our assumption, the rank sequence for U = (U1, . . . ,Un) is ULC(n) and from
Theorem 2.7 of [25], we deduce that U is NA. Now the vector composed as (U, Z1, . . . , Zn) is
NA because of property (vi). Using property (v), we find that the vector (U1Z1, . . . ,UnZn) is
NA as a monotone transformation (multiplication) of disjoint coordinates of (U, Z1, . . . , Zn).
Again, using property (v), this time for (U1Z1, . . . ,UnZn), and using addition, we deduce that
the vector

∑n
i=1 UiZi is NA. It is clear that

∑n
i=1 UiZi has the same distribution as

∑τ
i=1 Zi,

which in turn has the same distribution as (η(B1), . . . , η(Bm)). This completes the proof for
τ ∈ Sn for arbitrary n ∈N. For τ ∈ S , we apply a limiting argument analogous to that used in
the proof of Theorem 3.2. �
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The following lemma may be regarded as known since it is an immediate consequence of
the classical Newton inequalities (see, e.g. [24] for a new look at Newton’s inequalities). We
formulate it in the setting of the classes of random variables introduced in this paper.

Lemma 3.2. For the classes of random variables defined in (3.2) and (3.4), we have

Q⊂ S .

Proof. Suppose that τ ∈Qn. Then, for its generating function,

Pτ (z) = (1 − p1 + p1z) · · · (1 − pn + pnz) = p1 · · · pn

(1 − p1

p1
+ z

)
· · ·

(1 − pn

pn
+ z

)
.

For ak := (1 − pk)/pk, we have

Pτ (z) = p1 · · · pn(a1 + z) · · · (an + z) = p1 · · · pn[xn + c1xn−1 + · · · + cn],

where

cn = a1 + · · · + an, c2 = a1a2 + · · · + an−1an, . . . , cn = a1 · · · an,

i.e. the coefficients ck, k = 0, . . . , n, are given by the corresponding elementary symmetric
polynomials in the variables ai, i = 1, . . . , n. It is known from the classical Newton inequali-
ties that the sequence (ci)n

i=0 is ULC(n), and, since P(τ = k) = p1 · · · pncn−k, we conclude that
the sequence (P(τ = k))n

k=0 is also ULC(n), and, therefore, τ ∈ Sn, which immediately implies
the inclusion Q⊂ S . �

We note that the arguments utilized in Theorem 3.3 can be used for random vectors with
arbitrary positive values.

Proposition 3.1. Assume that Zi = (Z1
i , . . . , Zm

i ), i ≥ 1, is a sequence of i.i.d. random vectors
with components in R+ such that, for each i ≥ 1,

m∑
j=1

1{Zj
i>0} ≤ 1,

that is, at most one of the components can be positive. Then, for τ ∈ S , which is independent
of Zi, i ≥ 1, the vector W := ∑τ

i=1 Zi is NA.

Proof. We use basically the same argument as used in the proof of Theorem 3.3. Let U =
(U1, . . . ,Un), independent of Zi, i ≥ 1, be the vector of {0, 1}-valued random variables ob-
tained by its generating function as follows. In Pτ (z), substitute zk := (n

k

)−1
ek(z1, . . . , zn), k =

1, . . . , n, where ek(z1, . . . , zn) are the elementary symmetric polynomials. This substitution
defines a generating function of variables z1, . . . , zn. It is then immediate that

∑n
i=1 Ui

D= τ ,
that is, the sequence (P(τ = i))n

i=0 is the rank sequence for (symmetric) U = (U1, . . . ,Un).
From our assumption, the rank sequence for U = (U1, . . . ,Un) is ULC(n) and, from
Theorem 2.7 of [25], we deduce that U is NA. Now the vector composed as (U, Z1, . . . , Zn)
is NA because of the following lemma and property (vi).

Lemma 3.3. Assume that Z = (Z1, . . . , Zm) is a random vector with components in R+.
Assume that

∑m
j=1 1{Zi>0} ≤ 1, that is, at most one of the components can be positive. Then

Z is NA.
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146 G. LAST AND R. SZEKLI

Proof of Lemma 3.3. In order to show that cov ( f (Z1, . . . , Zk), g(Zk+1, . . . , Zm)) ≥ 0 for
nondecreasing f and g, it suffices to assume that f (0) = g(0) = 0. Otherwise, we can consider
f − f (0) and g − g(0). Because only one of the coordinates can be nonzero, we obtain
E( f (Z1, . . . , Zk)g(Zk+1, . . . , Zm)) = 0, while the product of the expectations is nonnegative
since f ≥ 0 and g ≥ 0. �

Now, using property (v), we deduce that the vector (U1Z1, . . . ,UnZn) is NA because
it is a monotone transformation (multiplication) of disjoint independent coordinates of
(U, Z1, . . . , Zn). Again, using property (v), this time for (U1Z1, . . . ,UnZn), and using
addition, we deduce that the vector

∑n
i=1 UiZi is NA. It is clear that

∑n
i=1 UiZi has the same

distribution as
∑τ

i=1 Zi. �

The above proposition can be used to study random measures other than point processes.
We shall pursue this topic elsewhere.

4. Dependence orderings for point processes

An extensive study of dependence orderings for multivariate point processes on R is
contained in [14]. Related results in the theory of point processes and stochastic geometry,
where the directionally convex ordering is used to express more clustering in point patterns, are
obtained by Błaszczyszyn and Yogeshwaran [5]; see also the references therein. We shall use
the negative association property of point processes to obtain comparisons of dependence in
point processes. More precisely, we recall some basic facts on dependence orderings of vectors
and their relation to negative association which can be directly utilized for point processes.

4.1. Dependence orderings and negative correlations for vectors

For a function f : Rn →R, define the difference operator �εi , ε > 0, 1 ≤ i ≤ n, by

�εi f (x) = f (x + εei) − f (x),

where ei is the ith unit vector. Then f is called supermodular if, for all 1 ≤ i< j ≤ n and
ε, δ > 0,

�δj�
ε
i f (x) ≥ 0

for all x ∈R, and directionally convex if this inequality holds for all 1 ≤ i ≤ j ≤ n. Let F sm

and Fdcx denote the classes of supermodular and directionally convex functions. Then, of
course, Fdcx ⊆F sm. Typical examples from the Fdcx class of functions are f (x) =ψ(

∑n
i=1 xi)

for ψ convex, or f (x) = max1≤i≤n xi, but there are many other useful functions in this class;
see, for example, [3].

The corresponding stochastic orderings are defined by X<sm Y if Ef (X) ≤Ef (Y) for all
f ∈F sm, and analogously for X<dcx Y. For differentiable functions f , we obtain f ∈F sm if and
only if (∂2f /∂xixj) ≥ 0 for i< j, and f ∈Fdcx if and only if this inequality holds for i ≤ j (see
[23, Theorems 3.9.3 and 3.12.2]). While comparison of X and Y with respect to ‘<sm’ implies
(and is restricted to the case of) identical marginals Xi

D= Yi, the comparison with respect to the
smaller class Fdcx implies convexly increasing marginals Xi <cx Yi (which means by definition
that Eψ(Xi) ≤Eψ(Yi) for allψ : R→R convex). Both of these orderings belong to the class of
so-called dependence orderings (see, e.g. [12]) which is defined by a list of suitable properties,
among them the property that cov (Xi, Xj) ≤ cov (Yi, Yj).
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Negative association of point processes 147

In [27] another dependence ordering X<wcs Y (weakly conditional increasing in sequence
order) was introduced by the condition

cov (1{Xi>t}, f (Xi+1, . . . , Xn)) ≤ cov (1{Yi>t}, f (Yi+1, . . . , Yn))

for all monotonically nondecreasing f , and all t ∈R, 1 ≤ i ≤ n − 1.
All dependence orderings can be used to define some classes of distributions with negative

(or positive covariances) when applied to vectors with independent components. More
precisely, let X∗ denote a vector with independent components, and such that X∗

i
D= Xi. Using

this approach, definition (2.1) of wNA is equivalent to the relation X<wcs X∗. It is clear that
wNA is further equivalent to

[(Xi+1, . . . , Xn) | Xi > t)]<st (Xi+1, . . . , Xn)

for all i = 1, . . . , n − 1, t> 0, where [(Xi+1, . . . , Xn) | Xi > t)] denotes a random vector
which has the distribution of (Xi+1, . . . , Xn) conditioned on the event {Xi > t}, and ‘<st’ is
the usual (strong) stochastic order. Directly from the definition of the negative association
property we see that the weakly negative association property is weaker than the negative
association property. For X being wNA, Theorem 4.1 implies that, for example (see also
[8] for the negative association case),

∑n
i=1 Xi <cx

∑n
i=1 X∗

i , and max1≤k≤n
∑k

i=1 Xi <icx

max1≤k≤n
∑k

i=1 X∗
i , where ‘<icx’ is defined similarly to ‘<cx’ but with the use of nonde-

creasing convex functions. Taking other supermodular functions, it is possible to get maximal
inequalities for wNA vectors as in [8].

The following theorem from [27] connects the above-defined orderings.

Theorem 4.1. Let X and Y be n-dimensional random vectors.

(1) If Xi
D= Yi, 1 ≤ i ≤ n, then X<wcs Y implies that X<sm Y.

(2) If Xi <cx Yi, 1 ≤ i ≤ n, then X<wcs Y implies that X<dcx Y.

For the ‘<dcx’ ordering, we get the following corollary from Theorem 4.1. This corollary
will be used later for point processes with the negative association property.

Corollary 4.1. Suppose that X is wNA and Y∗ has independent coordinates with Xi <cx Y∗
i .

Then X<dcx Y∗.

4.2. Negative association and dependence orderings for point processes

Using Theorem 4.1, we are able to compare the covariance structure of some point
processes. To be more precise, we need a couple of definitions.

Definition 4.1. Two point processes η1 and η2 on X are ordered in the directionally convex
order (dcx) (weakly conditional increasing sequence order (wcs))

η1 <dcx η2 (η1 <wcs η2)

if and only if (η1(B1), . . . , η1(Bn))<dcx (<wcs ) (η2(B1), . . . , η2(Bn)),

as defined for random vectors, for all bounded Borel sets B1, . . . , Bn, n ≥ 1.

Similarly to Definition 3.1 we define a weaker version of negative association for point
processes.
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Definition 4.2. A point process η is wNA if, for each collection of disjoint bounded sets
B1, . . . , Bn ∈X , the vector (η(B1), . . . , η(Bn)) is wNA, as defined for random vectors.

We now propose a direct consequence of the above definitions and Theorem 4.1. It will be
used in the next section for determinantal and mixed sampled point processes.

Proposition 4.1. Suppose that η1 is a point process on (X,X ) with a locally finite intensity
measure which is wNA. Let η2 be a Poisson process with intensity measure E(η1). Assume that
η1(B)<cx η2(B) for all bounded Borel sets B. Then η1 <dcx η2.

For illustration, we now show that the ordering ‘<dcx’ can be used to obtain comparisons
of moment measures and void probabilities for point processes on Rd. These results can be
modified with similar arguments to hold on general state spaces.

The following consequence of the ‘<dcx’ ordering for point processes is known from [3]
and [5]. Given a point process η on X and n ∈N, we let E(ηn) denote the nth moment measure
of η, that is, the measure B �→E(ηn(B)) on (Rd)n equipped with the Borel σ -field.

Lemma 4.1. Let η1 and η2 be two point processes on Rd. If η1 <dcx η2 then the following
statements holds.

1. (Moment measures) If the measure Eηn
2 is σ -finite then E(ηn

1(B)) ≤E(ηn
2(B)) for all

bounded Borel sets B ⊂ (Rd)n.

2. (Void probabilities) P(η1(B) = 0) ≤ P(η2(B) = 0) for all bounded Borel sets B.

Using the ‘<wcs’ criterion for ‘<dcx’ from Theorem 4.1, we obtain the following result.

Corollary 4.2. Let η1 and η2 be two point processes on Rd. If, for all bounded Borel sets
B, η1(B)<cx η2(B) and η1 <wcs η2, then the comparisons of moment measures and void
probabilities from the above lemma hold.

An interesting case for such comparisons is when η2 is a Poisson point process.

Proposition 4.2. Suppose that η is a point process on Rd which is wNA and has a locally finite
intensity measure. Then the following statements hold.

1. (Moment measures) E(η(B1) · · · η(Bn)) ≤E(η(B1)) · · ·E(η(Bn)) for all disjoint,
bounded Borel sets B1, . . . , Bn, which, for simple point processes η, implies that

E

(
exp

( ∫
Rd

h(x)η( dx)
))

≤ exp
( ∫

Rd
(eh(x) − 1)Eη( dx)

)

for all measurable h ≥ 0.

2. (Void probabilities) P(η(B) = 0) ≤ exp ( −Eη(B)) for all bounded Borel sets B, which,
for simple point processes η, implies that

E

(
exp

(
−

∫
Rd

h(x)η( dx)
))

≤ exp
( ∫

Rd
(e−h(x) − 1)Eη( dx)

)

for all measurable h ≥ 0.

Proof. Let B1, . . . , Bn be disjoint Borel sets. The vector X := (η(B1), . . . , η(Bn)) is wNA,
by our assumptions. Let X∗ denote a corresponding independent version. By the definition
of wNA, we have X<wcs X∗, so that Theorem 4.1 shows that X <sm X∗. From the definition
of ‘<sm’, E(η(B1) · · · η(Bn))) ≤E(η(B1)) · · ·E(η(Bn)). Now, from Proposition 1 of [5], this
implies the second assertion of the first part.
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To prove the second part of the proposition, let B and B′ be disjoint bounded Borel sets.
By assumption, (η(B), η(B′)) is wNA. Directly from the definition of wNA we conclude that
P(η(B) = 0, η(B′) = 0) ≤ P(η(B) = 0)P(η(B′) = 0). Now, from Proposition 3.1 of [4], P(η(B) =
0) ≤ exp ( −Eη(B)) for all bounded Borel sets B. Moreover, from Proposition 2 of [5], this
inequality is equivalent to the second inequality asserted in the second part. �

4.3. ‘<dcx’ comparisons for determinantal and mixed sampled point processes

In the following corollary we shall assume that X is locally compact and that λ is a Radon
measure on X. Let K be a locally trace-class positive contraction on L2(X, λ), and let ηK be
the determinantal point process generated by K. From Proposition 4.1 we obtain the following
corollary.

Corollary 4.3. Suppose that ηK is the determinantal point process described above. Then

ηK <dcx η2,

where η2 denotes a Poisson point process with intensity measure EηK .

Proof. Fix a bounded Borel set B. From Theorem 3.1 we know that ηK is NA, so in order
to get the conclusion of this corollary it is enough (see Proposition 4.1) to show that ηK(B)<cx
η2(B). From [9, Proposition 9] we know that ηK(B) is distributed as a sum of independent
Bernoulli random variables. From the definition of the log-concave ordering, ‘<lc’ in [31],
it follows that ηK(B)<lc η2(B), which in turn implies that ηK(B)<cx η2(B); see Theorem 1
of [31]. �

The above corollary for the case of jointly observable sets and X=Rd was proved in [4,
Proposition 5.3] using a different argument.

For mixed sampled point processes on general spaces, we obtain the following comparison
result.

Proposition 4.3. Suppose that η1 is a mixed sampled point process on (X,X ) defined by (3.1)
for which τ ∈ S . Then

η1 <dcx η2,

where η2 denotes a Poisson point process on X, with the intensity measure Eη1.

Proof. From Theorem 3.3 we know that η1 is NA, and from Proposition 4.1 we shall get
the conclusion of the present proposition if we show that, for such processes, η1(B)<cx η2(B).
From the definition of mixed sampled point processes we know that η1(B) is distributed as a
random sum

∑τ
i=1 Ui, where (Ui, i ≥ 1) is an i.i.d. sequence of Bernoulli, i.e. {0, 1}-valued

variables with success probability F(B). Since τ ∈ Sn, from the definition of the log-concave
ordering ‘<lc‘ in [31], it follows that τ <lc κ , where κ has a Poisson distribution with mean
E(τ ). Therefore, τ <cx κ; see Theorem 1 of [31]. It follows that

∑τ
i=1 Ui <cx

∑κ
i=1 Ui, where

κ is now assumed to be independent of (Ui, i ≥ 1) (see, e.g. [14, Corollary 4.5]). From this
we get η1(B)<cx η2(B), since Eη1(B) =E(τ )E(Ui) and

∑κ
i=1 Ui has Poisson distribution. For

arbitrary τ ∈ S , we apply weak approximation by random variables from Sn, n ≥ 1. �

From Proposition 4.2, we obtain the following corollary.

Corollary 4.4. Suppose that η is a mixed sampled point process on Rd, defined by (3.1), for
which τ ∈ S . Then the following statements hold
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1. (Moment measures) E(η(B1) · · · η(Bn))) ≤E(η(B1)) · · ·E(η(Bn)), for all disjoint,
bounded Borel sets B1, . . . , Bn, n ≥ 1.

2. (Void probabilities) P(η(B) = 0) ≤ exp ( −Eη(B)) for all bounded Borel sets B, n ≥ 1.

We illustrate this with an example of a direct approach to the comparison of void
probabilities.

Example 4.1. (Comparison of binomial mixed sampled p.p. with Poisson p.p. on Rd.) Let η
be a mixed sampled point process on Rd with τ being a binomial distributed random variable.
We shall compare void probabilities for this process with void probabilities of a Poisson point
process with the same intensity measure. In general, for a simple point process η on Rd, to test
whether P(η(B) = 0) ≤ exp ( −E(η(B))), it is enough to check (see [5, Proposition 3.1]) that

P(η(B) = 0, η(B′) = 0) ≤ P(η(B) = 0))P(η(B′) = 0)

for disjoint B, B′. For arbitrary, measurable disjoint sets B, B′, we have

P(η(B) = η(B′) = 0) = P(τ = 0) +
∞∑

n=1

P(τ = n)P(X1 /∈ B ∪ B′, . . . , Xn /∈ B ∪ B′)

= P(τ = 0) +
∞∑

n=1

P(τ = n)(1 − F(B ∪ B′))n

= Pτ (1 − F(B ∪ B′))
= Pτ (1 − (F(B) + F(B′)).

Since τ has a binomial distribution with, say, parameters n (number of trials) and p ∈ (0, 1)
(success probability), then Pτ (1 − s) = (p(1 − s) + (1 − p))n. It is easy to see by differentiation
that φ(s) := − log Pτ (1 − s) is then an increasing and convex function such that φ(0) = 0.
It is known that such a function is superadditive; therefore, φ(s + t) ≥ φ(s) + φ(t), and then
Pτ (1 − (F(B) + F(B′)) ≤ Pτ (1 − F(B))Pτ (1 − F(B′)). In this case, for disjoint B, B′ we obtain

P(η(B) = η(B′) = 0) ≤ P(η(B) = 0)P(η(B′) = 0).

Therefore, for this process, we obtain P(η1(B) = 0) ≤ exp ( −E(η(B))).

5. Some applications

Let η be a point process on a complete, separable metric space X. Using the Chebyshev
inequality, we have

P(|η(B) −E(η(B)) | ≥ ε) ≤ var (η(B))

ε2

for all bounded Borel sets B and ε > 0.
Similarly, using the Chernoff bound,

P(η(B) −E(η(B)) ≥ ε) ≤ e−t(E(η(B))+ε)E(etη(B))

for any t, a> 0, and the upper bounds can be replaced by the values taken from a process
larger in ‘<dcx’ than η, directly using the definition of ‘<dcx’ recalled in Section 4.1. If η
is determinantal or a NA mixed sampled point process, the corresponding larger process is a
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Poisson process which can be used to obtain upper bounds and concentration inequalities using
Proposition 4.3.

Similarly, for all bounded Borel sets B and ε, t> 0, we have

P(E(η(B)) − η(B) ≥ ε) ≤ et(E(η(B))−ε)E(e−tη(B)).

Using Corollary 2 of [8], we can obtain Kolmogorov-type inequalities from the negative
association property of η.

Corollary 5.1. Suppose that η is a mixed sampled point process on X, for which τ ∈ S . Then,
for any increasing sequence bk, k ≥ 1, of positive numbers, any collection of disjoint bounded
Borel sets B1, . . . , Bn ∈X , and ε > 0,

P

(
max
k≤n

∣∣∣∣ 1

bk

k∑
i=1

(η(Bi) −E(η(Bi))

∣∣∣∣ ≥ ε
)

≤ 8ε−2
n∑

i=1

var (η(Bi))

b2
i

,

P

(
max

m≤k≤n

∣∣∣∣ 1

bk

k∑
i=1

(η(Bi) −E(η(Bi)))

∣∣∣∣ ≥ ε
)

≤ 32ε−2
( n∑

i=m+1

var (η(Bi))

b2
i

+
m∑

i=1

var (η(Bi))

b2
m

)
for any integer m< n.
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