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Abstract

The coupled propagation of two electromagnetic waves in plasma is studied to establish the conditions for induced
transparency. Induced transparency refers to the situation where both waves propagate unattenuated, although the
frequency of one~or both! of them is below the plasma frequency so that it could not propagate in the absence of the
other. The effect is due to the interaction of the waves through their beat, which modulates both the electron mass and,
by exciting longitudinal plasma oscillations, their number density, and thus the plasma frequency. Starting from a
relativistic fluid description, a dispersion relation for plane waves of weakly relativistic intensities is derived, which
takes into account the polarization of the waves and the nonlinearities with respect to both their amplitudes. This serves
as a basis for the exploration of the conditions for induced transparency and the modes of propagation.

1. INTRODUCTION

Electromagnetically induced transparency~EIT! is the con-
dition when the propagation of an electromagnetic wave
through an otherwise opaque medium is made possible by
the interaction with a second wave. In plasma, the coupling
mechanism between the waves is a modulation of the plasma
frequency, which determines the refractive properties of the
plasma. This results from a relativistic increase of the elec-
tron mass, and from a variation in electron density caused by
longitudinal plasma oscillations driven by the pondero-
motive potential associated with the beat between the waves.

A recent study of EIT by Harris~1996! employs a three-
wave model, which incorporates two transverse electromag-
netic waves—with frequenciesv1 . vp, v2 , vp, where
vp 5 ~4pn0e20m!102 is the~unperturbed! plasma frequency
~n0 is the unperturbed electron density,2e the electron
charge, andm their rest mass!—and a longitudinal plasma
wave at the difference frequencyv2 5 v1 2 v2. The model
predicts transparency ifv2 is slightly lower thanvp.

Matsko and Rostovtsev~1998! found that the conditions
for EIT are affected by the excitation of the anti-stokes wave
at v1 1 vp as well.

While these authors have assumed that the amplitude of
the wave at the lower frequency is small, an investigation of
modulational instability of two coupled waves~which in-
volves the same interaction mechanism! by McKinstrie and

Bingham~1989! allowed for finite amplitudes of both waves,
while taking the relativistic electron mass into account. They
use an expansion of the wave vectors in terms of the ampli-
tudes, which, however, breaks down at the transition to
transparency.

The aim of the present article is to explore the conditions
of EIT for two waves of weakly relativistic amplitudes,
which may be comparable. Our treatment allows us to con-
sider co- or counterpropagating beams. Since we do not
restrict the frequencies, either or both may be above or
below the plasma frequency. Moreover, the present formal-
ism can also be used to study other phenomena of nonlinear
collective interaction in plasma, like Raman scattering or
modulational instability.

2. COUPLED PROPAGATION IN PLASMA

2.1. Relativistic fluid equations

We start from a description of the plasma as cold electron
fluid and take the relativistic corrections to the electron
mass into account since these are of the same order of
magnitude as the ponderomotive coupling~McKinstrie and
Bingham, 1989!. In one spatial dimension~z! the relevant
equations read~cf. e.g., Barret al., 2000!:
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wherea~z, t ! is the transverse vector potential, scaled by
mc20e ~c is the vacuum speed of light!, E~z, t ! is the longi-
tudinal electric field, scaled byvpmc20e, p~z, t ! is the lon-
gitudinal momentum, scaled bymc, n~z, t ! is the electron
density, scaled by the unperturbed densityn0, andg~z, t ! 5
~1 1 a2 1 p2!102 is the Lorentz factor. Time is scaled by
10vp, and length byc0vp.

2.2. Expansion in powers of the vector potential

In this section, we determine the coupling of two transverse
waves, driven by applied fields of frequenciesv1 andv2,
through longitudinal oscillations to the lowest~second! or-
der in an expansion in powers of the vector potential. For the
latter, we try an ansatz of the form

a 5 R@a1 exp~iu1! 1 a2 exp~iu2!# , ~3!

with complex amplitude vectorsa1,2, and phasesu1,2 5
k1,2z 2 v1,2t. ~Corresponding to the scalings of time and
length, the frequenciesv1,2 are scaled byvp, and the wave
numbersk1,2 by vp0c.!

From Eqs.~2! we find that the ponderomotive force
2]g0]zdrives longitudinal plasma waves, characterized by
E, p, andn 2 1. To the lowest order these quantities are
proportional to the~scaled! intensity of the transverse waves

I 5 a2 5 I0
~1! 1 I0

~2! 1 R~I1 1 I2 1 I11 1 I22!, ~4!

where the individual terms are given by

I0
~1,2! 5 6a1,26202, I11,225 a1,2

2 exp~2iu1,2!02,

I1 5 a1{a2 exp~iu1 !, I2 5 a1{a2
* exp~iu2 !, ~5!

with sum and difference phasesu6 5 u1 6 u2.
The Lorentz factor, to this order, isg ' ~11 I !102 ' 1 1

I02, so that the density modulations are determined by
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Accordingly, they may be decomposed as

n 2 1 5 R~n1 1 n2 1 n11 1 n22!, ~7!

with

n6 5 k6
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2 I11,220D11,22, ~8!

andk6 5 k1 6 k2, D6 5 v6
2 2 1, D11,225 4v1,2

2 2 1, v6 5
v1 6 v2.

2.3. Dispersion relation

We substituten andg into Eq. ~1! for the vector potential
and retain only terms oscillating with the frequenciesv1, v2

of the applied fields.~This assumes that the frequencies
3v1, 3v2, 62v11v26, and6v112v26 of the discarded terms
differ from v1 andv2.! We thus arrive at coupled dispersion
relations for the wave numbersk1 andk2:
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where ;1 denotes a unit tensor, andD1,25 v1,2
2 2 1.

The first term in each equation corresponds to a reduction
of the plasma frequency by a factor 12 ~I0

~1! 1 I0
~2! !02 due to

the time-averaged relativistic increase of the electron mass.
It is independent of the polarizations of the waves, in con-
trast to the subsequent terms with the dyads of amplitude
vectors.

2.4. Polarizations

We split the amplitude vectors into scalar amplitudes and
unit vectors,a1,2 5 a1,2e1,2, and find that the ansatz~3!
works for four different combinations of polarizations:

LP: Linear polarizations, parallel:e1 5 e2 5 ex;
LO: Linear polarizations, orthogonal:e1 5 ex, e2 5 ey;
CS: Circular polarizations, same senses of rotation:e1 5 e2 5

e1 5 ~ex 1 iey!0!2;
CO: Circular polarizations, opposite senses of rotation:e15e1,

e2 5 e2 5 e1
* .

In each case, the dispersion relation takes the form of two
coupled bilinear equations in the wave numbersk1, k2:

A11k1
2 1 2A12k1k2 1 A22k2

2 5 A,

B11k1
2 1 2B12k1k2 1 B22k2

2 5 B, ~11!

with coefficients, depending on the polarizations:
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LP:

A11 5 ~D11 1 I0
~1! !D1 D2 1 A22,

A12 5 I0
~2! D11~D2 2 D1 !02,

A22 5 I0
~2! D11~D1 1 D2 !02,

A 5 D11D1 D2~D1 1 3I0
~1!04 1 3I0

~2!02!,

B11 5 I0
~1! D22~D1 1 D2 !02,

B12 5 I0
~1! D22~D2 2 D1 !02,

B22 5 ~D22 1 I0
~2! !D1 D2 1 B11,

B 5 D22D1 D2~D2 1 3I0
~1!02 1 3I0

~2!04!;

LO:

A11 5 D11 1 I0
~1! , A12 5 A22 5 0,

A 5 D11~D1 1 3I0
~1!04 1 I0

~2!02!,

B11 5 B12 5 0, B22 5 D22 1 I0
~2! ,

B 5 D22~D2 1 I0
~1!02 1 3I0

~2!04!;

CS0CO:

A11 5 D7 1 I0
~2!02, A12 5 7A22 5 7I0

~2!02,

A 5 D7~D1 1 I0
~1!02 1 I0

~2! !,

B11 5 7B12 5 I0
~1!02, B22 5 D7 1 I0

~1!02,

B 5 D7~D2 1 I0
~1! 1 I0

~2!02!.

In the last set of coefficients, the upper sign is for CS, the
lower for CO.

Mathematically, Eqs.~11! represent conic sections in
the k1-k2-plane, centered at the origin, and can be solved
analytically. It should be noted that for circular polariza-
tions, the longitudinal waves providing the coupling are
excited only at the difference frequencyv2 for CS ~as
assumed by Harris, 1996, although for linear polariza-
tions!, and at the sum frequencyv1 for CO. For LO, the
equations are decoupled.

3. RESULTS

3.1. Conditions for transparency

The plasma is transparent for both waves if—for realv1,
v2—the wave numbersk1 and k2 are both real. We have

checked this condition for the solution of the dispersion
relations~11! for different amplitudesa1, a2, and plotted the
areas where it is satisfied for a frequency rangev150 . . .2.5,
v2 5 0 . . .1.1 inFigure 1 for parallel linear polarizations,
and in Figure 2 for circular polarizations.

In Figure 1a,a2 is set to zero; this corresponds to the
treatment by Harris~1996!, and Matsko and Rostovtsev
~1998!, except that we take the second harmonic 2v1 into
account. We notice a region of transparency, and, forv1,2 $
1, a complimentary one of induced opacity, each bounded
by the resonance of the difference frequency with the
plasma frequency,v2 5 1, as found by these authors.

Fig. 1. Regions of transparency~shaded! in thev1-v2-plane, for parallel
linear polarizations.~a! a150.2,a250; ~b! a15a250.1;~c! a15a250.2;
~d! a1 5 a2 5 0.3.
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Additionally, we find transparency in a narrow region
bounded by the second harmonic resonance, 2v1 # 1. Plots
for equal amplitudesa1 5 a2 5 0.1 . . .0.3, Figures 1b–d,
show additional regions of transparency near the reso-
nances of the sum frequency,v1 5 1, and also of the
second harmonics, 2v1 5 1 and 2v2 5 1. All these regions
grow in width as the amplitudes increase.

In Figure 2 we see that for the cases of co- and counter-
rotating circular polarizations, transparency is induced only
near the resonances of the difference and sum frequencies,
respectively.

3.2. Dispersion curves

Figure 3 shows examples of dispersion curves for the wave
numbersk1 andk2 in dependence ofv2 for fixed v1 in the
case of parallel linear polarizations. Parts a–c are cuts through
the transparency regions nearv2 51 and 2v2 51 for v1 5
1.45 for different ratios of amplitudes. Also indicated in
these plots is the wave number corresponding to the higher
frequency,k1

~0! 5 ~v1
2 21!102. Figure 3d is a cut through the

regions nearv1 5 1 and 2v2 5 1 for v1 5 0.45, and equal
amplitudesa1 5 a2 5 0.3. We note the existence of two
modes with different wave numbers for certain frequency
ranges, and the possibility of transparency for counterprop-
agating waves, indicated by opposite signs ofk1 andk2.

4. CONCLUSIONS

We have studied the coupled propagation of two transverse
electromagnetic plane waves through weakly relativistic cold

plasma, taking into account longitudinal plasma waves up to
second order in the amplitudes of the transverse fields. These
waves, which are excited at the sum and difference of the
frequencies of the applied fields, and at their second har-
monics, lead to transparency if either of these frequencies
lies in a narrow band below the plasma frequency. These
bands broaden as the amplitudes increase. For the difference
frequency this has been described earlier by Harris~1996!,
and Matsko and Rostovtsev~1998!. By contrast, transpar-
ency induced through plasma oscillations at the sum fre-

Fig. 2. Regions of transparency~shaded! in thev1-v2-plane, for circular
polarizations,a1 5 a2 5 0.2.~a! corotating;~b! counterrotating.

Fig. 3. Dispersion curvesk1~v2! ~solid!, k2~v2! ~dashed! for fixed v1,
parallel linear polarizations.~a–c! v151.45, dot-dashed line:k1

~0!; ~a! a15
0.1,a2 5 0.2; ~b! a1 5 a2 5 0.2; ~c! a1 5 0.2,a2 5 0.1; ~d! v1 5 0.45,a1 5
a2 5 0.3.
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quency is of particular interest, since in this case neither
transverse wave can propagate in the plasma on its own.

An important issue that remains to be addressed is the
evolution of the field amplitudes for pulses of finite dura-
tion, in particular when they are switched on—how do the
waves penetrate from the surface into the plasma? Will the
interaction of the evanescent waves near the surface gradu-
ally establish the longitudinal oscillations necessary for trans-
parency? From this point of view, transparency mutually
induced by counterpropagating waves both below the plasma
frequency, although theoretically possible, is very unlikely
to be realized.

Since there is no restriction on the frequencies in the
present formalism, it can equally be used to study other
phenomena of nonlinear collective interaction in plasma,
like Raman scattering or modulational instability.

We hope to be able to demonstrate the phenomena and
confirm the theory in experiments at the Strathclyde Elec-
tron and Terahertz to Optical Pulse Source~TOPS! in the
near future.
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