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Assessment of turbulence models using DNS
data of compressible plane free shear layer flow
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The present paper uses the detailed flow data produced by direct numerical simulation
(DNS) of a three-dimensional, spatially developing plane free shear layer to assess several
commonly used turbulence models in compressible flows. The free shear layer is generated
by two parallel streams separated by a splitter plate, with a naturally developing inflow
condition. The DNS is conducted using a high-order discontinuous spectral element
method (DSEM) for various convective Mach numbers. The DNS results are employed to
provide insights into turbulence modelling. The analyses show that with the knowledge of
the Reynolds velocity fluctuations and averages, the considered strong Reynolds analogy
models can accurately predict temperature fluctuations and Favre velocity averages,
while the extended strong Reynolds analogy models can correctly estimate the Favre
velocity fluctuations and the Favre shear stress. The pressure—dilatation correlation and
dilatational dissipation models overestimate the corresponding DNS results, especially
with high compressibility. The pressure—strain correlation models perform excellently
for most pressure—strain correlation components, while the compressibility modification
model gives poor predictions. The results of an a priori test for subgrid-scale (SGS)
models are also reported. The scale similarity and gradient models, which are non-eddy
viscosity models, can accurately reproduce SGS stresses in terms of structure and
magnitude. The dynamic Smagorinsky model, an eddy viscosity model but based on the
scale similarity concept, shows acceptable correlation coefficients between the DNS and
modelled SGS stresses. Finally, the Smagorinsky model, a purely dissipative model, yields
low correlation coefficients and unacceptable accumulated errors.
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1. Introduction

Turbulence, the chaotic state of fluid flow in terms of pressure and velocity, is one of
the most challenging fluid physics problems. A fundamental understanding of turbulence
physics is essential for designing engineering systems because turbulence exists in nearly
all macro engineering and atmospheric flows (Pope 2000). Traditionally, researchers have
broadly classified the means to study turbulent flows into analytical theory, physical
experiment and numerical simulation (Scheffel 2001).

Navier—Stokes equations are widely used to model turbulent flows such as hurricanes,
ocean currents and flows behind high-speed vehicles. However, analytical solutions to
Navier—Stokes equations have only been attainable with many assumptions, such as
one-dimensional (1-D) geometry, constant specific heats, constant viscosity or equation
linearization. However, experiments are often costly and face challenges to collect
comprehensive information of the laminar—turbulent transition process and many turbulent
quantities, such as the spanwise normal stress, turbulent kinetic energy dissipation and
higher-order correlations. Certain unmeasurable flow properties in the flow field can be
approximated by strong Reynolds analogy (SRA) (Morkovin 1962; Cebeci & Smith 1974)
or extended strong Reynolds analogy (ESRA) models (Bradshaw 1977; Gaviglio 1987,
Barre, Quine & Dussauge 1994; Lele 1994; Huang, Coleman & Bradshaw 1995; Duan &
Martin 2011; Zhang et al. 2014; Barre & Bonnet 2015), but with strict conditions such as
insignificant temperature and density fluctuations. In contrast, the numerical simulation of
turbulence has become popular owing to the exponential computing power growth in the
last several decades. Numerical simulations have empowered researchers and designers to
explore deeper and broader into the details of the system behaviour than what experiment
can. Based on the degree of the representation of the accuracy and physics, we can
classify the numerical simulation methodologies into direct numerical simulation (DNS),
large-eddy simulation (LES) and Reynolds-averaged Navier—Stokes (RANS) simulation.

Each numerical simulation approach possesses its own advantages and disadvantages.
So far, DNS is only able to simulate simple flow configurations with low Reynolds
numbers owing to the limitation in computational resources. The RANS approach is
intrinsically less accurate and unable to provide detailed information about the flow field
although it is computationally efficient. It is still widely used in engineering practice
because the averaged flow field’s reasonable prediction is adequate for design. Since the
late 1950s, RANS modelling has progressed to second-order closure turbulence models.
The performance of the second-order closure models manifests a significant improvement
over that of simple turbulence models. Studies of some typical RANS models can be found
in the literature (Launder, Reece & Rodi 1975; Hanjalic & Launder 1976; Launder 1989;
Sarkar er al. 1989, 1991; Speziale, Sarkar & Gatski 1991; Ristorcelli, Lumley & Abid
1995; Hwang & Jaw 1998; Jaw & Chen 19984, ; Girimaji 2000; Yoder 2003; Carlson 2005;
Gross, Blaisdell & Lyrintzis 2011; Dudek & Carlson 2017). The LES approach situates in
between DNS and RANS in computational cost. Large-eddy simulation is more accurate
and reliable than RANS simulation for turbulent flows in which large-scale unsteadiness
is significant, because LES can resolve large-scale structures without modelling (Pope
2000). Additionally, LES can provide more insights into fundamental physics owing to
the available instantaneous flow structures. Large-eddy simulation has become a desirable
approach to study flows dominated by large-scale coherent structures (Pope 2000), such as
the plane free shear layer.

Recently, owing to the rapid advances in computational power, improved subgrid-scale
(SGS) models have been continuously proposed since the first practical SGS model
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developed by Smagorinsky (1963). However, none of them has accomplished the
combination of accuracy and efficiency to make LES the preferred turbulence modelling
approach for engineers and scientists (Burton & Dahm 2005). Therefore, the development
of accurate and efficient SGS models has been a major task. The SGS stresses appear as
essential terms for modelling in LES (Vreman, Geurts & Kuerten 1997). Thus, intense
efforts have been put into developing sophisticated SGS models, which are able to
simulate wall-bounded or non-wall-bounded turbulent flows, e.g. the wall-adapting local
eddy-viscosity (WALE) and Sigma models (Nicoud & Ducros 1999; Nicoud et al. 2011).
Many researchers attempted to validate the SGS models using DNS data at relatively low
Reynolds numbers (Clark, Ferziger & Reynolds 1979; Love 1980; Piomelli et al. 1990;
Zang, Dahlburg & Dahlburg 1992; Vreman, Geurts & Kuerten 1995a; Vreman et al.
1997; Okong’o & Bellan 2004; Selle et al. 2007; Nicoud et al. 2011). In such SGS model
validations, a priori and a posteriori tests (Piomelli et al. 1990) are often used. The a priori
test is performed by filtering the DNS data to compute the turbulent SGS stresses and
comparing these quantities with stresses provided by SGS models (Vreman et al. 1995a).
However, the a posteriori test involves real LES simulations, and the results are used to
compare with DNS data (Vreman ez al. 1995a). In the present paper, we adopt the a priori
test for the SGS model examination.

The evaluation of turbulence models in a spatially developing turbulent free shear layer
with naturally developing inflow condition is not currently available in the literature. The
performance of some typical turbulence models in the laminar, transition and turbulent
regions of such a flow is still unclear. Additionally, the sensitivity of turbulence models
to the change of Mach number is not fully understood. In this context, we perform a
comparative study of some typical turbulence models using DNS data generated by a
high-order discontinuous spectral element method (DSEM) code (Kopriva & Kolias 1996;
Kopriva 1998; Jacobs, Kopriva & Mashayek 2005). This DSEM code has been employed
for LES and DNS of compressible turbulent flows (Ghiasi ez al. 2019; Li ef al. 2019, 2021)
as well as reacting flows (Komperda et al. 2020). We do not concentrate on numerical
methods but systematically examine and compare the characteristic behaviour of several
SRA, RANS and LES models for a three-dimensional (3-D), compressible plane free shear
layer. This primary objectives of this work are: (1) to identify and explain the performance
of the SRA, RANS and SGS models; (2) to provide a basis for future modelling of a
spatially developing, compressible free shear flow in the laminar, transition and turbulent
regions. The remainder of this paper is organized as follows. First, we provide a brief
overview of the DNS data. Then, the comparisons and discussions of different turbulent
models are presented. Finally, we provide a summary of the findings.

2. Direct numerical simulation

In this section, we briefly describe the DNS of the 3-D, compressible turbulent plane
free shear layer flow that has been reported in detail in our previous papers (Li et al.
2019, 2021).

2.1. Compressible Navier—Stokes equations

The compressible Navier—Stokes equations govern the viscous fluid flow and are solved in
conservative form. Variables are non-dimensionalized by the reference length, L}‘, density,

pf"-‘, velocity, UJZk , and temperature, T}‘. The superscript * denotes dimensional quantities
and the subscript f indicates reference values. The non-dimensionalized variables are
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defined as
xj=x;/Lf,  p=p*/pf,
w=ujUp =10,
T=T"T;. p=p"/(e] U;fz)
Y :c;/c;’j, Pr=c* i * /K",
My =U;/ [yR*TF,  Rey = UiLipf/u*,

2.1

where x; is the jth Cartesian coordinate. Also, p, y and p are pressure, specific heats ratio
and dynamic viscosity, respectively. Moreover, ¢,, ¢y, ¥ and R represent the specific heat at
constant volume, specific heat at constant pressure, thermal conductivity and gas constant,
respectively. The Prandtl number, reference Mach number and reference Reynolds number
are respectively indicated by Pr, My and Rey. These lead to the following non-dimensional
Navier—Stokes equations, presented in a conservative form in Cartesian tensor notation,

dp  d(pu;
op | pu) _ 0. (2.2)
ot ax;
(pui)  dpuiwy) __ op , 995 2.3)
a1 dx; dx; 0
9 5 . dg;  d(oyu
(pe) , dlpe+pu] _  dq;  dogu) (2.4)
ot 8Xj 8xj axj

Here, the total energy term, viscous stress tensor and heat flux vector are respectively
defined as

p 1
pe= T+ ypun 2.5)
1 [0u; OJu; 20
oj = — (ﬂ + o &,) : 2.6)
' Rey \ 0x;  0x; 3 oxg
1 oT

(y — l)RefPrM]% 0x;

where §;; is the Kronecker delta. In this study, the specific heat, thermal conductivity
and dynamic viscosity of the fluid are assumed to be constant because the temperature
fluctuations in all considered simulations are insignificant (< 6 %) (Li et al. 2021). The
equation of state closes the equations mentioned above, and is given as

pT

p=—>. (2.8)
T
The total energy can be also expressed as
pT 1
pe = —————> + = purity, (2.9)

(y —DyM; 2

which is convenient when applying Reynolds averaging or Favre averaging to the energy
conservation equation.
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2.2. Discontinuous spectral element method

This work employs the DSEM as the compressible turbulent flow solver (Jacobs et al.
2005). The physical geometry is partitioned into 3-D hexahedral elements. The DSEM
then uses the isoparametric mapping to map each element onto a unit cube in every
direction. After mapping, (2.2)—(2.4) read

3, dlpw) _

0. 2.10
or | ox e
0(pm) | dpuity +pdy) _ 95 @2.11)
ot dX; 9X;
30 9 N 90 3/\
(pe) | lpe+phw) _  9G;  dlojui) 2.12)
at 0X; 0X; dX;
For (2.10),
A X
p=Jp; (puj) = J%(P”iﬁ (2.13a.b)
1
for (2.11),

— — 0X; ~ 9X;
(pui) = J(pui);  (puiuj + pdy) = J—(puju; + pdji); 0 =J—0j;  (2.14a—c)
0x; 0x;

and for (2.12),

—

— d
(pe) = J(pe); [(pe+pujl = Ja—x{upe + p)uil;

X — 83X
qi = ]a_xiqi; (aiju,') = Ja—)Ci(O'jiuj). (2.15a—d)

In the above equations, J is defined as (Jacobs 2003)

(X1, Xo, X5) = 2 (%% - %%) _ 88_;12 (8xz 0xs _ 0%, 8X3)

0X1 \0Xp0X3 0X30Xp

n oxy [ 0xp 0x3 0xp 0x3

0X3 \0X; 0X, 0X;0X1 )’
which is the determinant of the Jacobian matrix of the transformation. The term 0X;/0x;
denotes the metrics matrix, where x; and X; are the coordinates of the physical and mapped
spaces, respectively. The variables with hat " are in the mapped space, whereas those
without a hat are in the physical space.

In each mapped element, high-order Lagrange basis functions estimate the primitive
variables and the fluxes on the Gauss quadrature and Lobatto quadrature points,
respectively. Gauss quadrature and Lobatto quadrature points are respectively defined as

0X1 X3 0X30X;

(2.16)

1 2j+1
Xj+1/2=§{1—cos|:%]}, j=0,...,N—1, (2.17)
and
| .
Xj=§{1—cos|:%:|}, j=0.....N, 2.18)

within the unit cube. Here, N — 1 is the polynomial order of the spectral element. For
convenience, we refer to N — 1 as ¢ hereafter. Finally, the primitive variable, p, on the
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M, VR AU M, M, xR XE

0.3 0.54 2.1 0.8556 0.2556 30 340
0.5 0.54 35 1.4259 0.4259 170 550
0.7 0.54 4.9 1.9963 0.5963 230 670

Table 1. Some simulation parameters and estimated flow properties. Here, M, = AU/(c1 + ¢2) (Bogdanoff
1983), where ¢ and ¢, are respectively the speeds of sound in the high- and low-speed streams of the shear
layer. The inflow Mach numbers on the high- and low-speed sides are respectively indicated by M| = U;/cy
and My = U, /c». Finally, xg represents the location where the transition starts, while xg denotes the location
where the transition to turbulent flow ends (see Li ef al. (2019) for more detail).

Gauss quadrature points, for example, is estimated as

S < ¢
X, Y, Z) = Z Z Z Pit172,j+1/2.k+172hic 12X i1 2 (Vi1 2(2). (2.19)
i=0 j=0 k=0

Here, X, Y and Z indicate the mapped space coordinates, while h; 1,2 denotes the
Lagrange interpolating polynomial on the Gauss points. A fourth-order low-storage
Runge—Kutta scheme (Carpenter & Kennedy 1994) is adopted for time integration after
the viscous and inviscid fluxes are calculated.

2.3. Simulation parameters

The computational domain, as shown in figure 1, is enclosed with inflow and
outflow boundaries (Jacobs, Kopriva & Mashayek 2003) in the streamwise direction,
non-reflecting boundaries (Thompson 1987) in the cross-stream direction and periodic
boundaries (Jacobs et al. 2003) in the spanwise direction. The high- and low-speed streams
at the inlet are set to fulfil a velocity ratio, VR = 0.54, which is given as

==t AU (2.20)

U+ U U+ U,

Three simulations are conducted for various inflow Mach numbers and convective Mach
numbers, as given in table 1. The momentum thickness Reynolds number, Rey, based
on AU and 8y, is 140, where 8y¢ is the initial momentum thickness. The momentum
thickness is defined as (Jiménez 2004)

_ {u} (W) — Us
_ ! / (1 _ A—U) dy. 2.21)

for a spatially evolving compressible plane free shear layer. Here, p, indicates the initial
inflow density, and (p) and {u} are respectively the Reynolds-averaged density and
Favre-averaged velocity (Favre 1969). A pair of angled brackets, (), denotes a Reynolds
average, and a pair of curly brackets, {}, indicates a Favre average. To compute Reynolds
and Favre averages, we start with Reynolds decomposition (Favre 1969), which is defined
as

¢=(p)+¢. (2.22)

for any variable ¢. Here, ¢’ is the turbulent fluctuation from the Reynolds average indicated
by the superscript ’. The Reynolds average, (¢), can be obtained from an average in time,
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Figure 1. Schematic of the computational domain.

space or an ensemble average. Similarly, Favre decomposition is defined as (Favre 1969)

¢ ={p}+9", (2.23)

where ¢” is the turbulent fluctuation with respect to the Favre average denoted by the
superscript 7. The Favre average, {¢}, is defined as

{#} = (o) /(p). (2.24)
Note that
(@) =0; (po"y=0; (¢") #0. (2.25a—c)

Finally, the specific heats ratio, y, and the reference Prandtl number, Pry, are respectively
taken as 1.4 and 0.7.

2.4. Initial conditions

In this work, the shear layer is formed by two parallel laminar boundary layers, with
naturally developing inflow condition and separated by a splitter plate. The two fully
developed Blasius boundary layers traverse the trailing edge of the splitter plate and merge
into a free shear layer downstream. The configuration of the splitter plate is illustrated in
figure 1. A small perturbation is superimposed on the high-speed side boundary layer (Li
et al. 2019). The low-speed stream is laminar without perturbations. The dimensionless
density and temperature are uniformly initialized to 1.0 and (AU/2M,)?, respectively.
Note that the trace of the initial conditions has been fully purged as the flow attains
self-similarity (Bradshaw 1966) (see Li et al. (2019) for the detailed description of the
free shear layer initial conditions).

2.5. Computational domain and grid

All dimensions are normalized by 8go. The size of the domain is set as Ly X Ly x L, =
1982 x 1600 x 140, as shown in figure 1. The area of interest is 0 < x < 1200 used
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for producing DNS data. The remainder is used as a vast buffer zone to avoid solution
contamination from cross-stream and outlet boundaries (see figure 1). The computational
grid contains 1368260 elements and 295 544 160 solution points for a polynomial order
of five. With the relatively low Reynolds number (Re = 140) considered in this work,
the resolution of the current grid is sufficient to capture all relevant turbulent scales. A
detailed validation against published theoretical, experimental and numerical results has
been performed and excellent agreements have been found (Li ez al. 2019). To acquire the
necessary statistics, every simulation is first run for five flow-through times to eliminate
the transient flow and accomplish a quasi-stationary state. The flow-through time is the
time required for the flow to move with the convective velocity from the inlet to the outlet,
ie.

L
flow-through time = = (2.26)
Ue
where the convective velocity U, is defined as
Ui+ U
U, = % (2.27)

when the specific heats ratio is assumed to be constant across the shear layer. Second,
five flow-through times are required to calculate the first-order statistics. Third, ten
flow-through times are needed to acquire sufficient data for the second-order statistics.
Finally, we implement post-processing for ensemble averages in the spanwise direction
to enhance the accuracy of the statistics. The details of the problem set-up and solution
validation are reported in previous work (Li et al. 2019, 2021).

3. Strong Reynolds analogy

When developing turbulence models for compressible flows, researchers often start with
Morkovin’s hypothesis — strong Reynolds analogy (Morkovin 1962). Morkovin suggested
that the effect of high speed is reflected by the change of fluid properties. However,
the high-speed effect does not directly affect the dynamic behaviour of turbulence
for moderate Mach numbers (Morkovin 1962). Thus, to properly apply Morkovin’s
hypothesis, the temperature fluctuations are often required to be negligible, which is valid
for the present study. In this section, we examine this hypothesis. In other words, we
attempt to show that it is possible to describe turbulent free shear flows using relatively
straightforward SRA models.

In the turbulent free shear flow experiment, the measurements might give most of
the flow properties in the flow field. However, no direct measurement of temperature
fluctuation, or density fluctuation, or the correlation between temperature and velocity
or the correlation between density and velocity has been realized. Using the SRA,
the temperature and density fluctuations can be obtained from the measured velocity
fluctuations. The fluctuations in temperature, density and velocity are related by (Morkovin
1962; Gaviglio 1987; Barre et al. 1994)

72 2
VAT?) _ Vie?) a1

and

(3.2)
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Figure 2. Cross-stream profiles of the values of the left-hand side (black squares) and right-hand side (red
circles) of (3.1) with (a) M, = 0.3, (b) M. = 0.5 and (c) M. = 0.7 at x — xg = 300. All terms are normalized
by (AU).

where M = {u}/c is the local Mach number. Figure 2 shows the variations of the
normalized temperature fluctuation, (v/(772)/(T))/(AU), and the normalized density
fluctuation, (v/(p2)/(p))/(AU), across the shear layer. As can be seen, the maximum
(VAT /(T))/(AU) is approximately 0.008 for M. = 0.3, and increases to 0.011 as
M, increases to 0.7. However, for all cases, /(T"?) < (T), which is the condition
that satisfies the requirement for applying SRA. Moreover, figure 2 indicates that the
variation of the normalized density fluctuation approximately agrees with that of the
temperature fluctuation in each case, which confirms the analogy relation defined by
(3.1). Moreover, figure 3(a) shows a remarkable agreement between the temperature and
velocity fluctuations, which confirms the analogy relation presented by (3.2). However,
with increasing convective Mach number, [(y — DM/ (') ) (u)]/(AU) increasingly
overpredicts (v/(T'2)/(T))/(AU), as shown in figures 3(b) and 3(c). This trend may
arise from the fact that increasing the convective Mach number increases the temperature
fluctuation. Consequently, the condition of applying the SRA model deviates away from
the ideal assumption.

Under the condition of negligible temperature fluctuations, the Favre average can be
expressed as a function of the Reynolds average and fluctuation (Gaviglio 1987; Barre
et al. 1994; Barre & Bonnet 2015)

— HM?
)~ () + L= DM oy (3.3)
)

and
(v} ~ (v) + —F—(W'V'). (3.4)
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Figure 3. Cross-stream profiles of the values of the left-hand side (black squares) and right-hand side (red
circles) of (3.2) with (a) M. = 0.3, (b) M, = 0.5 and (c¢) M, = 0.7 at x — xg = 300. All terms are normalized
by (AU).

Equations (3.3) and (3.4) represent another form of SRA, which present the relations
between the Favre and Reynolds quantities. The compressibility effect is reflected by the
square of the Mach number in the equation. Figures 4 and 5 respectively compare the
variations of left-hand side (black squares) and right-hand side (red circles) of (3.3) and
(3.4). As can be seen, the left-hand side and right-hand side of the equations are in good
agreement for various convective Mach numbers. This implies that the SRA performs
excellently for different velocity components and convective Mach numbers.

Although the SRA predicts the relations among the fluctuations of the temperature,
density and velocities well, it is insufficient to estimate the budget terms in the turbulent
kinetic energy transport equation. Relations must be created for the triple correlations,
such as (pu”’v”). Those relations are called extended strong Reynolds analogy (ESRA)
and can be expressed as (Barre et al. 1994; Barre & Bonnet 2015)

Ny
"o~ ) (V I)M <l/t/2>, (35)
(u)
N
vV v — M(u/v’), (3.6)
(u)
(pu"v") (y — HM? (y — )*m*

~ (pu'v') + W'y — W', (3.7)

(p) (u) (u)?
Equations (3.5) and (3.6) express the relations between Favre and Reynolds fluctuations
for streamwise and cross-stream velocities. Similarly, (3.7) presents the relation between
the density-weighted shear stress term (the shear component in the x — y plane) and its
expression in terms of Reynolds fluctuations. Figure 6 shows the cross-stream profiles of
the left-hand side (black squares) and right-hand side (red circles) of (3.7) for M. = 0.3,
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Figure 4. Cross-stream profiles of the values of the left-hand side (black squares) and right-hand side (red
circles) of (3.3) with (a) M. = 0.3, (b) M. = 0.5, and (¢) M. = 0.7, at x — xg = 300. All terms are normalized
by (AU).

0.5 and 0.7. The data are extracted at x — xg = 300 and normalized by (AU )2. It can be
seen that the left-hand side and right-hand side are in excellent agreement, which means
that the ESRA model correctly estimates the most important component of the production
term of the turbulent kinetic energy transport equation.

Figures 7 and 8 show the scatter plots of the temporal evolution data of the modelled and
DNS Favre velocity fluctuations at a specific location for six flow-through times. Figure 7
compares DNS (left-hand side of (3.5)) with modelled (right-hand side of (3.5)) Favre
streamwise velocity fluctuations for M. = 0.3 and 0.7. All terms are extracted at the centre
of the shear layer (see table 2) and normalized by (AU). It can be seen that the left-hand
side and right-hand side of (3.5) exhibit a high degree of correlation at both M, = 0.3 and
0.7. Strong correlation is also found in figure 8 representing (3.6) at the centre of the shear
layer. Other locations, such as the upper and lower edges (see table 2) of the shear layer
also showed similar behaviours for (3.5) and (3.6). For brevity, the comparisons at these
locations are not included here.

To further compare the discrepancy between the left-hand side and right-hand side of
(3.5) and (3.6), we compute the mean absolute deviation (MAD), which is defined as

1 n
MAD = - > "|LHS; — RHS;|, (3.8)
n-
i=1
where n represents the number of samples. The computed MADs are tabulated in tables 3
and 4. Based on the data in tables 3 and 4, we can conclude the following: the largest
correlation discrepancy is located at the centre of the shear layer for both (3.5) and
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Figure 5. Cross-stream profiles of the values of the left-hand side (black squares) and right-hand side (red

circles) of (3.4) with (a) M. = 0.3, (b) M. = 0.5, and (c) M, = 0.7, at x — xg = 300. All terms are normalized
by (AU).

(3.6); the correlation discrepancy in (3.5) is larger than that in (3.6); the error in the
high-Mach-number case is higher than that in the low-Mach-number case.

4. Reynolds-averaged Navier-Stokes models

For several decades, the most popular approach for simulating industrial turbulent flows
has been the RANS, where the statistical averaging is based on ensemble averaging
(Reynolds 1895). The fundamental approach is to decompose the flow variables into an
ensemble mean value component and a fluctuating one, substituting them into the original
equations and then ensemble-averaging the resulting equations.

4.1. Reynolds-averaged Navier—Stokes equations

For compressible flows with significant compressibility effects, the averaging is of the
Favre type (Smits & Dussauge 2006). Note that we let the reference viscosity equal the
dimensional viscosity so that the dimensionless viscosity equals one. The non-dimensional
Favre-averaged continuity, momentum and energy equations can be respectively written in
conservation form as (Huang et al. 1995)

d(p) n o ur} _

0, 4.1)
ot 0xy
(p)ui} | oM} 9p) | O(T) (o) {u] u;
ot + dxk O x + dxk axp (4.2)
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Figure 6. Cross-stream profiles of the left-hand side (black squares) and right-hand side (red circles) of (3.7)
for (a) M, = 0.3, (b) M, = 0.5, and (¢) M, = 0.7. All terms are extracted at x — xg = 300 and normalized by
(AU)2.
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Figure 7. Scatter plots of the normalized Favre streamwise velocity fluctuations obtained by DNS (left-hand
side of (3.5)) versus that obtained by the models (right-hand side of (3.5)) for (@) M, = 0.3 and (b) M, = 0.7.
All terms are extracted at the centre of the shear layer (see table 2) and normalized by (AU). The 45-degree
line is shown in red.

) {T} 0 {T} 2
o — s+ )+ —( 2 LKy 4+ K

! (i) (i) + (Tus)) + : : o
= — ((tie) () + (T/u; —
Ixe ik ) \Ui ik%i Ref (y — I)Mfzpl’f ax]%

931 A10-13


https://doi.org/10.1017/jfm.2021.919

https://doi.org/10.1017/jfm.2021.919 Published online by Cambridge University Press

D. Li, J. Komperda, A. Peyvan, Z. Ghiasi and F. Mashayek

Location X — Xg (streamwise) y/8p (cross-stream) z (spanwise)
Upper-edge 300 3.7 40.3
Centre 300 —0.94 40.3
Lower-edge 300 —5.06 40.3

Table 2. Locations where the data are extracted for examinations of (3.5) and (3.6).

(@) (b)
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@; 3
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EJ L
7
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-0.4 * : * t * t * -0.4 A— L L ' L -
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LHS of (3.6) LHS of (3.6)

Figure 8. Scatter plots of the normalized Favre cross-stream velocity fluctuations obtained by DNS (left-hand
side of (3.6)) versus that computed by the models (right-hand side of (3.6)) for (@) M, = 0.3 and (b) M, = 0.7.
All terms are extracted at the centre of the shear layer (see table 2) and normalized by (AU). The 45-degree
line is shown in red.

M. Upper edge Centre Lower edge
0.3 6.40 x 1074 7.87 x 1073 1.03 x 1074
0.7 4.89 x 1073 6.95 x 1072 1.24 x 1074

Table 3. Comparison of the mean absolute deviation between the left-hand side and right-hand side of (3.5)
at various M, and different locations. The assessed data are extracted at locations shown in table 2.

1 Ao T

- i((p){uﬁ "} 4+ (o) ugk"}) — 4.3)
0xy k k (y — I)Mf oxk ‘
where
1 172
K = >, @4
1
(K} = E{M,-}Z, (4.5)
, 1 ou, N duy, 28u;(S 6)
fik = Rer \Ox; ~ 0x; 3 9x ik ) )
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M. Upper edge Centre Lower edge
0.3 1.01 x 10~* 2.59 x 1073 1.37 x 1073
0.7 1.06 x 1073 245 x 1072 2.04 x 1074

Table 4. Comparison of the mean absolute deviation between the left-hand side and right-hand side of (3.6)
at various M, and different locations. The assessed data are extracted at locations presented in table 2.

(Tin) = (4.7)

I (0uw) | 0ux) 2 0(u)
— + sy ).
Rep \ 0xi 0x; 3 dx;

In (4.3), {K} and {k} are the Favre-averaged mean kinetic energy and the Favre-averaged
turbulent kinetic energy, respectively. The turbulent transport, (p){u;k"}, and molecular
diffusion, (tu;), are typically very small (Speziale ez al. 1991; Wilcox 2006), and thus
these terms can be neglected. Models for Reynolds stresses, {u;u}, and the heat flux,
{uT"}, are required to close (4.1)~(4.3) (Wilcox 2006).

The Reynolds stresses, R;j = {u] uJ/./ }, are the components of the second-order tensor,
which is intrinsically symmetric, such that R;; = R;;. The diagonal components are normal
stresses, e.g2. Rij, Ry and R33. The off-diagonal components are shear stresses, such
as Rip, Ri3 and Rp3. The normalized turbulent intensity in different directions can
be represented in terms of Reynolds stresses, e.g. \/IT,-J-/ (AU). Figure 9 presents the
cross-stream profiles of normalized turbulence intensities from the current DNS and
experiments. The compared data are extracted in the self-similar turbulent region. It can
be seen that the magnitudes of «/Ry;/(AU) and +/|R12]/(AU) of the current simulations
agree well with the experimental results from Goebel & Dutton (1991) for M, = 0.46 and
0.69, while +/R33/(AU) presents good agreement with the experimental result of Gruber,
Messersmith & Dutton (1993). The magnitudes of /R22/(AU) from the present DNS fall
between the experimental results from Goebel & Dutton (1991) for M, = 0.2 and 0.46,
and are higher than that by Gruber et al. (1993) for M, = 0.8. In addition to presenting the
cross-stream profiles of turbulence intensities in figure 9, we also tabulate their magnitudes
in table 5 for better quantitative comparisons between DNS and experimental results.
Particularly note that based on the present DNS results, «/R;/(AU) > +/R33/(AU) >
/R /(AU) for all cases with M. = 0.3, 0.5 and 0.7, which indicates that the fluctuations
in this work are strongly three-dimensional.

Reynolds stresses, R;;, are often used to characterize the flow structure motions. The
isotropic stress is defined as %k&-j; the deviatoric anisotropic part is then defined as (Pope
2000)

aj = Ryj — 2ky. (4.8)

The normalized anisotropy tensor, hereinafter referred to as Reynolds stress anisotropy, is
defined as

i _ Ry 1o

Y2k Ry 3V
Note that in turbulent flows modelling, the Reynolds stress anisotropy tensor b; is a
significant characteristic of velocity fluctuations (Pantano & Sarkar 2002). In addition,
the tensor b;; is often used to describe the motions of vortex structures (Smyth & Moum
2000).

4.9)
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Figure 9. Comparisons of the turbulent intensities, (a) ~/Ry1/(AU), (b) /Ry /(AU), (c) v/R33/(AU) and
(d) V/|R12]/(AU) in the self-similar turbulent region between the present and experimental results. Goebell,
Goebel2 and Goebel3 represent the results by Goebel & Dutton (1991) for M. = 0.2, 0.46 and 0.69,
respectively. Gruber represents the results by Gruber et al. (1993) for M, = 0.8. Casel, Case2 and Case3 stand
for the present results for M. = 0.3, 0.5 and 0.7, respectively.

We examine tensor b;; as a function of the cross-stream coordinate for the self-similar
turbulent region. Figure 10 presents comparisons of different components of tensor b;; for
various convective Mach numbers. At the shear layer centre, the magnitude of b1; increases
significantly, while the magnitudes of by; and b33 slightly increase (more negative) with
increasing convective Mach number. This different behaviour is attributed to the fact that
the values of Reynolds stresses, Ry» and Rs3, decrease as the convective Mach number
increases, while the value of Rj; remains almost the same. However, no obvious trend can
be found with respect to the effect of compressibility on by.

Figure 10(a) shows that the positive values of b1; distribute around the centre and edges
of the shear layer owing to the dominance of the streamwise component of the velocity
fluctuations at these areas. In contrast, two regions in the cross-stream profile show near
zero b1;. One region is laterally above the centre of the shear layer, between the high-speed
free-stream and the upper shear layer; another region is laterally below the shear layer,
between the low-speed free-stream and the lower shear layer. The value of bj; near zero
means the normal Reynolds stress, R11, is similar in magnitude to the average of R»; and
Rj33. It indicates that the regions with near zero b1; contain the velocity fluctuations which
are similar in different directions. Similar discussions hold true for figures 10(b) and 10(c).
Figure 10(d) reveals strong negative b1, at the centre of the shear layer. The strong negative
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Turbulence intensity on centreline

M. VR /(AU) VR2/(AU) VR33/(AU) VIRp2|/(AU) Study

0.20 0.224 0.147 - 0.131 Goebel & Dutton (1991)
0.30 0.176 0.130 0.148 0.101 Present DNS

0.46 0.166 0.098 - 0.092 Goebel & Dutton (1991)
0.50 0.177 0.126 0.142 0.099 Present DNS

0.69 0.173 0.078 - 0.082 Goebel & Dutton (1991)
0.70 0.178 0.107 0.121 0.087 Present DNS

0.80 0.164 0.071 0.126 0.080 Gruber et al. (1993)

Table 5. The turbulence intensities on the centreline of the shear layer for different convective Mach numbers
in the self-similar turbulent region.

(a) 0.4 (b) 04

/8, I8,

Figure 10. Comparisons of the cross-stream profiles of (a) b1y, (b) b2z, (¢) b33 and (d) b1z in self-similar
turbulent region for M. = 0.3, 0.5 and 0.7.

correlation between the streamwise and cross-stream velocity fluctuations indicates that
these fluctuations are structured to facilitate the dissipation of energy from the shear layer
(Smyth & Moum 2000).

The Reynolds stress anisotropy tensor, b;;, and the Reynolds stress tensor, R;;, can be
related to each other through

1
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In the following, we describe several approaches for determining Reynolds stress tensor,
Rjj. The transport equation of the Reynolds stress tensor can be written as (Pantano &
Sarkar 2002)

()R d(p){ur} Ry 0Tk
= (p)P; — Uk
ot + 0Xy (1P 0xk

—(p)ejj + I + Xj;. 4.11)

Here, the turbulent production, turbulent transport, turbulent dissipation, pressure—strain
correlation and mass flux coupling terms are respectively

9 {u;} 9 {ui}
i=—|R; R; 4.12
ij ( ik axs + ik ax; s ( )
Ty = (pul/ul/ull) + (P + (/)8 — ((That) + (2ht), @13
NI
€j = (p) Tk 3xk + Tik ax | (4.14)
(0w 0

ITj = (p B_)CJ + 3_x, , (4.15)

k) 3(p) dtiw)  9{p)
Y= (u! GaA ! -—. 4.16
§ = () ( dXk 0x; ) dxk ax; (+16)

In the above exact Reynolds stress transport equation, (4.11), the turbulent production term,
Pjj, is exact and does not require modelling because the Reynolds stresses and the mean
flow velocity are given by the transport equations. Other terms on the right-hand side of
(4.11) need modelling. The pressure—strain correlation, I7;;, is the most important term to
be modelled (Cecora et al. 2012).

By setting the indices of (4.11) such that j = i, we can obtain the following transport
equation for the turbulent Kinetic energy, {k} = %{u/ 2) = %R,-,-,

d(p)k} | d{pHu}k} oy ) k") opluy) 0Ty
- = , —~ +
ot Xy

/"
(P tu ) 0Xk 0Xk X 0Xk

Jow\ ) 0T B
<Tik8xk> (ug) o + (u;) ™ +<p Bxk>' (4.17)
Based on the literature (Favre 1965, 1969; Lele 1994; Huang et al. 1995; Pope
2000), the second term on the left-hand side of (4.17) represents kinetic energy
convection. The terms on the right-hand side are, respectively, the turbulent production,
turbulent convection, pressure transport, viscous diffusion, turbulent viscous dissipation,
enthalpic production, compressibility term resulting from turbulent fluctuations and
pressure—dilatation correlation. Note that the last three terms are compressibility related
terms arising from turbulent fluctuations.

4.2. Formulations of different RANS models
To improve the model accuracy, researchers take higher and higher moments for models,
e.g. from the Boussinesq eddy-viscosity approximation, algebraic (zero-equation) models,

one-equation models, two-equation models, four-equation models to Reynolds-stress
seven-equation models (Pope 2000). Consequently, we generate additional unknowns at
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each level. The purpose of turbulence modelling is to create approximations for the
unknowns and finally achieve closure. Most of the compressible turbulence modelling
approaches begin with incompressible flows and often provide satisfying results (Smits &
Dussauge 2006). In contrast to incompressible flows, no model is able to provide accurate
results for high compressible flows.

Among various RANS models, the two-equation k—e model is most commonly
used in turbulent free shear flows, while the Reynolds-stress model is currently the
most comprehensive turbulent modelling approach (Wilcox 2006). For the k—e model,
several unclosed terms in the turbulent kinetic energy transport equation need to be
modelled, such as the turbulent kinetic energy dissipation term, turbulent transport terms
and compressibility terms resulting from turbulent fluctuations and pressure—dilatation
correlation. The turbulent kinetic energy dissipation term is modelled using the hypothesis
of high Reynolds numbers, which means the dissipation is assumed to have the form
of isotropic dissipation, ¢ (Haase et al. 2006). For the modelling of the diffusion
terms, the turbulent-transport terms are lumped together and modelled using a classical
gradient-diffusion hypothesis (Daly & Harlow 1970). The model constants associated
with the diffusion and dissipation terms are either chosen as constants for the whole
flow (Schmidt & Schumann 1989) or calculated dynamically (Ghosal et al. 1995). To
account for the compressibility effect, researchers often model the dilatational dissipation
term when simulating compressible flows (Sarkar er al. 1989, 1991; Zeman 1990;
Wilcox 1992). Additionally, the pressure—dilatation correlation, which is the trace of the
pressure—strain correlation tensor, plays a key role in the k—e model to mimic the influence
of compressibility. The functions of the pressure—dilatation correlation in the k—e model
are similar to that of the pressure—strain correlation in the Reynolds-stress model (Wilcox
2000).

For the Reynolds-stress model, the unclosed terms in transport equations are turbulent
transport terms, dissipation term and pressure—strain correlation. The turbulent transport
terms contain contributions of turbulent transport, pressure diffusion and viscous
diffusion, where the pressure diffusion term is often considered negligible (Wilcox 1992).
As discussed above, the contributions of turbulent transport terms can be combined
and approximated using a generalized gradient diffusion model (Daly & Harlow 1970).
Moreover, the dissipation term is often modelled by an isotropic tensor, €; = 2¢/3,
based on the Kolmogorov hypothesis of local isotropy (Haase et al. 2006). An additional
transport equation is required to provide the isotropic dissipation term, €. Last but not least,
the pressure—strain correlation is one of the most important terms in the Reynolds-stress
equations for the following reasons. The pressure—strain correlation is mainly responsible
for the shear layer growth rate, the turbulence kinetic energy redistribution (Wilcox
2006) and the influence of compressibility (Pope 2000). It also has the same order of
magnitude as the production term in the Reynolds-stress equations (see figure 13). In this
work, we only consider the assessments of some commonly used dilatational dissipation,
pressure—dilatation correlation and pressure—strain correlation models and present them in
the following section.

4.2.1. Modelling the dilatational dissipation term

The turbulent dissipation in the turbulent kinetic energy transport equation is also called
the scalar dissipation rate, € = €;;/2 = (t,0u;/dx;). The quantity, €, can be decomposed
into the solenoidal dissipation, €, dilatational dissipation, €4, and inhomogeneous
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dissipation, €;: (Huang et al. 1995)

erR e+ €4+ €, (4.18)
where
2 ’o . / 1 81’{; 814;-
€ = R_ef<a)lja)lj>, with W = 5 a—xj - 8_)C, ) 4.19)
4 [0u; du,
€4l = — ), (420)
3Rey \ 0x; 0xy
2 (9% (uju) 9 | 0
g=—|——-—-2— u;— . 4.21)
Rey \ 0x;0x; 0x; 0x;

The inhomogeneous dissipation mainly arises from the shear between the wall and the
shear layer (Brown et al. 2017; Li et al. 2021). As expected, the inhomogeneous dissipation
is close zero in the turbulence area of the free shear layer (without wall) based on the
present DNS data. The inhomogeneous dissipation shows a negligible contribution to the
turbulent kinetic energy transport equation in the free shear layer but has a significant
contribution in the boundary shear layer (Lele 1994; Huang et al. 1995; Brown et al. 2017).

In the k—e model, the dilatational dissipation term is responsible for the reduction in
growth rate as compressibility increases, thus it is a function of turbulent Mach number,
M; = «/%/co (Sarkar et al. 1989). Here, co = (c1 + ¢2)/2 is the mean speed of sound.
Therefore, the magnitude of the dilatational dissipation term increases with increasing
turbulent Mach number. Sarkar et al. (1989) proposed

€1 = Me;. (4.22)
The study by Zeman (1990) suggested

€g = 0.75 (1 exp{ [M’_O'l}z})e (4.23)
4 =0. — - — 5- .
0.6

Later, Wilcox (1992) introduced
€q = 1.5[M? — 0.1%]e;. (4.24)

Figure 11 presents the cross-stream profiles of dilatational dissipation obtained from
the present DNS and the models (4.22)-(4.24) for M. = 0.3 and 0.7. All terms are
extracted at x — xg = 300 and normalized by (A U)3 /8¢ . It can be seen that all the models
unrealistically overpredict the value of the dilatational dissipation, while the model of
Zeman (1990) (4.23) shows relatively better agreement than the rest for M. = 0.3. In the
turbulent kinetic energy transport equation, the dilatational dissipation term converts the
turbulent kinetic energy to internal energy. The considered models were primarily devised
to increase this energy conversion as the convective Mach number increases to account
for the compressibility effects. However, in figure 26(c) of our recently published paper
(Li et al. 2021), the ratio of the dilatational to solenoidal dissipation reveals that the value
of the dilatational dissipation is insignificant compared with the solenoidal dissipation.
In summary, the dilatational dissipation is insignificant in the plane free shear flow for
the convective Mach numbers considered in this study. Therefore, the models discussed in
this paper for dilatational dissipation are unsuitable for compressible plane free shear layer
flows for M. < 0.7.
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Dilatational dissipation

Figure 11. Comparison of dilatational dissipation cross-stream profiles between present DNS and models by
Sarkar et al. (1989) (4.22), Zeman (1990) (4.23) and Wilcox (1992) (4.24) for (a) M. = 0.3 and (b) M, = 0.7.
All terms are extracted at x — xg = 300 and normalized by (AU )3 /8¢

4.2.2. Modelling the pressure—dilatation correlation

The pressure—dilatation correlation, IT = (p'(u; /X)), is intrinsically the trace of the
pressure—strain correlation tensor and appears in the turbulent kinetic energy transport
equation. Sarkar, Erlebacher & Hussaini (1992), in their k—e two-equation model study,
suggested that the pressure—dilatation correlation could be related to the turbulent Mach
number, the turbulent kinetic energy production, Pi = —(po){u]u}}({u;}/xx), and the
solenoidal part of the dissipation rate, €, = (2/Rey) (a)l’ja)l’j) ie.

T = —0.15(p) PucM; + 0.2(p)esM?>. (4.25)

The purpose of including the turbulent Mach number in the model is to account for the

effect of compressibility, which may suppress the growth of the shear layer. Later, El Baz

& Launder (1993) proposed a similar model, which involves the divergence of the Favre

average velocity,

O{ui}
ox;

Huang et al. (1995), based on the study by Sarkar ez al. (1992), suggested

4
T =3(p) (g{k} — Pkk) M?. (4.26)

T = —0.4(p)PuM? + 0.2(p)eM?. (4.27)

Figure 12 presents the cross-stream profiles from the DNS and the modelled
pressure—dilatation correlation. The corresponding data are extracted from the turbulent
section of the shear layer at x — xg = 300. The results of the modelled pressure—dilatation
correlation are computed from (4.25) (Sarkar er al. 1992), (4.26) (El Baz & Launder
1993) and (4.27) (Huang et al. 1995) for M, = 0.3 and 0.7. All these models were
mainly designed to decrease the turbulent kinetic energy as the convective Mach number
increases to mimic the behaviour of the compressible flow. Based on our previous study
(Li et al. 2021), we conclude that the pressure—dilatation term’s contribution to the
turbulent kinetic energy budget is insignificant even as the convective Mach number is
raised to 0.7, which is consistent with the results by Vreman, Sandham & Luo (1996). The
authors suggested that the pressure—dilatation correlation is negligible in the turbulent
kinetic energy transport equation even at the highest Mach numbers examined. This
might arise from the self-cancellation when averaging the instantaneous p’(u} /x) over
time. Therefore, a reliable model should be able to predict that the pressure—dilatation
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Figure 12. Pressure—dilatation correlation cross-stream profiles generated by the present DNS and models
((4.25), (4.26) and (4.27)) for (@) M. = 0.3, (b) M. = 0.7 and (c) magnified area from panel (b). All terms are

extracted at x — xg = 300 and normalized by (AU)? /8y x 1074,

correlation is negligible. Unfortunately, figure 12 shows that the models proposed by
Sarkar et al. (1992) and El Baz & Launder (1993) largely overestimate the magnitude
of pressure—dilatation. Thus, these two models are unsuitable for free shear flows
with moderate Mach numbers. However, the model proposed by Huang et al. (1995)
shows exceptional performance for M. = 0.3 and acceptable prediction for M. = 0.7. In
conclusion, the model by Huang et al. (1995) provides the best prediction, while the model
by El Baz & Launder (1993) gives a large overestimate for both M. = 0.3 and 0.7. Finally,
all considered models show more significant discrepancies with the DNS value as the
convective Mach number increases from 0.3 to 0.7.

4.2.3. Modelling the pressure—strain correlation
Changes in the pressure—strain correlation components in the Reynolds stress transport
equations are responsible for the variations in turbulence structures and free shear layer
growth rate (Yoder 2003). The Reynolds stresses decrease with increasing the convective
Mach number, but the streamwise normal stress is often less affected (Li et al. 2019). The
pressure—strain correlation components redistribute the turbulence kinetic energy between
the streamwise, cross-stream and spanwise components, which increases the anisotropy
of the Reynolds stresses (Wilcox 2006). Hence, to properly account for the variations in
Reynolds stresses with increasing convective Mach number, a model capable of predicting
the anisotropy of Reynolds stresses is required (Yoder 2003).

The analysis of the transport equations for the Reynolds stress components may help
identify the driving factor behind changes of the Reynolds stresses. Different components
of production and pressure—strain correlation for M, = 0.3 and 0.7 are presented in
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Figure 13. Different components of production and pressure—strain for () M. = 0.3 and (b) M. = 0.7. All
terms are extracted at x — xg = 300 and normalized by (A U)? /8g X 1073.

figure 13. In the streamwise normal stress transport equation (i =1 and j = 1), the
production is the dominant source term, while the pressure—strain correlation acts as a
sink term. In the cross-stream and spanwise normal stress transport equations (i = 2 and
Jj=2;i=73 andj = 3), however, the production is insignificant and the pressure—strain
correlation is the major source term. The shear stress transport equation (i = 1 and j = 2)
is dominated by the production and pressure—strain correlation terms. In the other shear
stress transport equations (i = 1 and j = 3; i =2 and j = 3), which involve the shear
in the homogeneous direction (spanwise direction), the production and pressure—strain
correlation terms appear insignificant. It can be concluded that the pressure—strain
correlation term mainly redistributes the turbulence kinetic energy among the normal
stresses.

The pressure—strain correlation is one of the essential terms in the Reynolds stress
transport equations because it has the same order of magnitude as the turbulent production
term (see figure 13). Almost all the pressure—strain correlation models are designed based
on the assumption of incompressible and locally homogeneous flows (Yoder 2003). The
pressure—strain correlation model devised by Speziale, Sarkar and Gatski (SSG) (Speziale
et al. 1991) reads

I = —(Ci{p)e + 5Ci(p)Pu{ay} + Ca{p)e {au}{ar} — %{akl}{akl}&j)
+ (G — G5 {auHauh) (o) kS
+ Calp) (kY ({au} {Si} + {apHSi} — 3Haw}{aw)sy)

+ Cs{p){k}{auH{Wir} + {apHWi}). (4.28)
Here,
o Rgy 2o
{aj} = 7 3&] (4.29)

is the anisotropy tensor, while

4.30
0x; 0x; ( )

{Sij} =

_ % (a{Ui} . a{U,})
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and
(S5} = (Sy} — 5{Sw)8 (4.31)
are respectively the averaged strain rate and traceless strain rate tensor. Finally,
1 rofu}  a{Uj)
Wl = — - 4.32
W) 2 ( 0x; 0x; (432)

is the averaged rotation rate tensor. The isotropic dissipation rate € is provided by an
additional transport equation. The model coefficients Cy, Ca, C3, C4 and Cs are 17/10,
21/20, 4/5, 5/8 and 1/5, respectively. The other two coefficients C} and C5 are set as
9/10 and 65/100, respectively (Speziale et al. 1991).

Another pressure—strain correlation model, introduced by Wilcox (2006), is also used
to close the six Reynolds stress transport equations. For brevity, we refer to Wilcox
pressure—strain correlation model as WilcoxRSM hereafter. The WilcoxRSM is given by

— 2 2 N 2

1
— vk} ({Sij} - g{Skk}sij) , (4.33)
with
B 1 € o o{uy} 4 o{ur} 3
P = Epkk, W= —Cu{k}’ Djj = (i) o + (TjK) P (4.34a—c)

The production, P;;, from (4.12), and the strain rate tensor, {S;}, from (4.30), are employed
in the SSG and WilcoxRSM models. The closure coefficients 8*, C) and & are respectively
set as 9/100, 9/5 and 181/220, while ,3, 7 and C,, are given as 139/220, 59/55 and 9/100,
respectively (Wilcox 2006).

Figure 14 presents the comparison of the cross-stream profiles of DNS and the modelled
pressure—strain correlation. All terms are extracted at x — xg = 300 and normalized by
(AU)? /8o for M. = 0.3. It can be seen from figure 14(a) that the SSG model can roughly
predict the sink term, which is the pressure—strain correlation in the streamwise normal
stress transport equation (i = 1 and j = 1), while the WilcoxRSM model shows excellent
estimation. For the cross-stream and spanwise normal stress transport equations (i = 2
and j = 2; i = 3 and j = 3), the WilcoxRSM model is able to approximately predict the
magnitudes of pressure—strain correlation (see figure 14b,c¢), which acts as the major source
term. However, the SSG model underpredicts I1>; (significantly) and 133 (slightly).

In contrast, models SSG and WilcoxRSM excellently predict I71;> (see figure 14d), which
is the dominant term among the six components and has the most significant contribution
to the change of Reynolds stresses. The pressure—strain correlation component, 112,
is often used as a primary benchmark to optimize the corresponding models. The last
two pressure—strain correlation components, 7113 and I1p3, show negligible magnitudes
compared with the rest of the components owing to the negligible velocity fluctuation
gradient that emerged in the homogeneous spanwise direction. These components are
insignificant to the change of the Reynolds stresses. However, both the SSG and
WilcoxRSM models can accurately predict the value of 153 but considerably overpredict
I13.

The performance of the SSG and WilcoxRSM models in the higher convective Mach
number case is shown in figure 15, which compares the modelled pressure—strain
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Figure 14. Cross-stream profiles of pressure—strain correlation components (a) 111, (b) I, (¢) I133, (d) 112,
(e) ITy3 and (f ) I1>3 computed by models and DNS for M. = 0.3. All terms are extracted at x — xg = 300 and

normalized by (AU )3 /0.

correlation profiles with the present DNS results for M. = 0.7. Comparing the
performance in the case with M, = 0.3, the SSG and WilcoxRSM models show
slightly better agreement with the DNS results for components I1y;, I1>> and 133 (see
figure 15a—c), while show similar agreements for [T, (see figure 15d). However,
components I113 and I1»3, which are the insignificant ones, are respectively overpredicted
and underpredicted by both models. In general, both models can accurately estimate the
significant pressure—strain correlation components for M, = 0.3 and 0.7, even better for
the latter.

To account for the reduction in the pressure fluctuation with increasing Mach number, a
turbulence model for the pressure—strain correlation, including compressibility, is derived
by Fujiwara, Matsuo & Arakawa (2000), i.e.

(Hij)comp :f(Mt) (Hij)incomp’ (4.35)
where
G
fM;) =1—exp _1\7,2 . (4.36)

Here, Cy is taken as 0.02 for a compressible plane free shear layer (Fujiwara et al. 2000).
The subscripts comp and incomp indicate compressible and incompressible, respectively.
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Figure 15. Cross-stream profiles of pressure—strain correlation components (a) 1111, (b) I, (¢) I133, (d) 112,
(e) IT13 and (f' ) IT>3 computed by models and DNS for M, = 0.7. All terms are extracted at x — xg = 300 and

normalized by (AU )3 /0.

In this work, the case with M, = 0.3 is considered as a reference for the incompressible
comparisons owing to the fact that the compressibility effects can be considered negligible
for this small convective Mach number (Goebel & Dutton 1991; Pantano & Sarkar
2002). Ideally, the pressure—strain correlation in compressible flow (with M. = 0.7) can
be computed using the compressibility modification model by giving the corresponding
M; and the incompressible pressure—strain correlation (with M, = 0.3). For brevity,
we refer to the compressibility modification model of the pressure—strain correlation
(f (My) (ITij) incomp) as CMPS.

To examine the viability of the CMPS model, we use this model to calculate the
pressure—strain correlation for the case with M, = 0.7, then compare with the primitive
DNS results, as shown in figure 16. All terms are extracted at x — xg = 300 and normalized
by (AU)3/84. It can be seen that CMPS unrealistically underestimates all the components
of pressure—strain correlation in the case with M. = 0.7, except for the component /13,
which is insignificant in the corresponding Reynolds stress transport equation (discussed
previously). In summary, the use of the damping function appears to be somewhat
unphysical. This compressibility modification model features a dramatic decrease in the
magnitude of the pressure—strain correlation. It is suggested that the compressibility
effect is caused by suppressing both the pressure—strain correlation and the turbulence
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Figure 16. Cross-stream profiles of pressure—strain correlation components (a) 111, (b) I, (¢) I133, (d) I112,
(e) ITy3 and (f') ITo3 computed by CMPS (f (M;) (IT) incomp) for M = 0.7. Results from the model are compared
with the corresponding DNS (M, = 0.7). All terms are extracted from the turbulent region at x — xg = 300 and
normalized by (A U)? /0.

anisotropy (Yoder 2003; Cecora et al. 2012). In that case, the turbulent closure problem
becomes much more complicated than the simple damping function approach because the
pressure—strain correlation models relate to the second-order terms instead of the scalar
terms.

5. Large-eddy simulation models

The DNS data provides the possibility to investigate the robustness of the SGS modelling.
This paper only presents the a priori test, using the DNS data of the spatially developing
compressible plane free shear layer. Large-eddy simulation is based on the decomposition
of a flow variable into resolved and SGS terms (Gullbrand & Chow 2003). To decompose
a flow variable, a filtering length scale, A, is required and is defined as

A= (AA,40)' 5. (5.1)

Here, Ay, Ay and A, respectively represent the grid sizes in the streamwise, cross-stream
and spanwise directions. If the eddy size is larger than A, such an eddy is resolved. If
the eddy is smaller than A, it is modelled (Gullbrand & Chow 2003). In other words, the
large-scale structures of the flow is resolved to the grid resolution, while the SGS flow
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field and its effects on the resolved flow must be modelled. For example, velocity can be
decomposed as (Pope 2000)

W = ity + 1. (5.2)

Here, i; is the filtered velocity and u; is the SGS velocity. In the LES models section or
hereafter, the superscript ’ indicates the sub-grid scale. Note that the LES decomposition
of resolved and SGS velocities should not be confused with the RANS decomposition
of mean and fluctuation velocities. The filtered velocity can be written in terms of a
convolution integral as (Pope 2000)

ui(x, 1) = fg ui(¢, G(x — §)dg, (5.3)

where ¢ is the dummy variable, G indicates the filter kernel for the flow field and £2
denotes the computational domain. The Favre filtering operation is often applied for
compressible turbulence (Favre 1983), i.e.

i =" (5.4)

o

where the overbar and tilde denote the Reynolds and Favre filtering operations,
respectively. Before writing the LES equations, the LES filtering properties should be
defined. Unlike RANS averaging, in LES (Ghosal & Moin 1995),

F#F and J #0, (5.50.b)

where f is any flow variable. It indicates that averaging a flow field a second time can not
reproduce the original averaged flow field.

The filtering method used in this work is nodal filtering (Ghiasi et al. 2019). To obtain
a filtered value of a variable with a polynomial order ¢, we first interpolate the variable
to a grid with a lower-polynomial order ¢’ such that ¢’ < ¢. The resulting value is then
projected back onto the original grid with the polynomial order of ¢ (Bouffanais et al.
2006). The nodal filter is also called an interpolant-projection filter (Ghiasi er al. 2019).
This filter functions as a dampener that reduces high-frequency oscillations caused by
the Ny highest-frequency modes in the computational domain. Here, Ny = ¢ — ¢’ is the
filter strength, which is conceptually equivalent to the filtering length scale mentioned
previously (see the study by Ghiasi et al. (2019) for a detailed description of the nodal
filtering in the context of the spectral element method). In this paper, we use Ny = 2 as the
first filter length scale and Ny = 3 as the second one. Note that the DNS was conducted
using a polynomial order ¢ = 5.

Filtering the Navier—Stokes equations yields the following filtered conservation
equations (Vreman et al. 1997):

35, ) _

0, 5.6
ot 3)(]' (5-6)

G | WGEE) _ 9p T b0y

. (5.7)
ot ax]' 8)Cj ax]' ax]'

In this paper, we only consider modelling the SGS term in the momentum equation. The
exact SGS stress tensor, rijs.gs in (5.7), can be expressed as (Vreman et al. 1997)

o = iy — ). (5.8)
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As can be seen, the correlation term, zZﬁ?j, cannot be obtained from the resolved flow field.
The unresolved SGS stress tensor rij.gs needs to be modelled to close the equations system.

Leonard (1975) decomposed fl;gs into three parts: the Leonard stress, Lg.’l , the cross-SGS
stress, Cg.”, and the Reynolds SGS stress, Rg.’[, i.e.

o =L + ¢l +RY, (5.9)
where
Lf}4 = p(ii; — ), (5.10)
CM = p (it + ity — it — u[iy), (5.11)
RY = puju, — ulu). (5.12)

From the resolved velocity field, u, Leonard stress components, Lgfl , can be directly
calculated. Leonard stress is often called the outscatter term because the formulation
of Leonard stress represents the interaction of two resolved scale structures and such
interaction generates small-scale structures. The cross-SGS stress components, ij‘./l ,
represent the interaction and turbulence energy exchange between large-scale structures
and small-scale ones, respectively. However, the net energy exchange is from the

large-scale structures to small-scale ones. The Reynolds SGS stress components, R?.” ,

represent the interaction between two SGS stresses and such interaction yields a large-scale
structure. This behaviour is also called the backscatter. In contrast to Cg.’l , the Rg.’l only
converts turbulent energy from the small-scale structures to the large-scale ones (Xu 2003).
Traditionally, researchers separately modelled the Leonard stress, cross-SGS stress and
Reynolds SGS stress. However, Speziale (1985) suggested that modelling the three stresses
together can also satisfy the Galilean invariance property.

Piomelli er al. (1991) proposed that the energy transfer between resolved and SGS
structures can be represented by the SGS dissipation, i.e.

(€sGs)ij = f;gsSij, (5.13)
where
5= L (0 + il (5.14)
L) oxj  0x; ' '

If esgs is negative, the SGS structures remove energy from the resolved scale structures
(forward scatter); if e€ggs is positive, SGS structures transfer energy to the resolved
scale structures (backscatter). The forward and backward scatters of (esGs);; respectively
indicated by (¢;)— and (€)1, are defined as (Piomelli ez al. 1991)

(Eij)—Z%((GSGS)g; — |(esGs)ijl), (5.15)
and
(ei)+=5((€s65)if + |(€s68)ii])- (5.16)

Figure 17 illustrates the normalized (esgs)11, (€5G5)22, (€5G5)33, (€sGs)12, (€sGs)13 and
(esGs)23, which are computed from the current DNS data for M. = 0.3. The contours in
red indicate backscatter, while areas in blue indicate forward scatter (absolute dissipation).
It can be seen that all components of SGS dissipation contribute both backward and
forward scatter in the vortex structure regions. It indicates that energy actively exchanges
between small- and large-scale vortex structures in the shear layer.
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Figure 17. Contours of instantaneous SGS dissipation components, (e€sGs)11, (€5G5)22, (€5G5)33, (€5GS)125
(esGs)13 and (esgs)23 computed from DNS data for M. = 0.3. All components are extracted in the turbulent

region and normalized by (AU)3.

5.1. SGS modelling

Most of the LES formulations require SGS stress modelling, and such models are often
referred to as SGS models. The SGS models are theoretically simpler and more general
than the RANS models because nearly all SGS models are devised for small-scale
structures, and the small-scale structures are more isotropic and thus more universal for
various flows (Xu 2003). We consider four SGS models in this study: the Smagorinsky
model (SM), the dynamic Smagorinsky model (DS), the scale similarity model (SS) and
the gradient model (GM). The first two models are eddy viscosity type models. The last
two models, SS and GM, function as their names suggest, relevant to structure similarity
and velocity gradient concepts.

5.1.1. Smagorinsky model
The first practical SGS model is the Smagorinsky model (SM) (Smagorinsky 1963), based
on the methodology of the eddy viscosity model:

T — 3T 85 = —2vi(Sy — 3Suy), (5.17)
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where t,f,fs is the isotropic part of r;.gs and v; is the eddy viscosity. The eddy viscosity is
defined as (Smagorinsky 1963)

v = (CiA)*pIS), (5.18)
where the magnitude of the strain rate tensor is
|§| = (2§mn§mn) 1/2- (5.19)

Here, C; is the Smagorinsky coefficient and is set as a constant.

The Smagorinsky model assumes a proportional relation between the SGS stress tensor
and the strain rate tensor. This model, applying the gradient diffusion methodology,
is similar to the Boussinesq approximation for RANS models. The coefficient, C;,
can be estimated by analysing the isotropic turbulence decay (Smagorinsky 1963).
However, there are many unavoidable limitations when using the Smagorinsky model.
The value of C; must be varied for different types of flows (Moin et al. 1991). For
example, Lilly (1966) proposed C; = 0.23 in the homogeneous isotropic turbulence, while
Deardroff (1970) suggested C; = 0.1 for a turbulent channel flow. This paper evaluates
the Smagorinsky model using the latter value of 0.1 suggested by Deardroff (1970).
Moreover, the viscous dissipation would not vanish in the laminar region (Moin et al.
1991). Instead, the model would overly dissipate energy in the laminar region and the
transition region (Piomelli & Zang 1991). Finally, a well-known limitation of this model
is that it cannot account for energy backscatter (Moin ez al. 1991), which is the process
where the turbulent energy transfers from small-scale structures back to large-scale
ones.

5.1.2. Dynamic eddy viscosity model

The dynamic eddy viscosity model (DM) (Germano et al. 1991) functions as an eddy
viscosity model but with a dynamic Smagorinsky coefficient. The dynamic coefficient
is obtained based on the scale similarity concepts. This model computes the coefficient
both spatially and temporally by using the information in the resolved flow field
through two different filter lengths (Xu 2003). Therefore, the coefficient is a function
of both space and time. Theoretically, the issue of over dissipation in the laminar and
transition regions can be addressed by using this model. The dynamic eddy viscosity
model by Moin et al. (1991) is considered in this paper. This model inherits the
Smagorinsky model, while a dynamic coefficient of C, replaces the square of the constant
coefficient C;:

R IR ~2CaA%5151(Sj — 381 (5.20)

The Favre filtered SGS stress expression (exact solution) is

sgs — o~ ~ ~ _ PU;PU;
T~ = p(uiuj — u,'uj) = ,ouiuj — — .

ij (5.21)

A test filter is introduced in the dynamic model to bring the information from the resolved
field (Germano et al. 1991). The test filter width, A, with a larger filter length than the
resolved grid filter, is defined similarly as the grid filter width. Applying the test filter to
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ri;gs, the mentioned Favre filtered SGS stress expression (5.21) becomes
CoQ — /u\u
£ — g — 2400, (5.22)

The test filtered stress Tj; is defined similarly as the Favre filtered SGS stress expression
(5.21)

——  pu; plij

Tjj = pujuj — — (5.23)
19
and is modelled as
Ty — 1Tudy = —2C4A%pISI(Sy — 1 Sudy).- (5.24)

According to Germano’s identity (Germano et al. 1991), the relation among rl;gs, T and
L; gives

gs  PUPW, DWW,  —=~ Ui Pl
Lj=T; -5, = ;3 L — %jzpu,‘uj— p L, (5.25)

Substituting equations (5.20) and (5.24) into (5.25) yields

—

Lij = C4l—2A%p|S|(Syj — $Sudip) +242p1SI(Sj — $Sudi)] = CaMj, (5.26)

by neglecting the isotropic part of SGS stress tensors — t,f,fs and Tyk. This is because

r,f,fs and Ty, are not only negligible in terms of their magnitudes but also destabilize the
simulation (Moin et al. 1991; Vreman, Geurts & Kuerten 1995b).
Applying the least-squares proposed by Lilly (1992) and spatial averaging, the dynamic
coefficient Cy is defined as
(LiiM;)

Cj=—"—, (5.27)
¢ (LiaMyq)

where ( ) indicates the spatial averaging over the homogeneous direction (spanwise
direction in this paper) of the flow.

5.1.3. Scale similarity model

In LES, backscatter, which does not exist in eddy viscosity models but is an essential
feature of SGS stresses, transfers turbulent energy from small-scale structures back to
large-scale ones (Bardina, Ferziger & Reynolds 1980). To reproduce such backscatter,
Bardina et al. (1980) introduced the first scale similarity model (SS). This model
assumes that the structures of different levels of SGS stresses are similar to the smallest
resolved stresses. In other words, the SGS stresses can be predicted based on the
resolved flow field. This work examines a modified version of the scale similarity model
(Speziale 1985)

Sgs - AR R _ M
Tij ~ CLp(uiuj — uiuj) = CLL

i (5.28)
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where Cp is a similarity coefficient and chosen as unity (Speziale 1985). Here, Lg.” is the
modified Leonard stress defined in (5.10). Based on the definition, the implementation of
the scale similarity model requires second filtering (test filtering) on the resolved flow
field.

5.1.4. Gradient model
The Gradient model (GM) relates the SGS stress tensor to the inner product of velocity
gradients (Clark et al. 1979; Vreman et al. 1997)

AZ
r,j.gs A EGU-, (5.29)
where
di; di;
o Ot oWy 5.30
T dxg Oxk (5.30)

The gradient model is efficient in terms of computational cost owing to its zero-equation
nature. Additionally, the velocity derivatives can be reused in the viscous stresses
computations (Vreman et al. 1997). However, using this model to close the LES
momentum equation may result in a negative viscosity (Leonard 1997) and may cause
instabilities.

5.2. Comparison with filtered DNS data

The performance of the considered SGS models is studied via the analyses of the
correlation coefficient and discrete Ly-norm. The correlation coefficient, R(a, b), and
discrete Lo-norm, ||a — b||2, between two variables (a and b) are respectively defined as
(Wright 1921; Liu, Meneveau & Katz 1994; Okong’o & Bellan 2004)

n n n
nZaibi — ZaiZbi
R(a, b) = i=1 =1 =l , (5.31)

n n 2 n n 2
nZa?—(Zai) an?—(Zbi)
i=1 i=1 i=1

i=1

and

lla —bll2 =

> (@i — b2, (5.32)
i=1

where a and b are two arbitrary variables, while n is the number of paired samples.
Hereafter, R represents the correlation coefficient defined by (5.31). The correlation
coefficient between the modelled and exact stresses reveals the quality of the modelled
spatial structure of the turbulence. The magnitude of R ranges from O to 1. Magnitudes near
unity represent a high correlation (Lu, Rutland & Smith 2007). Moreover, the Ly-norm
of the difference between the modelled and exact stresses indicates whether the model
accurately predicts the average value of the stress. To better present the Ly-norm of the
difference between the modelled and exact stresses, we normalize it with the L>-norm
of the exact stress. A normalized Lr-norm with a significantly less than unity magnitude
represents a low relative error.
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(a) Laminar region
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Figure 18. Correlation coefficient, R, between the exact and the modelled rl;gs at the (@) laminar region,

(b) transition region and (c) turbulent region for M, = 0.3.

Owing to the large difference in the behaviours of laminar and turbulent flows, we
separately investigate the performance of the SGS models in the laminar, transition and
turbulent regions. Based on our previous work (Li et al. 2019) for M. = 0.3 and 0.7, the
transition approximately starts at 30 and 230, while the turbulence roughly initiates at 340
and 670, respectively (see table 1).

5.2.1. Correlation coefficient

The correlation coefficients, R;;, between the modelled SGS stress components and the
corresponding DNS results are presented in figure 18 for the case with M, = 0.3. The
considered models include SM, DS, SS and GM. It can be seen that the models can provide
high correlations for most of the SGS stress components in the laminar region, except
model SM for 7,5 and 7,5, DS for 7}5 and SS for 755 , which give low correlations.
However, model GM, in general, shows high correlations for all of the SGS stress

components. This arises from the fact that the inner product of velocity gradients in the
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Figure 19. Correlation coefficient, R, between the exact and the modelled ;*"

(b) transition region and (c) turbulent region for M, = 0.7.

at the (a) laminar region,

laminar region is near-zero. It is well known that the SGS model may overly dissipate
energy in the laminar region (Piomelli & Zang 1991). The operation of any SGS model
should be ideally suspended in the laminar region owing to the absence of small-scale
structures.

For the transition region, we can observe an apparent trend that the correlation increases
from model SM, DS, SS to GM, except for tffs and rgs, where there is a small decrease
from model SS to GM. For the three normal stresses, the correlations of models SS and
GM are higher than 0.9, which implies that models SS and GM can accurately predict the
structures of the SGS stress tensor. This is because both models are designed based on the
concept that the SGS stresses are approximated from the resolved flow field.

For the most important region in the computational domain, the turbulent region, models
SS and GM give high correlations for most SGS stress components. The trend of increasing
correlation from model SM, DS, SS to GM, found in the transition region, is also observed
in the turbulent region. In general, the model GM shows the highest correlation compared
with the rest, while model SM gives the worst performance. The reasons might be the
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Figure 20. Normalized Ly-norm between the exact and the modelled 7.>" at the (a) laminar region,

(b) transition region and (c) turbulent region for M, = 0.3.

following: first, isotropic turbulence is the necessary assumption for applying model SM;
second, the Smagorinsky coefficient is constant over the entire domain; third, energy only
transfers from resolved to SGS structures. We also present correlation coefficients for
higher convective Mach number, M, = 0.7, as seen in figure 19. In the laminar region,
unlike the performance shown in the case with M, = 0.3, all the models in general
provide lower correlations. This trend can be explained with the characteristics of the flow
field downstream of the trailing edge of the splitter plate. With the naturally developing
boundary inlet condition, boundary layers evolve on the splitter plate, eventually encounter
at the trailing edge and form a velocity deficit. The velocity deficit magnitude (VDM) and
the velocity deficit presence distance (VDPD) increase as compressibility increases (Li
et al. 2021). These phenomena affect the ability of the considered models to replicate the
SGS stress components in the laminar region with high convective Mach numbers because
the models are formulated based on the filtered velocity. In contrast, in the transition
and turbulent regions, similar trends observed in figure 18 can also be found here. This
observation implies that compressibility has an insignificant influence on the correlation
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Figure 21. Normalized L;-norm between the exact and the modelled 7;°" at the (a) laminar region,

(b) transition region and (c) turbulent region for M, = 0.7.

coefficients of the SGS models in the transition and turbulent regions for the convective
Mach numbers considered in this study.

In summary, for the cases with M, = 0.3 and 0.7, SS and GM provide excellent
correlations for the streamwise, cross-stream and spanwise normal SGS stress components
in the entire flow domain. However, SS and GM show average correlations for all the
shear SGS stress components. Model DS, which applies an eddy viscosity model with the
scale similarity method, gives average correlations for nearly all SGS stress components
in the transition and turbulent regions. Model SM, which merely uses the eddy viscosity
model, provides low correlations for all SGS stress components in both the transition and
turbulent region and gives average correlations in the laminar region for most of the SGS
stress components. The correlation coefficient between the modelled and exact SGS stress
indicates the quality of the reproduced spatial SGS structures. Therefore, models SS and
GM can reproduce small-scale structures that satisfy the necessary interactions between
small- and large-scale structures. In addition to presenting the correlation coefficients
in terms of 3-D columns in figures 18 and 19, we also tabulate their magnitudes in
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Appendix A for better quantitative comparisons between different models considered in
this work.

5.2.2. Lr-norm

Whether the model can accurately estimate the average quantity of the SGS stress
is another important benchmark for an SGS model. In this context, we provide the
normalized Ly-norm of the difference between the modelled and exact SGS stresses for
M. = 0.3, as shown in figure 20. The compared models consist of SM, DS, SS and GM.
The normalized Lp-norm results are separately calculated in the laminar, transition and
turbulent regions, as indicated in figures 20(a), 20(b) and 20(c), respectively. For each
stress component, we accumulate the discrepancies between two variables, namely the
DNS and modelled SGS stresses, over the solution points in a flow region. The lower
magnitude (significantly lower than unity) of the normalized L,-norm indicates higher
accuracy in prediction by the model. Models DS, SS and GM, in general, show higher
accuracy than model SM for all stress components in all three regions because the model
SM uses a constant eddy viscosity coefficient for the entire computational domain. Model
DS also employs an eddy viscosity model, but shows high accuracy owing to its spatially
and temporally self-adjusting eddy viscosity coefficient. Note that the magnitudes of the
normalized Ly-norms are also tabulated in Appendix B for better quantitative comparisons
between different models as well as various convective Mach numbers.

The results of the normalized Ly-norms for the case with M, = 0.7 are presented in
figure 21. As expected, the model SM, in general, gives poor performance for all of the
SGS stresses and flow regions. Moreover, models SM and GM show smaller accumulated
errors in the laminar region than those in the transition and turbulent regions. By further
comparing figure 21 with figure 20 and the corresponding data in Appendix B (tables
8 and 9), we can see that models DS and SS show similar performance for M, = 0.3
and 0.7 in the transition and turbulent regions. This indicates that the accumulated errors
from models DS and SS are insensitive to the change of the convective Mach number
considered in this work. However, the accumulated errors from model SM for M. = 0.7
are, in general, larger than that from the case with M, = 0.3, for nearly all SGS stresses
in the entire flow field, based on the data in tables 8 and 9 in Appendix B. Interestingly,
the accumulated discrepancy from the non-eddy viscosity model GM is slightly higher
than that from models DS and SS for most of SGS stress components in the transition and
turbulent regions for M. = 0.7, which does not occur in the case with M, = 0.3. Based
on this observation, we suggest that an optimal coefficient should be added to the model
GM (5.29) to account for the compressibility effects by applying the order-of-magnitude
analysis (Fujiwara et al. 2000). However, this analysis needs to carry out the a posteriori
test and therefore be considered as future work.

6. Summary and conclusions
The assessment of several typical turbulence models using DNS data has been carried out
for M, = 0.3, 0.5 and 0.7. The DNS data are generated by a high-order discontinuous
spectral element method for a 3-D, spatially developing plane free shear layer. The
shear layer is formed by two parallel streams separated by a splitter plate. The naturally
developing inflow conditions on both sides of the splitter plate are the two fully developed
Blasius boundary layers.

The considered turbulence models are evaluated through comparisons with the DNS
data. For strong Reynolds analogy models, comparisons of the modelled cross-stream
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profiles with DNS results show the following: excellent relation between temperature
and velocity fluctuations; acceptable relations between the Favre and Reynolds velocity
averages regardless of the convective Mach number. The temporal evolutions of the Favre
and modelled velocity fluctuations show strong correlations at different locations across
the shear layer in the turbulent region. Moreover, excellent agreement is obtained in
the cross-stream profiles of the modelled and DNS shear stress for all considered Mach
numbers. The extended strong Reynolds analogy models perform very well for the plane
free shear layer.

The dilatational dissipation is insignificant in the plane free shear flow for the convective
Mach numbers considered in this study. The examinations for the dilatational dissipation
models indicate that none of the models can accurately predict the corresponding DNS
results. Therefore, the considered models for dilatational dissipation are unsuitable for
compressible plane free shear layer flows for M, < 0.7. Several pressure—dilatation
correlation models are also examined using the DNS data. The model by Huang et al.
(1995) provides the best prediction, while the model by El Baz & Launder (1993) gives a
large overestimate for both M. = 0.3 and 0.7. In general, the considered models by Sarkar
et al. (1992), El Baz & Launder (1993) and Huang et al. (1995) show more significant
discrepancies with the DNS value as the convective Mach number increases from 0.3 to
0.7.

The analysis of the Reynolds stress transport equations provides insights into the
contributions of different stress components. In the streamwise normal stress transport
equation, the pressure—strain correlation term is a significant sink term. In the cross-stream
and spanwise normal stress transport equations, the turbulent production appears
insignificant, while the pressure—strain correlation becomes the major source. The
shear stress transport equation (i = 1 and j = 2) is dominated by the production and
pressure—strain correlation terms. In the other shear stress equations, the production and
pressure—strain correlation terms appear insignificant. The comparisons of the modelled
and DNS cross-stream pressure—strain correlation profiles suggest that the considered
models accurately estimate most of the pressure—strain correlation components. However,
the compressibility modification model gives poor predictions for the high-Mach-number
case.

The results of the a priori test for the SGS models are analysed quantitatively. The scale
similarity and gradient models, which are the non-eddy viscosity models, can accurately
reproduce different SGS stress components in terms of structure and magnitude. The
dynamic model, which is the eddy viscosity model based on the scale similarity idea,
shows acceptable correlation and accuracy for most SGS stress components for both
M, = 0.3 and 0.7. Finally, the Smagorinsky model, which is the purely dissipative model,
gives low correlations and large accumulated errors.
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Correlation coefficients for M, = 0.3
Laminar region Transition region Turbulent region

SGS stress  SM DS SS GM SM DS SS GM SM DS SS GM

o 0354 0181 0.689 0739 0.0652 0477 0.899 0754 0.128 0.408 0.681 0.917
x 0516 0575 0.673 0.677 0226 0547 0893 0.939 0.001 0501 0738 0.950
o 0980 0912 0.833 0743 0238 0.574 0853 0912 0111 0513 0883 0914
e 0.003 0289 0324 0523 0061 0118 0278 0164 0097 0302 0494 0.232
N 0.049 0025 0323 0407 0037 0089 0248 0283 0.091 0.058 0252 0315
X 0711 0410 0.002 0365 0004 0103 0485 0.546 0068 0.205 0458 0.459

Table 6. Correlation coefficient, R, for M, = 0.3 between the exact and the modelled SGS stresses by SM,
DS, SS and GM, at the laminar region, transition region and turbulent region for M, = 0.3.

Correlation coefficients for M. = 0.7

Laminar region Transition region Turbulent region

SGSstress SM DS SS GM SM DS SS GM SM DS SS GM

T 0.678 0.178 0.0677 0.392 0.104 0.582 0.755 0.832 0.138 0.607 0.779 0.892
L 0.279 0.535 0.005 0.372 0.050 0.632 0.837 0.950 0.043 0.551 0.819 0.923
rggs 0.812 0.186 0.003 0.980 0.390 0.642 0.740 0.905 0.0946 0.682 0.761 0.879
rfgs 0.009 0.124 0.003 0.428 0.009 0.782 0.360 0.446 0.126 0.533 0.358 0.270
r'fgs 0.252 0.407 0.002 0.733 0.039 0.005 0.141 0432 0.021 0.005 0.167 0.235
r;_ﬁs 0.391 0.151 0.001 0.053 0.144 0.339 0.244 0.246 0.196 0380 0.219 0.248

Table 7. Correlation coefficient, R, for M. = 0.7 between the exact and the modelled SGS stresses by SM,
DS, SS and GM, at the laminar region, transition region and turbulent region for M. = 0.7.
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F. Mashayek https://orcid.org/0000-0003-1187-4937.

Appendix A. Correlation coefficients

The analysis of the correlation coefficient R is one of our approaches to assess the
performance of the considered SGS models in this work. The correlation coefficient
between the modelled and exact stress reveals the ability of the model to capture the
turbulent spatial structure. The magnitude of R ranges from O to 1. Magnitudes near unity
represent a high correlation. A decrease in the magnitude of R value indicates a loss of
ability to capture the flow structure. We separately investigate the performance of the SGS
models in the laminar region, transition region and turbulent region owing to the large
difference in the behaviours of laminar and turbulent flows. In addition to presenting the
correlation coefficients in terms of 3-D columns in figures 18 and 19, we also tabulate their
magnitudes in tables 6 and 7 for better quantitative comparisons between different models
considered in this work.
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Normalized Ly-norms for M, = 0.3
Laminar region Transition region Turbulent region

SGS stress  SM DS SS GM SM DS SS GM SM DS SS GM

o 0.096 0.097 0.099 0100 0.583 0.51 0.099 0234 0593 0.46 0.100 0.115
3 0.132 0.010 0.003 0.011 0427 0103 0.057 0.103 0496 0.110 0.118 0.102
(=4 0.386 0.170 0.161 0.128 0.816 0.216 0.104 0.139 0.820 0.210 0.092 0.149
5 0.162 0.136 0.016 0.024 0177 0.046 0.040 0.066 0165 0.023 0.079 0.025
05 0.230 0.074 0.070 0.065 0.205 0.054 0.053 0.056 0.172 0.035 0.035 0.036
05 0120 0.026 0.021 0021 0172 0.030 0.032 0.024 0170 0.027 0.049 0.023

58§

;oat the (@) laminar

Table 8. Normalized Ly-norm for M, = 0.3 between the exact and the modelled t
region, (b) transition region and (c) turbulent region.

Normalized Ly-norms for M, = 0.7
Laminar region Transition region Turbulent region

SGS stress  SM DS SS GM SM DS SS GM SM DS SS GM

rflgs 0.102 0.112 0.111 0.096 0.805 0.123 0.095 0.480 0.696 0.105 0.070 0.394
r'zsgs 0.221 0.009 0.015 0.006 0.429 0.040 0.044 0.358 0.426 0.033 0.112 0.348
rgggs 0.117  0.010 0.052 0.005 0.930 0.112 0.073 0.531 0918 0.131 0.557 0.629
rgs 0.090 0.014 0.003 0.015 0.038 0.010 0.005 0.023 0.156 0.010 0.018 0.034
rg‘y 0.135 0.020 0.165 0.018 0.302 0.031 0.049 0.070 0.310 0.023 0.221 0.060
‘L’;gs 0.416 0.011 0.020 0.011 0.190 0.014 0.016 0.038 0.252 0.012 0.023 0.035

58§

;oat the (@) laminar

Table 9. Normalized L>-norm for M. = 0.7 between the exact and the modelled
region, (b) transition region and (c) turbulent region.

Appendix B. L;-norms

We also evaluate the performance of the considered SGS models via the analysis of
the normalized discrete Lp-norm. The normalized L,-norm of the difference between
the modelled SGS stress and the exact SGS stress by filtering the DNS data indicates
whether the model is able to correctly predict the average value of the SGS stress. A larger
normalized Ly-norm indicates a loss of ability to accurately capture the magnitude of the
SGS stress. The performance of the SGS models in the laminar region, transition region
and turbulent region is separately investigated owing to the fact that the flow behaviours
are distinctly different in those regions. In addition to presenting the normalized Ly-norm
as 3-D columns in figures 20 and 21, their values are also tabulated in tables 8 and 9 for
better quantitative comparisons between different models and convective Mach numbers.
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