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SUMMARY
Most of the previous works on the motion control of autonomous underwater vehicles (AUVs)
assume that (i) the vehicle actuators are able to tolerate every level of the control signals, and (ii)
the vehicle is equipped with the velocity sensors in all degrees of freedom. These assumptions are
not desirable in practice. Toward this end, this paper addresses the trajectory tracking control of
the underactuated AUVs with the limited torque, without the velocity measurements and under
environmental disturbances in a three-dimensional space. At first, a variable transformation is
introduced which helps us to derive a second-order dynamic model for underactuated AUVs.
Then, a saturated tracking controller is proposed by employing the saturation functions to bound
the closed-loop error variables. This technique reduces the risk of the actuators saturation by
decreasing the amplitude of the generated control signals. In addition, a nonlinear saturated observer
is introduced to remove the velocity sensors from the control system. The proposed controller copes
with the uncertain vehicle parameters, and constant or time-varying environmental disturbances
induced by the waves and ocean currents. Lyapunov’s direct method is used to show the semi-global
uniform ultimate boundedness of the tracking and state estimation errors. Finally, some simulation
results illustrate the effectiveness of the proposed controller.

KEYWORDS: Actuator saturation, Autonomous underwater vehicles, Adaptive control, Output
feedback, Trajectory tracking

1. Introduction

1.1. Background and related works
The motion control of the underactuated autonomous underwater vehicles (AUVs) has been
extensively studied from the control, robotic and ocean engineering communities over recent years.
This interest essentially originates from a wide range of the applications of such vehicles including
search, surveillance, rescue operations, exploration, reconnaissance, oceanographic mapping,
geological sampling, ocean floor survey, mine-sweeping and deep sea archaeology. The interested
readers are referred to the survey paper1 and references therein for an introduction to the design and
control of such systems. In contrast to the motion control of fully-actuated AUVs, the main concern
in the design of controllers for underactuated ones is that the number of their independent actuators is
fewer than the degrees of freedom. This limitation may be due to the mechanical or electrical failures
of actuators during an operation. Sometimes, a deliberate reduction in the number of actuators is
considered to decrease the weight and cost of the system. This feature, in turn, increases the degree
of complexity in the design of nonlinear tracking controllers for such vehicles.

Seminal works on the motion control of underactuated AUVs have been reported in refs. [2]–[4]
which the AUV dynamic model is neglected. Motivated by the challenging nature of the motion
control problems of underactuated AUVs and their offshore applications, many research works
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have been reported to solve the stabilization,5−7 homing,8 path-following,9,10 way-point tracking,11

trajectory tracking,12,13 output feedback (OFB)14,15 control of underactuated AUVs. In refs. [11]–[13],
tracking controllers are proposed for underactuated AUVs by using a 3-degree-of-freedom (DOF)
model. However, the velocity measurements are necessary to be available for the feedback and all
results are presented for the planar motion. In spite of extensive researches, most of the previous
controllers1−13 need velocity measurements for real implementations. Since velocity sensors may
increase the cost of real implementations and the weight of the system, their application is not
desirable in practice. One reasonable solution to omit the velocity sensors is the design of OFB
controllers by utilizing the velocity observers. However, since the separation principle in the design
of the observer-based controllers is not applicable for nonlinear systems such as AUVs, the design of
an output feedback controller (OFBC) is still a challenging task in current researches. The design of
OFBCs may be even more difficult in the presence of parametric uncertainties, unmodeled dynamics
and environmental disturbances in AUVs model. To address this problem, Do et al.14 proposed a
global OFBC for an underactuated AUV. However, their proposed controller cannot overcome the
imprecise knowledge of the AUV parameters. Refsnes et al.15 proposed a model-based OFBC for
the slender-body underactuated AUVs which needs model parameters for the implementation of the
observer-based controller. Subudhi et al.16 proposed a static output feedback OFBC for the path
following of AUVs in the vertical plane by using Serret–Frenet frame. Unfortunately, the proposed
controllers in refs. [14]–[16] neglect the actuators saturation.

Recently, different motion control problems have been addressed for AUVs in the literature.17−20

However, the main shortcoming of all previous works2−20 is that they assume that AUV actuators
are capable of tolerating every level of input signals and they generate the necessary level of the
torque signals. However, the large amplitudes of generated control signals may force the actuators
to go beyond their natural capabilities which may lead to their saturation in practical situations. The
actuator saturation is not desirable in practice and it may deteriorate the tracking performance of the
proposed controller especially in the transient response. In addition, a long-term saturation may lead
to thermal, electrical or mechanical failures of the actuators. One solution to improve this situation
is bounding of the closed-loop error variables by applying a saturation function in the design of the
tracking controller. This paper addresses the above mentioned problems for the AUVs.

1.2. Contributions of this paper
According to the best of the author’s knowledge, the trajectory tracking control problem of
underactuated AUVs with saturating actuators and without velocity sensors has not been addressed in
the available literature. This paper proposes a saturated OFB tracking controller to solve this problem
in the three-dimensional (3D) space for the first time. For this purpose, a variable transformation is
introduced based on a 5-DOF AUV model which includes all posture variables to incorporate the
AUV dynamics in all directions and to involve all control inputs. This transformation helps us to
derive a new second-order formulation for the AUV model. Then, a saturated observer-based tracking
controller is proposed to stabilize underactuated AUVs towards desired trajectories. The following
contributions are taken into account in this paper with respect to the previous works:

(i) Saturation functions will be employed to bound the tracking and state estimation errors in the
design of the controller and velocity observer. This technique reduces the risk of the actuator
saturation and consequently improves the transient response of the control system.

(ii) A nonlinear saturated observer is introduced to estimate the AUV velocities in the surge, pitch
and yaw directions. The observer design and the assumption of the passive-boundedness of the
sway and heave velocities play key roles to leave out velocity sensors for the implementation of
the proposed controller.

(iii) According to the literature,1−22 there exist a few works to solve the tracking control problem of
underactuated AUV in a 3D space. This paper addresses this problem by utilizing a coordinate
transformation for a 5-DOF AUV model.

(iv) Since AUV parameters such as the mass, inertia and damping coefficients are difficult to be
obtained accurately10 and the environmental disturbances are unavoidable due to waves, wind
and ocean currents, an adaptive saturation-type controller is also adopted for the robustness of
the proposed controller.
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The rest of this paper is organized as follows: The problem formulation is presented in the next
section. A variable transformation is introduced to develop a second-order model of AUVs which
plays a key role in the design of the controller. In Section 3, a saturated OFB control system is
proposed and its Lyapunov-based stability analysis is presented. In Section 4, simulation results are
provided to show the effectiveness of the proposed controller. Conclusions are given in Section 5.

2. Problem Formulation

2.1. Notations
Throughout this paper, ‖x‖: =

√
xT x is used to show Euclidean norm of a vector x ∈ �n,

whereas the norm of a matrix A is defined by the induced norm, i.e. ‖A‖ :=
√

λmax(AT A).
The term λmax(•) (λmin(•)) represents the largest (smallest) eigenvalue of a matrix. The matrix
In denotes an n-dimensional identity matrix. To simplify the subsequent control design and its
stability analysis, the notations Tanh(η) := [ tanh (η1), tanh (η2), . . . , tanh (ηn)]T and Sech2(η) =
diag[sech2(η1), . . . , sech2(ηn)] are also used, where η = [η1, η2, . . . , ηn]T ∈ �n, diag[•] denotes
a diagonal matrix, tanh(•) and sech2(•) = 1/cosh2(•) represent the hyperbolic tangent function and
its derivative, respectively. In addition, �+ denotes a set of positive real numbers.

2.2. Kinematic and dynamic models
Consider a class of underactuated AUV whose 5-DOF kinematic and dynamic models are described
as follows:21,22

η̇ =
[
η̇1
η̇2

]
=

[
T 1(η2) 0

0 T 2(η2)

]
︸ ︷︷ ︸

T (η2)

[
v1

v2

]
︸︷︷︸

v

, (1)

where T 1(η2) and T 2(η2) are given by

T 1(η2) =
⎡
⎣cos(ψ) cos(θ) − sin(ψ) sin(θ) cos(ψ)

sin(ψ) cos(θ) cos(ψ) sin(θ) sin(ψ)
− sin(θ) 0 cos(θ)

⎤
⎦ , T 2(η2) =

[
1 0
0 1/ cos(θ)

]
,

and

u̇ = m22

m11
vr − m33

m11
wq − d11

m11
u + 1

m11
τu − 1

m11
τwu(t),

v̇ = −m11

m22
ur − d22

m22
v − 1

m22
τwv(t),

ẇ = m11

m33
uq − d33

m33
w − 1

m33
τww(t),

q̇ = m33 − m11

m55
uw − d55

m55
q − ρg∇GML sin(θ)

m55
+ 1

m55
τq − 1

m55
τwq(t),

ṙ = m11 − m22

m66
uv − d66

m66
r + 1

m66
τr − 1

m66
τwr (t),

(2)

where x, y, z, θ and ψ denote the positions (i.e. the surge, sway and heave displacements), and
orientations (i.e. pitch and yaw angles), respectively, in the earth-fixed frame, which are denoted
by the vector η = [ηT

1 , ηT
2 ]T, where η1 = [x, y, z]T and η2 = [θ, ψ]T. The signals u, v, w, q and r

represent the surge, sway, heave, pitch and yaw velocities in the body-fixed frame which are denoted
by the vector v = [vT

1 , vT
2 ]T, where v1 = [u, v, w]T and v2 = [q, r]T. The control inputs τu, τq and

τr are provided by the actuators with the limited torque which are simply modeled as follows in this
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paper:

τk =
⎧⎨
⎩

τk,max, if τk > τk,max

τk, if τk,min ≤ τk ≤ τk,max

τk,min, if τk < τk,min

, k = u, q, r (3)

where τk,max > 0 and τk,min < 0 denote the upper and lower limits of the actuator saturation
nonlinearity, respectively. The signals τwu(t), τwv(t), τww(t), τwq(t), τwr (t) ∈ � are bounded time-
varying disturbances and unmodeled dynamics, m11 = m − Xu̇, m22 = m − Yv̇ , m33 = m − Zẇ,
m55 = Iy − Mq̇ m66 = Iz − Nṙ , d11 = −Xu, d22 = −Yv , d33 = −Zw, d55 = −Mq and d66 = −Nr

where m denotes the mass of the vehicle, Iy and Iz are the moments of the inertia about the pitch
and yaw rotation axes, and other symbols represent hydrodynamic derivatives.23 In addition, ρ, g,
∇ and GML represent the water density, gravity acceleration, displaced volume of the water, and
longitudinal metacentric height, respectively, according to ref. [21]. It should be noted that the above
models are valid when AUVs are operating at low speeds and they are equipped with independent
internal or external roll actuators. The interested readers are referred to ref. [21] for more details and
discussions.

To develop the controller in the next section, the kinematic model of (1) is expressed in the actuated
degrees of freedom as follows:

η̇ = S(η)υ + δ(η, w), (4)

where S(η) denotes a new kinematic matrix, υ = [u, q, r]T and w = [v, w]T are considered as new
velocity vectors in the actuated and unactuated directions, respectively, and δ(η, w) ∈ �5 denotes a
vector of the kinematic disturbances which is defined as follows:

S(η) =

⎡
⎢⎢⎢⎣

cos(ψ) cos(θ) 0 0
sin(ψ) cos(θ) 0 0

− sin(θ) 0 0
0 1 0
0 0 1/ cos(θ)

⎤
⎥⎥⎥⎦ , δ(η, w) =

⎡
⎢⎢⎢⎣

−v sin(ψ) + w sin(θ) cos(ψ)
v cos(ψ) + w sin(θ) sin(ψ)

w cos(θ)
0
0

⎤
⎥⎥⎥⎦ . (5)

The actuated dynamics of the AUV, i.e. the surge, pitch and yaw dynamics are stated in the
following form:

M1υ̇(t) + C1(w)υ(t) + D1υ(t) + G1(η) + τw1(t) = τ a(t), (6)

where τ a = [τu, τq, τr ]T denotes a vector of the control inputs, M1 ∈ �3×3 denotes the inertia
matrix, C1(w) ∈ �3×3 shows the centripetal and Coriolis forces, D1 ∈ �3×3 denotes the hydro-
dynamic damping matrix, G1(η) ∈ �3 is a vector of the gravity forces, τw1(t) ∈ �3 denotes the
unmodeled dynamics, constant and time-varying disturbances induced by waves and ocean currents,
which are defined as follows:

M1 =
⎡
⎣m11 0 0

0 m55 0
0 0 m66

⎤
⎦ , C1(w) =

⎡
⎣ 0 m33w −m22v

(m11 − m33)w 0 0
(m22 − m11)v 0 0

⎤
⎦ ,

D1 =
⎡
⎣d11 0 0

0 d55 0
0 0 d66

⎤
⎦ , G1(η) =

⎡
⎣ 0

ρg∇GML sin(θ)
0

⎤
⎦ , τw1(t) =

⎡
⎣τwu(t)

τwq(t)
τwr (t)

⎤
⎦ ,

The unactuated dynamics of AUV, i.e. the sway and heave dynamics are written as follows:

M̄1ẇ + C̄1(υ)υ + D̄w + τ̄w1(t) = 0 (7)
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Fig. 1. Three-dimensional configuration of an underactuated autonomous underwater vehicle. Photo courtesy
of http://auvac.org/platforms/view/234.

where

M̄1 =
[
m22 0

0 m33

]
, C̄1(υ) =

[
0 0 m11u

0 −m11u 0

]
, D̄1(η) =

[
d22 0
0 d33

]
, τ̄w1(t) =

[
τwv(t)
τww(t)

]
.

(8)

Assumption 1. The sway and heave velocities of the vehicle are passive-bounded in the sense
that sup

t≥0
‖w(t)‖ < Bw.

Reamrk 1. As frequently reported in the literature,19,22,24,25 it is easy to systematically analyze
the passive-boundedness property of the sway and heave velocities of the ocean vehicles. Since the
hydrodynamic damping forces in (7) are dominant in the sway and heave directions in practice and,
as a result, the sway and heave velocities are damped out by such forces, the above assumption is
reasonably accepted. The interested readers are referred to refs. [22] and [25] for further discussions
about Assumption 1.

Reamrk 2. In practice, the response of the actuators and thrusters is much faster than the vehicle
response. Consequently, their dynamics are reasonably ignored in this paper and their slight effects
are considered as unmodeled dynamics which are included in the term τw1(t) in (6).

Assumption 2. The disturbance vectors τw1(t) ∈ �3 and τ̄w1(t) ∈ �2 are bounded in the sense
that ‖τw1(t)‖ ≤ λw11 and ‖τ̄w1(t)‖ ≤ λ̄w11 where λw11 and λ̄w11 show the positive constants.

Property 1. The following properties are valid for the dynamic model (6):

P1.1: M1 is a positive-definite and symmetric matrix which is upper and lower bounded such that
λm1‖x‖2 ≤ xT M1x ≤ λM1‖x‖2 ∀x ∈ �3, and 0 < λm1 ≤ λM1 < ∞ where λm1 := λmin(M1)
and λM1 := λmax(M1).

P1.2: Considering Assumption 1, the following upper bounds are valid for
the presented model: ‖C1(w)‖ ≤ λC1‖w‖ ≤ λC1w

, ‖D1‖ ≤ λD1, ‖G1(η))‖ ≤ λG1, ∀η ∈
�5, w ∈ �2 where λC1, λC1w

, λD1 and λG1 are some positive scalar constants.

2.3. Coordinate transformation
Since the 3D position tracking control of underactuated AUVs is of interest in this paper, the position
coordinates in x, y and z directions should be chosen in the earth-fixed frame. One simple choice is
the position of the center of mass (COM) as illustrated in Fig. 1. However, the main problems of this
choice are that (i) the controller will not sense any disturbance in the pitch and yaw directions based
on the presented AUV model (1) and (2); (ii) the COM position will not be affected by the yaw and
pitch control inputs. Therefore, the following coordinate transformation is introduced which includes
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all DOFs to incorporate the AUV dynamics in all directions and to involve all control inputs:

y = h(η) = pE
R = OE

B + T 1(η2) pB
R

= [x + 	 cos(θ) cos(ψ), y + 	 cos(θ) sin(ψ), z − 	 sin(θ)]T ,
(9)

where OE
B represents the coordinates of OB in the earth-fixed frame {OEXEYEZE} in Fig. 1, pB

R =
[	, 0, 0]T denotes the coordinates of a virtual reference point in the body-fixed frame {OBXBYBZB}
which is called the control point in this paper, pE

R denotes the coordinates of the virtual control point
PRin the earth-fixed frame which is represented by y for the notation simplicity, and 	 is a constant
positive parameter. By differentiating (9) and substituting (4), one gets

ẏ = J(η)υ + J δ(η, w), (10)

where

J(η) = J h(η)S(η) =
⎡
⎣cos(ψ) cos(θ) −	 sin(θ) cos(ψ) −	 sin(ψ)

sin(ψ) cos(θ) −	 sin(θ) sin(ψ) 	 cos(ψ)
− sin(θ) −	 cos(θ) 0

⎤
⎦ , (11)

J δ(η, w) = J h(η)δ(η, w) =
⎡
⎣−v sin(ψ) + w sin(θ) cos(ψ)

v cos(ψ) + w sin(θ) sin(ψ)
w cos(θ)

⎤
⎦ , (12)

where Jh(η) := ∂h(η)/∂η denotes the Jacobian Matrix. In contrast to the kinematic matrix S(η),
there is no singularity in the matrix J(η) for all θ, ψ ∈ �. Then, one may write

υ = J−1(η)( ẏ − J δ(η, w)), (13)

Once again, the time-derivative of (10) yields ÿ = J̇υ + J υ̇ + J̇ δ which is re-written as υ̇ =
J−1 ÿ − J−1 J̇υ − J−1 J̇ δ which together with (13) and (6) yield

M1 J−1 ÿ − M1 J−1 J̇( J−1 ẏ − J−1 J δ) − M1 J−1 J̇ δ + C1 J−1 ẏ
− C1 J−1 J δ + D1 J−1 ẏ − D1 J−1 J δ + G1 + τw1 = τ a.

(14)

Then, by taking the following equalities into account from (4), (7) and (13)

M1 J−1 J̇ J−1 J δ − M1 J−1 J̇ δ = −M1d( J−1 J δ)/dt,

d

dt
( J−1 J δ) = ∂( J−1 J δ)

∂η
S J−1 ẏ − ∂( J−1 J δ)

∂w
M̄−1

1 D̄w − ∂( J−1 J δ)

∂w
M̄−1

1 τ̄w1

−∂( J−1 J δ)

∂w
M̄−1

1 C̄1( J−1 ẏ) J−1 ẏ + 2
∂( J−1 J δ)

∂w
M̄−1

1 C̄1( J−1 J δ) J−1 ẏ

−∂( J−1 J δ)

∂w
M̄−1

1 C̄1( J−1 J δ) J−1 J δ,

and considering the force-torque transformation τ a = JT (η)FpR
from the virtual work theory,26

where FpR
∈ �3 is the force acting on the virtual control point PR in Fig. 1, and multiplying both

sides of (14) by J−T (η), it is straightforward to obtain the following earth-fixed frame representation:

M2(η) ÿ + C2(η, ẏ) ẏ + D2(η) ẏ + d(η, w, ẏ) + G2(η) + τw2(η, w, t) = FpR
= J−T (η)τ a, (15)

where M2(η), C2(η, ẏ), D2(η), d(η, w, ẏ), G2(η) and τw2(η, w, t) are derived as follows:

M2(η) = J−T (η)M1 J−1(η),
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C2(η, ẏ) = −J−T (η)M1 J−1 J̇ J−1(η),

D2(η) = J−T (η)D1 J−1(η),

d(η, w, ẏ) = J−T (η)(C1 − M1
∂( J−1 J δ)

∂η
S − 2M1

∂( J−1 J δ)

∂w
M̄−1

1 C̄1( J−1 J δ)) J−1(η) ẏ

+ J−T (η)M1
∂( J−1 J δ)

∂w
M̄−1

1 C̄1( J−1 ẏ) J−1(η) ẏ,

G2(η) = J−T (η)G1,

and

τw2(η, w, t) = J−T (η)(−C1 J−1 J δ − D1 J−1 J δ + τw1 + M1
∂( J−1 J δ)

∂w
M̄−1

1 D̄w

+ M1
∂( J−1 J δ)

∂w
M̄−1

1 τ̄w1 + M1
∂( J−1 J δ)

∂w
M̄−1

1 C̄1( J−1 J δ) J−1 J δ).

These matrices are not required for the controller design in the next section. By considering that
J(η) ∈ �3×3 is a full rank matrix, and recalling Property 1, and referring to ref. [26], it is easy to
prove that the model of (15) satisfies the following properties:

Property 2. The following properties hold for the proposed model (15):

P2.1: M2(η) is a symmetric and positive-definite matrix which is lower and upper bounded as
λm2‖x‖2 ≤ xT M2(η)x ≤ λM2‖x‖2 ∀x ∈ �3, η ∈ �5, and 0 < λm2 ≤ λM2 < ∞ where λm2 :=
min
∀η∈�5

λmin(M2(η)) and λM2 := max
∀η∈�5

λmax(M2(η)).

P2.2: The matrix Ṁ2(η) − 2C2(η, ẏ) is skew-symmetric, that is, xT (Ṁ2(η) − 2C2(η, ẏ))x =
0, ∀x, ẏ ∈ �3.

P2.3: The centripetal-Coriolis matrix satisfies the following relationship:

C2(η, x1)x2 = C2(η, x2)x1 ∀ x1, x2 ∈ �3

P2.4: Based on P1.2 and Assumptions 1 and 2, there exist positive scalar constants λC2, λG2

and λw2 such that ‖C2(η, ẏ)‖ ≤ λC2‖ ẏ‖, ‖G2(η)‖ ≤ λG2 and ‖τw2(η, w, t)‖ ≤ λw2.

P2.5: The damping term d(η, w, ẏ) satisfies the following Lipschitz condition:

‖d(η, w, x1) − d(η, w, x2) ‖ ≤ dM1 ‖x1 − x2‖ + dM2‖x1 − x2‖2 ∀ x1, x2 ∈ �3

where dM1 and dM2 are the unknown positive scalar constants.

P2.6: The matrix D2(η) satisfies the following inequality

λd2‖x‖2 ≤ xT D2(η)x ≤ λD2‖x‖2 ∀ x ∈ �3, η ∈ �5

where 0 < λd2 ≤ λD2 < ∞ and λd2 := min
∀η∈�5

λmin(D2(η)) and λD2 := max
∀η∈�5

λmax(D2(η)).
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2.4. Control objectives
The following tracking problem is addressed in this paper by considering Assumptions 1 and 2:

Definition 1. Given a smooth bounded desired trajectory yd (t) : [0, ∞) → �3 which is generated
by an open-loop motion planner whose motion equations are given by (1) and (2), the control objective,
which is discussed in this paper, is to design an OFB tracking control law for an underactuated AUV
system (1) and (2) such that it forces the tracking errors, e(t) := y(t) − yd (t) ∈ �3, to converge to
small balls containing the origin under following conditions:

C1. The vehicle parameters are unknown, and the vehicle is subjected to constant or time-varying
disturbances induced by the waves and ocean currents;

C2. The velocity measurements are not available for the feedback;

C3. The AUV actuators are saturated in the sense that |τu| < τu max, |τq | < τq max and |τr | <

τr max.

The following assumptions are also essential to meet the above control objectives:

Assumption 3. The measurements of the output vector y ∈ �3 are available in real-time. For this
purpose, it is assumed that the position and heading sensors are used to obtain the output measurements
in (9).

Assumption 4. The desired trajectory yd (t) is chosen such that yd (t), ẏd (t) and ÿd (t) are all
bounded signals such that sup

t≥0
‖ yd (t)‖ < Bdp, sup

t≥0
‖ ẏd (t)‖ < Bdv and sup

t≥0
‖ ÿd (t)‖ < Bda where

Bdp, Bdv and Bda are some bounded positive constants.

Definition 2. Given a positive constant Mi , a function si : � → � : ξ → si(ξ ) is said to be
a saturation function with bound Mi , if it is locally Lipschitz, non-decreasing, and satisfies: (i)
ξsi(ξ ) > 0, ∀ξ = 0 ; and (ii) |si(ξ )| ≤ Mi, ∀ξ ∈ �.

The common examples of such functions are si(ξ ) = tanh(ξ ) and si(ξ ) = ξ/
√

1 + ξ 2 with Mi = 1.
A strictly increasing continuously differentiable function satisfying the above definition has the
following properties.

Lemma 1. Let si : � → � : ξ → si(ξ ) be a strictly increasing continuously differentiable
saturation function including the hyperbolic tangent function with bound Mi , let k1 and k2 be
the positive constants, and s ′

i : ξ → dsi/dξ where 0 < s ′
i(ξ ) ≤ s ′

iM, ∀ξ ∈ �. Then, the following
properties can be proved:

(i) s2
i (k1ξ )/(2k1s

′
iM ) ≤ ∫ ξ

0 si(k1r)dr ≤ k1s
′
iMξ 2/2, ∀ξ ∈ �, which results in the inequality

tanh2(k1ξ )/(2k1) ≤ ln(cosh(ξ )) ≤ k1ξ
2/2, ∀ξ ∈ �;

(ii)
∫ ξ

0 si(kr)dr > 0, ∀ξ = 0,
∫ ξ

0 si(kr)dr → ∞ as |ξ | → ∞, ln(cosh(ξ )) > 0, ∀ξ = 0 and
ln(cosh(ξ )) → ∞ as |ξ | → ∞;

(iii) |si(k1x + k2y) − si(k2y)| ≤ s ′
iMk1|x|, ∀x, y ∈ � and |si(x) − si(x − y)| ≤ s ′

iM |y|, ∀x, y ∈
�, |tanh(k1x + k2y) − tanh(k2y)| ≤ k1|x|, ∀x, y ∈ �, |tanh(x) − tanh(x − y)| ≤ |y|, ∀x, y ∈
�;

(iv) |si(k1x)| ≤ s ′
iMk1|x|, ∀x ∈ � and |tanh(k1x)| ≤ k1|x|, ∀x ∈ �;

(v) From item (iv), it follows that |si(x)|2 ≤ s ′
iM |x||si(x)| = s ′

iMx si(x), ∀x ∈ �, and as
a result, one gets |tanh(x)|2 ≤ |x||tanh(x)| = x tanh(x), ∀x ∈ � and xT � Tanh(x) ≥
λmin{�}‖Tanh(x)‖2, ∀x ∈ �n, � ∈ �n×n ;

(vi) From item (i), it follows that s2
i (ξ ) ≤ s ′2

iMξ 2, ∀ξ ∈ � and tanh2(ξ ) ≤ ξ 2, ∀ξ ∈ � which leads
to ‖Tanh(x)‖2 ≤ ‖x‖2.

Proof . See ref. [27].

Lemma 2 28. The inequality h‖ x‖ − xTh Tanh(νh x/εt ) ≤ nεt holds for any εt > 0, and for
any ∀x ∈ �n and h ∈ � where Tanh(νh x/εt ) := [ tanh (νh x1/εt ), . . . , tanh (νh xn/εt )]T and ν is a
constant which satisfies ν = e−(ν+1), i.e. ν = 0.2785.
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3. Saturated Output Feedback Tracking Controller

3.1. Controller design
In this section, a saturated OFB controller is designed by using the hyperbolic tangent function,
which is a simple case of the saturation functions, to satisfy the control objectives which were
defined in Definition 1. For this purpose, the tracking and state estimation error vectors are defined
as e(t) := y(t) − yd (t) and z(t) := y(t) − ŷ(t), respectively. Then, motivated by,29,30 the following
virtual reference trajectory is introduced to design the controller:

ẏr := ẏd − � Tanh( ŷ − yd ) = ẏd − � Tanh(e − z), (16)

Then, the following composite error signal is also defined:

r1 := ẏ − ẏr = ė + � Tanh(e − z), (17)

where � = λI3 ∈ �3×3 and λ > 0. To design the observer, the following signals are also introduced:

ẏo := ˙̂y − � Tanh(z), (18)

r2 := ẏ − ẏo = ż + � Tanh(z), (19)

By replacing (17) in (15) and applying Property P2.3, one gets

M2(η)ṙ1 = −C2(η, ẏ)r1 − D2(η)r1 + d(η, w, ẏr ) − d(η, w, ẏ)
+ J−T (η)τ a − C2(η, ẏr )r1 + ξ ,

(20)

where

ξ = −M2(η) ÿr − C2(η, ẏr ) ẏr − d(η, w, ẏr ) − D2(η) ẏr − G2(η) − τw2(η, w, t)

represents the uncertain nonlinearities such that ‖ξ‖ ≤ ρ( ẏr , ÿr ) = G( ẏr , ÿr )θ based on Properties
P2.1, P2.4 and P2.5 where G( ẏr , ÿr ) = [1 ‖ ẏr‖ ‖ ẏr‖2 ‖ ÿr‖]. Then, the following saturated tracking
controller is proposed:

τ a = JT (η)(−K 1 Tanh( ẏo − ẏr ) − K 2 Tanh(e − z)
− K 2 Tanh(z) − ρ̂( ẏr , ÿr ) Tanh(νρ̂(r̂1 + r̂2)/εt )),

(21)

where r̂1 + r̂2 := ˙̂y − ẏd + � Tanh( ŷ − yd ) + � Tanh(z), K 1, K 2 ∈ �3×3 are the positive-definite
diagonal gain matrices, ρ̂( ẏr , ÿr ) = G( ẏr , ÿr )θ̂ is an estimation of the upper bounding function
ρ( ẏr , ÿr ), and θ̂ ∈ �4 is updated by the following adaptive law:

˙̂θ = 
 GT ( ẏr , ÿr ) ‖ r̂1 + r̂2‖ − 
 � (θ̂ − θ0), (22)

where 
 = γ I4 shows the adaptation gain, � ∈ �4 denotes a positive-definite diagonal matrix, and
θ0 ∈ �4 is a priori estimate of the parameters. The following nonlinear saturated observer is also
proposed to estimate the velocity of the virtual control point PR in the front of the AUV in Fig. 1:

˙̂y(t) = ˙̂yo(t) + � Tanh(z(t)) + kd z(t), (23)

˙̂yo(t) = ẏr (t) + kd�

∫ t

0
Tanh(z(τ )) dτ, (24)

where kd ∈ �+ is the observer gain. The initial conditions of the observer are chosen as ˙̂yo(0) =
−(�T anh(z(0)) + kd z(0)), ŷ(0) = y(0), z(0) = 0 and ˙̂y(0) = 0.
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3.2. Closed-loop error dynamic equations
The closed-loop error dynamic equation is obtained as follows by considering r1 − r2 = ẏo − ẏr

from (17) and (19), and substituting (21) into (20):

M2(η)ṙ1 = −C2(η, ẏ)r1 − D2(η)r1 − K 1Tanh(r1 − r2) − K 2 Tanh(e − z)
− K 2 Tanh(z) − ρ̂Tanh(νρ̂(r̂1 + r̂2)/εt ) + χ1 + ξ ,

(25)

where

χ1 = d(η, w, ẏr ) − d(η, w, ẏ) − C2(η, ẏr )r1,

which is bounded as follows by using ‖d(η, w, ẏr ) − d(η, w, ẏ)‖ ≤ dM1‖r1‖ + dM2‖r1‖2 from (17)
and Property P2.5: ∥∥χ1

∥∥ ≤ ζ1 ‖x‖ + ζ2‖x‖2, (26)

where ζ1, ζ2 ∈ � are the positive bounding constants and x ∈ �12 is defined by

x := [TanhT (e − z), TanhT (z), rT
1 , rT

2 ]T . (27)

Since from (23), one can write ¨̂y = ¨̂yo + � Sech2(z) ż + kd ż, it is very easy to show that (23) and
(24) are equivalent to ṙ1 = ṙ2 + kd r2 which together with (25) and Property P2.3 yield the following
observer error dynamic equation:

M2(η)ṙ2 = −C2(η, ẏ)r2 − kd M2(η) r2 − K 1Tanh(r1 − r2) − K 2 Tanh(e − z)
− K 2 Tanh(z) − ρ̂Tanh(νρ̂(r̂1 + r̂2)/εt ) + χ2 + ξ

(28)

where χ2 is obtained as follows:

χ2 = C2(η, ẏr + r1)r2 − C2(η, r1)(2 ẏr + r1) − D2(η)r1 + d(η, w, ẏr ) − d(η, w, ẏ)

From (16)–(19), Lemma 1, and Properties P2.4, P2.5 and P2.6, the following upper bound holds
for χ2: ∥∥χ2

∥∥ ≤ ζ3 ‖x‖ + ζ4‖x‖2, (29)

where ζ3, ζ4 ∈ � are the positive bounding constants.

3.3. Stability analysis
The closed-loop stability of the proposed saturated OFB tracking control system is expressed by the
following theorem. Then, Lyapunov’s direct method is applied to prove the theorem in the sequel.

Theorem 1. Consider the second-order model of underactuated AUVs which is given by (15).
Given a bounded continuous desired trajectory, and under Assumptions 1–4, if the gains of the
proposed controller (21)–(24) are chosen to meet the following stability conditions:

λmin(K 2�) > 0.5k2 maxλ + k2 max, (30)

λd2 > k1 max + 0.5k2 max + 0.5(ζ1 + ζ2), (31)

kd > (2k1 max + k2 max + 0.5(ζ3 + ζ4)) /λm2, (32)

where ki max = λmax(K i), i = 1, 2, then, the OFB controller guaranties that all signals of the closed-
loop system remain bounded and the tracking and observation errors are semi-globally uniformly
ultimately bounded (SGUUB) and converge to a neighborhood of the origin. In addition, the following
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region of attraction can be made arbitrarily large to include any initial condition by choosing the control
gains large enough:

RA =
{

ϑ ∈ �16

∣∣∣∣∣ ‖ϑ‖ <

√
2αm − (ζ1 + ζ3)

(ζ2 + ζ4) min{λu/λx, 0.5λmax(
−1)/λx}

}
, (33)

where θ̃ = θ − θ̂ denotes the vector of the parameters estimation error, ϑ = [uT , θ̃
T

]T , u =
[(e − z)T , zT , rT

1 , rT
2 ]T , αm is a positive gain-dependent parameter, ζi, i = 1, . . . , 4 are defined

by (26) and (29), x ∈ �12 was defined in (27), and λx and λu will be defined later.

Proof . Consider the following Lyapunov function candidate

V (t) =
3∑

i=1
k2i ln cosh(ei − zi) + 1

2 rT
1 M2(η)r1 +

3∑
i=1

k2i ln cosh(zi)

+ 1
2 rT

2 M2(η)r2 + 1
2 θ̃

T

−1θ̃

(34)

By using item (i) of Lemma 1, one may confirm that (34) can be bounded as follows:

3∑
i=1

k2i tanh2(ei − zi)/2 + 1

2
λm2‖r1‖2 +

3∑
i=1

k2i tanh2(zi)/2 + 1

2
λm2‖r2‖2 + 1

2
λmin(
−1)

∥∥θ̃
∥∥2

≤ V (t) ≤ λks,max‖e − z‖2 + 1

2
λM2‖r1‖2 + λks,max‖z‖2 + 1

2
λM2‖r2‖2 + 1

2
λmax(
−1)

∥∥θ̃
∥∥2

(35)
which can be stated as follows:

λx‖x‖2 + 0.5λmin(
−1)
∥∥θ̃

∥∥2 ≤ V (t) ≤ λu‖u‖2 + 0.5λmax(
−1)
∥∥θ̃

∥∥2
(36)

where λx = min{λks,min, λm2/2}, λu = max{λks,max, λM2/2}, λks,min = 0.5 min{k21, k22, k23},
λks,max = 0.5 max{k21, k22, k23}, and λm2 and λM2 are defined in Property P2.1. From the above
inequality and item (ii) of Lemma 1, it is obvious that V (t) is a positive-definite, decrescent and
radially unbounded function. These properties are necessary for the semi-global stability proof. By
differentiating (34) along (17), (19), (25) and (28), using Property P2.2 and the fact that ˙̂θ = − ˙̃θ , we
get

V̇ (t) = TanhT (e − z)K 2(ė − ż) + rT
1 M2 ṙ1 + 1

2
rT

1 Ṁ2r1 + TanhT (z)K 2 ż

+ rT
2 M2 ṙ2 + 1

2
rT

2 Ṁ2r2 − θ̃
T

−1 ˙̂θ

= −TanhT (e − z)K 2� Tanh(e − z) − TanhT (z)K 2� Tanh(z) − rT
1 D2(η)r1

− kd rT
2 M2(η) r2 − rT

1 K 1Tanh(r1 − r2) − rT
2 K 1Tanh(r1 − r2)

+ TanhT (e − z)K 2� Tanh(z) − rT
1 K 2 Tanh(z) − 2rT

2 K 2 Tanh(e − z)

− ρ̂(r̂1 + r̂2)T Tanh(νρ̂(r̂1 + r̂2)/εt ) + rT
1 χ1 + rT

2 χ2 + (r1 + r2)T ξ − θ̃
T

−1 ˙̂θ

(37)

After re-arrangement, considering r̂1 + r̂2
∼= r1 + r2 from Remark 5 in the next section, and

adding and subtracting rT
1 K 1Tanh(r1) and rT

2 K 1Tanh(r1), (37) is re-written as follows:

V̇ (t) ≤ −TanhT (e − z)K 2� Tanh(e − z) − TanhT (z)K 2� Tanh(z)
− rT

1 D2(η)r1 − kd rT
2 M2(η) r2 − rT

1 K 1Tanh(r1)
+ ‖K 1‖ ‖r1‖ ‖Tanh(r1) − Tanh(r1 − r2)‖ − rT

2 K 1Tanh(r1)
+ ‖K 1‖ ‖r2‖ ‖Tanh(r1) − Tanh(r1 − r2)‖ + ‖K 2‖ ‖r1‖ ‖Tanh(z)‖
+ ‖K 2�‖ ‖Tanh(e − z)‖ ‖Tanh(z)‖ + 2 ‖K 2‖ ‖r2‖ ‖Tanh(e − z)‖
+ ‖r1‖

∥∥χ1

∥∥ + ‖r2‖
∥∥χ2

∥∥ + ‖r1 + r2‖ ‖ξ‖ − θ̃
T

−1 ˙̂θ

− ρ̂(r1 + r2)T Tanh(νρ̂(r1 + r2)/εt )

(38)
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By recalling the adaptive law (22), taking items (iii), (iv) and (v) of Lemma 1 into account, and
recalling the upper bounds on ‖ξ‖,‖χ1‖ and ‖χ2‖, one achieves

V̇ (t) ≤ −λmin(K 2�) ‖Tanh(e − z)‖2 − λmin(K 2�) ‖Tanh(z)‖2 − λd2‖r1‖2

− λmin(kd M2(η) )‖r2‖2 + ‖K 1‖ ‖r1‖ ‖r2‖ − λmin(K 1)‖Tanh(r1)‖2

+ ‖K 1‖ ‖r2‖2 + ‖K 1‖ ‖r1‖ ‖r2‖ + ‖K 2�‖ ‖Tanh(e − z)‖ ‖Tanh(z)‖
+ ‖K 2‖ ‖r1‖ ‖Tanh(z)‖ + 2 ‖K 2‖ ‖r2‖ ‖Tanh(e − z)‖ + ζ1 ‖r1‖ ‖x‖
+ ζ2 ‖r1‖ ‖x‖2 + ζ3 ‖r2‖ ‖x‖ + ζ4 ‖r2‖ ‖x‖2 − ρ̂(r1 + r2)T Tanh(νρ̂(r1 + r2)/εt )

+ ‖r1 + r2‖ G( ẏr , ÿr )θ − θ̃
T

GT ( ẏr , ÿr ) ‖ r1 + r2‖ + θ̃
T
�(θ̂ − θ0)

(39)

By considering θ̂ = θ − θ̃ , applying Lemma 2, recalling Young’s inequality ‖K‖‖ x1‖‖ x2‖ ≤
0.5λmax(K )‖ x1‖2 + 0.5λmax(K )‖ x2‖2, ∀x1, x2 ∈ �n, and considering

2 ‖K 1‖ ‖r1‖ ‖r2‖ ≤ k1 max‖r1‖2 + k1 max‖r2‖2,

‖K 2�‖ ‖Tanh(e − z)‖ ‖Tanh(z)‖ ≤ 0.5k2 maxλ ‖Tanh(e − z)‖ 2 + 0.5k2 maxλ ‖Tanh(z)‖2,

‖K 2‖ ‖r1‖ ‖Tanh(z)‖ ≤ 0.5k2 max ‖r1‖ 2 + 0.5k2 max‖Tanh(z)‖2,

2 ‖K 2‖ ‖r2‖ ‖Tanh(e − z)‖ ≤ k2 max ‖r2‖ 2 + k2 max‖Tanh(e − z)‖2,

‖r1 + r2‖ G( ẏr , ÿr )θ̂ − ρ̂(r1 + r2)T Tanh(νρ̂(r1 + r2)/εt ) ≤ 3εt

one may express (39) as

V̇ (t) ≤ −α1 ‖Tanh(e − z)‖2 − α2 ‖Tanh(z)‖2 − α3‖r1‖2 − α4‖r2‖2 − λmin(K 1)‖Tanh(r1)‖2

+0.5(ζ1 + ζ3)‖x‖2 + 0.5(ζ2 + ζ4)‖x‖4 + 3εt + θ̃
T
� (θ̂ − θ0),

(40)
where the parameters αi, i = 1, . . . , 4 are defined as α1 = λmin(K 2�) − 0.5k2 maxλ − k2 max,
α2 = λmin(K 2�) − 0.5k2 maxλ − 0.5k2 max, α3 = λd2 − k1 max − 0.5k2 max − 0.5(ζ1 + ζ2), and α4 =
kdλm2 − 2k1 max − k2 max − 0.5(ζ3 + ζ4). The control gains should be chosen such that αi > 0, i =
1, . . . , 4, which, in turn, lead to the conditions (30)–(32). By completing the square terms in the last
term of (40), it is written as follows:

V̇ (t) ≤ −αm‖x‖2 + 0.5(ζ1 + ζ3)‖x‖2 + 0.5(ζ2 + ζ4)‖x‖4

− λmin(K 1)‖Tanh(r1)‖2 − μσ (1 − 0.5/κ2)
∥∥θ̃

∥∥2 + γ (t)
≤ −(αm − 0.5(ζ1 + ζ3) − 0.5(ζ2 + ζ4)‖x‖2)‖x‖2

− μσ (1 − 0.5/κ2)
∥∥θ̃

∥∥2 + γ (t)

(41)

where x ∈ �12 is defined by (27) and αm = min{α1, α2, α3, α4}, γ (t) = 0.5μσκ2||θ − θ0||2 + 3εt (t),
μσ =

√
λmin(�T �) and κ ∈ �+ where κ >

√
2/2. Hence, if αm is selected such that

αm > 0.5(ζ1 + ζ3) + 0.5(ζ2 + ζ4)‖x‖2, (42)

Then, (41) can be stated as

V̇ (t) ≤ −cm‖x‖2 − μσ (1 − 0.5/κ2)
∥∥θ̃

∥∥2 + γ (t), (43)

where cm ∈ � is a positive constant. The inequality (43) is also expressed as follows:

V̇ (t) ≤ −c‖ p(t)‖2 + γ (t) (44)

where c = min{cm, μσ (1 − 0.5/κ2)} is also a positive scalar constant, and p(t) ∈ �16 is given by
p(t) = [xT (t), θ̃

T
(t)]T . Therefore, provided that conditions (30)–(32), and (42) are satisfied, V̇ (t) is

strictly negative outside the compact set p = { p(t) | 0 ≤ ‖ p(t)‖ ≤ √
γ /c}. This expression points
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out that V (t) is decreasing outside the set p which results in the following inequality

V (t) ≤ V (0) ≤ λu‖u(0)‖2 + 0.5λmax(
−1)
∥∥θ̃(0)

∥∥2 ∀t ≥ 0 (45)

where the upper bound on V (t) in (36) has been used. From (45) and (36), one gets

‖x‖2 ≤ λu/λx‖u(0)‖2 + 0.5λmax(
−1)/λx

∥∥θ̃ (0)
∥∥2

. (46)

Thus, a sufficient condition for (42) is given by

αm > 0.5(ζ1 + ζ3) + 0.5(ζ2 + ζ4)(λu/λx‖u(0)‖2 + 0.5λmax(
−1)/λx

∥∥θ̃(0)
∥∥2

), (47)

This inequality shows that we can make the region of attraction in (33) arbitrarily large in order
to include any initial condition by choosing the control gains large enough. As a result, ‖ p(t)‖
is SGUUB. By considering the properties of the saturation functions, this result indicates that
e(t) − z(t), z(t), r1(t), r2(t), θ̃ (t) ∈ L∞ which results in e(t) ∈ L∞. The above discussion proves
that the tracking errors, state estimation errors and parameter estimation errors are SGUUB. Therefore,
by taking (17) and (19) into account, one concludes that ė(t), ż(t) ∈ L∞. Finally, one obtains
η(t), υ(t), υ̂(t), θ̂ (t), τ a(t) ∈ L∞ by considering (9), (10), the control (21), and Assumptions 1
and 4. This completes the proof.

3.4. Remarks

Reamrk 3. Considering the definition of ẏr (t) in (16) and the observer definition in (23) and (24),
the signal ÿr = ÿd − � Sech2( ŷ − yd )( ˙̂y − ẏd ) is available for the computation of ρ̂( ẏr , ÿr ) in the
proposed controller in (21).

Reamrk 4. The conditions (30)–(32) in Theorem 1 present the sufficient conditions of the stability
of the closed-loop system which are the result of a conservative Lyapunov-based stability analysis.
One may find less restrictive sufficient conditions on the control gains in a similar stability proof.
In addition, the presented stability conditions will not be required for the controller implementation.
It should be noted that since the energy dissipation elements in AUV dynamics such as potential
damping, skin friction, wave drift damping, and damping due to the vortex shedding always exist in
practice, the condition (31) is not restrictive for the proposed controller.

Reamrk 5. One can easily confirm that the use of the approximation r̂1 + r̂2
∼= r1 + r2 in (38) is

reasonable when observer-controller gains kd and � are chosen large enough. The interested reader
is referred to ref. [30] for a detailed discussion.

Reamrk 6. The controller-observer parameters �, K 1, K 2, kd, 
, � and θ0 may be tuned to
adjust the convergence rate c and the size of the ultimate bound γ /c. For the example, the following
tuning rules can be deduced from the above stability analysis which help the user to adjust all control
parameters properly: (i) by considering the definitions of αi, i = 1, . . . , 4 after (40), the larger
values of �, K 2, kd , increase c and decrease the size of the ultimate bound γ /c; (ii) the smaller values
of � decrease the value of γ and consequently leads to the smaller ultimate bound γ /c; (iii) the time
function εt (t) in the saturation-type controller Tanh(•) in (21) may be tuned to compromise between
the final tracking accuracy and the smoothness of the control signal. The controller (21) may be made
smoother by choosing a larger value for εt (t). However, the larger value of εt (t) increases the value
of γ (t) in (44) which may result in a larger ultimate bound.

3.5. A generalization
In this section, the proposed controller is generalized to a more general class of strictly increasing
continuously differentiable saturation functions which are denoted by si(•) according to Definition 2.
By defining the vectors s(η) := [s1(η1), s2(η2), . . . , sn(ηn)]T and S′(η) = diag[s ′

1(η1), . . . , s ′
n(ηn)],

with ‖S′(η)‖ ≤ s ′
MM, ∀η ∈ �n, and introducing the following definitions ẏr := ẏd − � s(e − z),

r1 := ẏ − ẏr = ė + � s(e − z), ẏo := ˙̂y − � s(z), and r2 := ẏ − ẏo = ż + � s(z), the following
theorem can be proven.
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Theorem 2. Consider the reduced model of the AUV in (15) again. Given a bounded continuous
desired trajectory, and under Assumptions 1–4, the following adaptive tracking controller

τ a = JT (η)(−K 1 s( ẏo − ẏr ) − K 2 s(e − z)
− K 2 s(z) − ρ̂( ẏr , ÿr ) Tanh(νρ̂(r̂1 + r̂2)/εt )),

(48)

˙̂θ = 
 GT ( ẏr , ÿr ) ‖ r̂1 + r̂2‖ − 
 � (θ̂ − θ0), (49)

with the observer definition

˙̂y(t) = ˙̂yo(t) + � s(z(t)) + kd z(t), (50)

¨̂yo(t) = ÿr (t) + kd�s(z(t)), (51)

under the following gain conditions

λmin(K 2�) > 0.5k2 maxλ + k2 max, (52)

λd2 > s ′
MMk1 max + 0.5k2 max + 0.5(ζ1 + ζ2), (53)

kd >
(
2s ′

MMk1 max + k2 max + 0.5(ζ3 + ζ4)
)
/λm2, (54)

guarantee that all signals in the closed-loop system are bounded and the tracking and observation
errors are SGUUB and converge to a small ball containing the origin. Moreover, the region of
attraction (33) can be made arbitrarily large to include any initial condition by selecting the control
gains large enough.

Proof . By constructing the following Lyapunov function candidate

V (t) =
3∑

i=1
k2i

∫ ei−zi

0 si(r) dr + 1

2
rT

1 M2(η)r1 +
3∑

i=1

k2i

∫ zi

0
si(r) dr

+ 1

2
rT

2 M2(η)r2 + 1

2
θ̃

T

−1θ̃ ,

(55)

the proof is accomplished similar to the proof of Theorem 1 by using Lemma 1. Therefore, the proof
is omitted here to save the space of this paper and it is left to the interested readers.

Fig. 2 shows a block diagram of the proposed control system.

4. Numerical Simulations

4.1. Trajectory tracking for a single AUV
Some numerical simulations have been performed to illustrate the effectiveness of the proposed
controller. The simulation results are depicted in this section. All of simulations are carried out by using
MATLAB software. In order to simulate a more realistic AUV, 6-DOF kinematic and dynamic models
of AUVs are considered from.21 The roll interaction is taken into account as an external disturbance in
this paper. A Gaussian white noise is also added to the output measurements by using randn(•) function
to simulate a localization system. All of simulations are performed based on Euler approximation
with a time step of 20 msec. It is assumed that the AUV is equipped with some propellers to
provide the surge force, pitch and yaw moments. The AUV parameters are selected as m11 = 25 kg,
m22 = 17.5 kg, m33 = 30 kg, m44 = 22.5 kgm2, m55 = 22.5 kgm2, m66 = 15 kgm2, dkk = 30 kgs−1,
k = 1, 2, 3, dkk = 20 kgm2s−1, k = 4, 5, 6, ρg∇GML = 5, and 	 = 0.35 m for this simulation. In
addition, the control signals are saturated such that |τk| ≤ 80 Nm, k = u, q, r to simulate the real
actuators. It is assumed that AUV parameters including the mass, the moment of inertia and the
damping coefficients are unknown in practice. Moreover, the environmental disturbances, which are
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Fig. 2. A block diagram of the proposed saturated output feedback control system.

induced by the friction, waves, and ocean currents, are simulated as follows in all degrees of freedom:

τwk(t) = Af sign(k) + Ad sin(ωd t), k = u, v, w, p, q, r (56)

where Af , Ad and ωd represent the amplitudes and the frequency of disturbance signals. In order to
verify the AUV model and its attributed parameters for this simulation, some open-loop simulation
tests have been performed under constant torque inputs.

Fig. 3(a) shows the AUV trajectory, surge velocity and acceleration signals under τu = 10 N,
τq = 0 Nm and τr = 0 Nm. Figure 3(b) illustrates the AUV performance under τu = 20 N, τq = 2 Nm
and τr = 4 Nm. From Fig. 3, it is obvious that the response of the simulated model is consistent
with a real AUV. In addition, the minimum turning radius of AUV manoeuvring is 0.6 m for
the maximum constant surge force and yaw torque. In order to simulate the proposed closed-loop
controller, the control parameters are chosen as K 1 = 10I3, K 2 = 10I3, λ = 1, kd = 50, 
 = I4,
� = 0.001I4, θ0 = 0 and εt = 1. The parameters of the disturbance signals in (56) are selected as
Af = 0.5, Ad = 1 and ωd = 0.1. The initial posture (the position and orientation) of the AUV is set to
x(0) = 2.0 m, y(0) = 6.0 m, z(0) = 0.0 m, θ(0) = 0 rad, and ψ(0) = 0 rad for this simulation. The
reference trajectory yd (t) is generated by an open-loop motion planner whose initial posture is set to
xd (0) = 0 m, yd (0) = 0 m, zd(0) = −2.0 m, θd (0) = 0 rad, and ψd (0) = 0 rad. To drive the motion
planner in a helical trajectory, the following torque inputs are applied: τud = 5 N, τqd = 1 Nm and
τrd = 2 Nm. In this simulation, the helical trajectories are selected for the AUV motion to excite the
nonlinear dynamics of the vehicle including Coriolis and centripetal forces for an efficient evaluation
of the proposed controller performance. In addition, the AUV may employ a helical trajectory to
descend in the depth for the sea exploration, oceanographic mapping, ocean floor survey and deep sea
archaeology for the example in practice. Figure 4 illustrates the tracking results including x-y-z plot,
output tracking errors, control signals and estimated parameters for the proposed controller. As shown
by the figure, the AUV successfully tracks the desired trajectory without the actuator saturation. The
estimated parameters are bounded and the tracking errors exponentially converge to a neighborhood
of the origin. A clear advantage of the proposed controller is that it shows a smooth transient response.
As shown by the figure, the generated control signals lie within the acceptable saturating bounds.

4.2. A performance evaluation
This section plans to compare the proposed controller with an adaptive robust PD controller which is
a traditional solution for the position control of many robotic systems in Euler-Lagrange form (15).
The choice of the adaptive robust PD controller in this comparison is useful to evaluate the ability
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Fig. 3. Open-loop simulation results: (a) x–y–z plot, surge velocity and acceleration under constant surge force,
(b) x–y–z plot, x–y plot, AUV velocities and accelerations under constant surge force, pitch and yaw torques.

of the proposed controller in reducing the risk of the actuator saturation. The adaptive robust PD
controller is designed as follows by using the results of:26

τ a = JT (η)(−K 1 r(t) − ρ̂( ẏd, ÿd ) Tanh(νρ̂r(t)/εt )), (57)

where r(t) = ė(t) + �e(t) is a filtered error signal, � = λI3 ∈ �3×3 and K 1 ∈ �3×3 denote the
control gain matrices, ρ̂( ẏd, ÿd ) = G( ẏd, ÿd )θ̂ , G( ẏd, ÿd ) = [1, ‖ ẏd‖, ‖ ẏd‖2, ‖ ÿd‖] and θ̂ is
updated by the following adaptive rule:

˙̂θ = 
 GT ( ẏd, ÿd ) ‖ r(t)‖ − 
 � (θ̂ − θ0). (58)

For a fair comparison, the same simulation parameters are chosen for both controllers similar to
the previous simulation parameters. However, the initial posture of the open-loop motion planner

https://doi.org/10.1017/S0263574717000455 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000455


390 3D tracking control of autonomous underwater vehicles

Fig. 4. Trajectory tracking results: (a) x–y–z plot, (b) output tracking errors, (c) control signals and (d) estimated
parameters for the proposed controller.

is set to xd (0) = 0 m, yd (0) = 0 m, zd (0) = −30 m, θd (0) = 0 rad, and ψd (0) = 0 rad and εt = 10
is selected to reduce the chattering of the control signals. The results are illustrated in Fig. 5. It is
obvious that the proposed controller performs better than the PD controller from the viewpoint of
the feasible control signals. However, the PD controller surpasses in the final tracking accuracy at
the expense of the actuator saturation and a chattering in the control signals. Figure 5(c) illustrates the
output tracking errors in a logarithmic scale to show the final tracking accuracy clearly. The following
performance index is used to evaluate the amount of the control efforts for each controller:

rms(τaj (t)) =
√

(1/Tf )
∫ Tf

0

∣∣τaj (t)
∣∣2

dt, j = 1, 2, 3 (59)

where Tf denotes the total running time and τaj (t) represents j -th element of the control input. The
results are reported as rms(τa1(t)) = 130, rms(τa2(t)) = 40, and rms(τa3(t)) = 53 for the proposed
controller and rms(τa1(t)) = 235, rms(τa2(t)) = 163, and rms(τa3(t)) = 172 for the PD controller.
To evaluate the final tracking accuracy during the last TL seconds, the performance index ef,j =
maxTf −TL≤t≤Tf

{|ej (t)|}, j = 1, 2, 3 is used with TL = 5sec. The results are reported as ef,1 = 0.01 m,
ef,2 = 0.02 m, and ef,3 = 0.06 m for the proposed controller and ef,1 = 0.004 m, ef,2 = 0.001 m,
and ef,3 = 0.001 m for the PD controller. As a consequence, the PD controller achieves a better
final tracking accuracy at the expense of the large control efforts and unwanted chattering. Another
simulation has been carried out which shows that the roughness of the PD control signals increases
when the AUV starts from a very distant position relative to the desired trajectory. This leads
to a poor transient performance. This result is illustrated by Fig. 6 for xd (0) = 0 m, yd (0) = 0 m,
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Fig. 5. Trajectory tracking results for the proposed and PD controllers: (a) x–y–z plot, (b) output tracking errors
(linear scale), (c) output tracking errors (logarithmic scale) and (d) control signals.

zd (0) = −100 m, θd (0) = 0 rad, and ψd (0) = 0 rad. It should be noted that the control signals are
omitted in Fig. 6 because of a severe chattering.

A clear advantage of the proposed control system is the smoothness of the control signals. From a
practical viewpoint, this feature shows that the generated control signals are acceptable by the AUVs
actuators by considering their limited bandwidth. Therefore, the presented simulation results confirm
the effectiveness of the proposed control system for a real implementation in offshore applications.

4.3. Controller robustness
In this section, the controller robustness and its stability are evaluated in the presence of the different
levels of the uncertainties during the tracking mission. Since the controller employs an adaptive
robust control strategy in the last term of (21), the controller effectively compensates all parametric
and non-parametric uncertainties. If the level of the uncertainty increases due to the waves and ocean
currents for example, the controller robustness is preserved at the expense of a larger adaptive gain and
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Fig. 6. The output tracking errors for the proposed and PD controllers for large initial tracking errors.

Fig. 7. Trajectory tracking results for different levels of uncertainties: (a) Af = 1, Ad = 2, (b) Af = 2.5,
Ad = 5, (c) and Af = 5, Ad = 10.

more chattering in the control signals. For a very high level of uncertainties, the chattering increases
remarkably such that the control signals are not tolerable and feasible for the AUV actuators. Of
course, this chattering can be decreased by choosing a larger value for εt at the expense of a less
accuracy as stated in Remark 6. By further increasing of the uncertainties, the controller performance
is extremely degraded and, finally, the controller stability may be lost. Figure 7 illustrates simulation
results for (Af = 1, Ad = 2), (Af = 2.5, Ad = 5) and (Af = 5, Ad = 10). As it is clear from this
figure, the controller robustness is gradually degraded by increasing the level of the disturbances.
Simulation results show that very high levels of the uncertainties greatly jeopardize the controller
stability. As expressed above, the user may partly recover the tracking performance by increasing
the adaptive gain 
 and the parameter εt . However, the controller robustness will be improved by
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redesigning the proposed controller with an effective combination of the neural networks and adaptive
robust techniques. This subject is not in the scope of this paper.

5. Conclusion
In this paper, the OFB tracking control problem of the underactuated AUV subjected to the model
uncertainties and input constraints has been addressed. The theoretical results have been presented to
solve the 3D position control of AUVs when (i) the actuators are restricted to provide a limited amount
of the torque inputs for the propellers; (ii) the velocity sensors are not available to supply the velocity
measurements and (iii) the AUV parameters are not known and AUV suffers from environmental
disturbances induced by the waves and ocean currents. The closed-loop stability of the proposed
control system has been analyzed by Lyapunov’s direct method. The presented stability analysis
has shown that the closed-loop error variables are SGUUB. Finally, the simulation results have
successfully verified the validity of the theoretical results. An extension of the proposed controller
to the 3D OFB formation control of multiple AUVs with input constraints is devoted to the future
works.
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