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We show that for any coprime integers λ1, . . . , λk and any finite A ⊂ Z, one has

|λ1 · A + · · · + λk · A| � (|λ1| + · · · + |λk |)|A| − C,

where C only depends on λ1, . . . , λk .
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1. Introduction

Let A and B be finite sets of real numbers. The sumset of A and B is defined by

A + B = {a + b : a ∈ A, b ∈ B}.

For a real number d �= 0 the dilation of A by d is defined by

d · A = {d} · A = {da : a ∈ A},

while for any real number x, the translation of A by x is defined by

x + A = {x} + A = {x + a : a ∈ A}.

Our main theorem is the following.

Theorem 1.1. Let A be a finite subset of the integers and λ1, . . . , λk be coprime integers.

Then

|λ1 · A + · · · + λk · A| � (|λ1| + · · · + |λk|)|A| − C,

where C only depends on λ1, . . . , λk .
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We show that one may take

C =
1

3

(
k + 1

2

)
|λ1 · · · λk|(k−1)(|λ1|+···+|λk |)2+k−1.

Taking X = {0, . . . , |X| − 1}, one may check that

λ1 · X + · · · + λk · X ⊂ {0 . . . , (|λ1| + · · · + |λk|)(|X| − 1)} + (|X| − 1)
∑

{i:λi<0}

λi,

and so

|λ1 · X + · · · + λk · X| � (|λ1| + · · · + |λk|)|X| − (|λ1| + · · · + |λk| − 1).

This shows that Theorem 1.1 is the best possible up to the additive constant.

In [2] it was shown that, for λ1, . . . , λk constant,

|λ1 · A + · · · + λk · A| � (|λ1| + · · · + |λk|)|A| − o(|A|). (1.1)

The works of [1, 3, 4, 6, 8] made improvements from o(|A|) to a constant in certain cases,

all when k = 2. Indeed, in [1], the problem was completely resolved for k = 2. For a more

complete introduction of the problem, the reader is invited to see the introductions of [1]

and [2]. Note that while Theorem 1.1 is only claimed and proved for A ⊂ Z, extending

to A ⊂ Q is an obvious task by clearing denominators of A, and moreover, extending to

A ⊂ R is handled by Lemma 5.25 in the book by Tao and Vu [11].

Before we discuss the proof of Theorem 1.1, we mention two interesting problems

related to the current topic. They are to estimate (from below) |A + q · A|, where q is an

algebraic number and A ⊂ Z[q], and to estimate |A + π · A|, where π is any transcendental

number and A ⊂ R.

Let q be an algebraic number and let A ⊂ Z[q] be finite. Finding good lower bounds for

|A + q · A| is related to convex geometry. Let d be the degree of the minimal polynomial

of q over Q. Consider L : Z[q] → Z[q] via x �→ qx. Then L is a d-dimensional linear

transformation over Q. The problem of finding bounds for |A + q · A|, where A ⊂ Z[q], is

equivalent to the problem of finding bounds for |A + LA|, where A ⊂ Zd. To this end, we

are interested in lower bounds for

|L1A + · · · + LkA|,

where Li : Zd → Zd are linear transformations for 1 � i � k,

L1Z
d + · · · + LkZ

d = Zd,

and L1, . . . , Lk have no non-trivial common invariant subspace. These last two conditions

generalize the necessary condition of coprimality for d = 1.

Recall that the Brunn–Minkowski inequality states that if X and Y are non-empty

bounded open subsets of Rd, then μ(X + Y )1/d � μ(X)1/d + μ(Y )1/d, where μ is the

Lebesgue measure on Rd. Let X be the open set formed by taking the union of

all the unit boxes around each point of A. Note that μ(X) = |A|. Now using that

L1Zd + · · · + LkZd = Zd, one can observe that all of the integer points that intersect

L1X + · · · + LkX and are not close to the perimeter lie in L1A + · · · + LkA. Thus
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μ(L1X + · · · + LkX) approximates |L1A + · · · + LkA| up to an error term that depends

on the structure of A. This observation, coupled with our intuition that to minimize

|L1A + · · · + LkA| one might expect A to be a convex set intersected with Zd, we obtain

the following question.

Question 1.2. Suppose A is a finite subset of Zd and L1, . . . , Lk : Zd → Zd are linear trans-

formations that have no common invariant subspace such that L1Z
d + · · · + LkZ

d = Zd. Is

it true that

|L1A + · · · + LkA| � (det(L1)1/d + · · · + det(Lk)
1/d)d|A| − o(|A|)?

We expect the error term may be taken to be O(|A|(d−1)/d), but any progress in this

direction would be exciting to see. The author would like to thank Boris Bukh for

showing him the above question as well as providing invaluable discussion with regard to

Theorem 1.1.

The other problem is to estimate |A + π · A| from below, where π is transcendental and

A ⊂ R. The growth is no longer linear in |A|: it was shown in Corollary 3.7 of [7] that

|A + π · A| � Ω

(
|A| log |A|

log log |A|

)
.

The author guesses that the best one can do to minimize |A + π · A| is to take a set of the

form

A = {a0 + a1π + a2π2 + · · · + anπ
n : 0 � ai < Ni, ai ∈ Z},

where n = �
√

log |A|	 and the Ni differ by at most 1, giving

|A + π · A| = 2O(
√

log |A|)|A|.

We would like to take a slight detour and discuss the analogous problem for finite

fields of a prime order. The problem appears to be harder, and much less is known. The

only exact result in this direction is the celebrated Cauchy–Davenport theorem. Even the

behaviour of |A + 2 · A| when A ⊂ Fp is unclear. Both [9] and [10] have partial results but

the general question remains open. Constructions in [10] show that when A ⊂ Fp is large

with respect to p, the size of λ1 · A + · · · + λk · A can be smaller than would be expected

from the case where A ⊂ Z. We remark that one can extend Theorem 1.1 to very small

subsets of Zp by an argument similar to that of Theorem 1.3 in [10].

2. Proof of Theorem 1.1

Let λ1, . . . , λk be coprime integers. Let A be a finite subset of the integers. Throughout,

we assume Theorem 1.1 has been shown for k − 1 and we aim to show that it holds for

λ1, . . . , λk . The case k = 1 starts the induction, where we observe that the assumptions of

Theorem 1.1 imply λ1 = ±1. We remark that we need the main ideas from [1] to proceed

with the proof of Theorem 1.1. Indeed, for k = 2, the current proof and the proof from

[1] are nearly identical.
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Recall the well-known result that for any finite and non-empty subsets of the integers,

A and B, one has

|A + B| � |A| + |B| − 1. (2.1)

The following result generalizes this in a way which will prove to be quite useful.

Lemma 2.1 (Gyarmati, Matolcsi and Ruzsa [5]). Let A1, . . . , Ak be finite, non-empty sub-

sets of the integers, and let

Si := A1 + · · · + Âi + · · · + Ak

= A1 + · · · + Ai−1 + Ai+1 + · · · + Ak

Then

|A1 + · · · + Ak| � 1

k − 1

(( k∑
i=1

|Si|
)

− 1

)
.

It is worth checking that Theorem 1.1 for k = 2, proved in [1], combined with Lemma 2.1,

quickly implies Theorem 1.1 when λ1, . . . , λk are pairwise coprime, but does not immediately

handle the general case. We remark that the proof of Lemma 2.1, which is Theorem 1.4

in [5], is elegant and only occupies half a page.

For each 1 � i � k, let

gi := (λ1, . . . , λi−1, λi+1, . . . , λk).

Note that we have (λi, gi) = 1 for each 1 � i � k. This implies for each 1 � i < j � k that

(gi, gj) = 1.

We establish some notation. Given q ∈ Z, we say A is fully distributed (FD) mod q if A

intersects every residue class mod q.

Fix 1 � i � k. We now partition A into its residue classes mod gi, that is,

A =

mi⋃
j=1

Aij , Aij = aij + gi · A′
ij , Aij �= ∅, 0 � aij < gi,

where the union is disjoint. Then we have

|A| =

mi∑
j=1

|Aij |.

Furthermore, we have

|λ1 · A + · · · + λk · A| =

m1∑
j1=1

· · ·
mk∑
jk=1

|λ1 · A1j1 + · · · + λk · Akjk |. (2.2)

Since it does not cause much inconvenience, we commit ourselves to calculating the

additive constant in Theorem 1.1 in terms of the additive constants coming from the sums

of the k − 1 dilates. We remind the reader that we are using induction on k, and that for
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k = 1 we may take the additive constant to be zero. Let

C ′ = g1Cλ2 ...,λk + · · · + gkCλ1 ,...,λk−1
(2.3)

be a certain linear combination of the additive constants obtained from all of the possible

k − 1 dilates.

Lemma 2.2. Suppose A is FD mod gi for all 1 � i � k. Then

|λ1 · A + · · · + λk · A| � (|λ1| + · · · + |λk|)|A| − (C ′ + |λ1 · · · λk|).

Proof. Our assumption implies that for each 1 � i � k we have mi = gi.

Set

sλi := |λ1| + · · · + |λi−1| + |λi+1| + · · · + |λk|.

Using (2.2), Lemma 2.1, and the induction hypothesis on k, we obtain

|λ1 · A + · · · + λk · A| =

g1∑
j1=1

· · ·
gk∑

jk=1

|λ1 · A1j1 + · · · + λk · Akjk |

�
g1∑

j1=1

· · ·
gk∑

jk=1

1

k − 1

(( k∑
i=1

|λ1 · A1j1 + · · · + λ̂i · Aiji + · · · + λk · Akjk |
)

− 1

)

� 1

k − 1

k∑
i=1

gi|λ1 · A + · · · + λ̂i · A + · · · + λk · A| − 1

k − 1

k∏
i=1

gj

� 1

k − 1

k∑
i=1

gi
sλi
gi

|A| − 1

k − 1

(
C ′ +

k∏
i=1

gi

)

� (|λ1| + · · · + |λk|)|A| − 1

k − 1
(C ′ + |λ1 · · · λk|).

Lemma 2.2 proves Theorem 1.1 in the case where A is FD mod gi for all 1 � i � k.

Observe that translation and dilation of A do not change

|λ1 · A + · · · + λk · A|.

Every finite subset of the integers is equivalent, via an affine transformation, to a set which

is not contained in any proper infinite arithmetic progression. We call such a set reduced,

and we assume that A is reduced. Thus we may and will assume that for all 1 � i � k

and 1 � j � mi, we have that

(ai1 − aij , ai2 − aij , . . . , aimi
− aij , gi) = 1.

Note that since A is reduced, it must intersect at least two residue classes mod gi, whenever

gi > 1. We remark that more details about the reduction process can be found in [1].
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Lemma 2.3. Fix 1 � i � k and then fix 1 � j � mi. Either A′
ij is FD mod gi or

|λ1 · A + · · · + λi−1 · A + λi · Aij + λi+1 · A + · · · + λk · A|
� |λ1 · Aij + · · · + λk · Aij | + min

1�w�mi

|Aiw|.

Proof. We show the result only for the case i = 1; the rest follows by symmetry. Suppose

|λ1 · A1j + λ2 · A + · · · + λk · A| − |λ1 · A1j + · · · + λk · A1j | < min
1�w�m1

|A1w|.

Fix 1 � h � m1. Then, using that A1h, A1j ⊂ A, we obtain

Q := |(λ1 · A1j + · · · + λk−1 · A1j + λk · A1h) \ (λ1 · A1j + · · · + λk · A1j)|
< min

1�w�m1

|A1w|.

Translation by (λ1 + · · · + λk)(−a1j) and then dilation by 1/g1 reveals that

Q =∣∣∣∣
(
λk

g1
(a1h − a1j) + λ1 · A′

1j + · · · + λk−1 · A′
1j + λk · A′

1h

)
\ (λ1 · A′

1j + · · · + λk · A′
1j)

∣∣∣∣.
Fix x ∈ λ1 · A′

1j . Since

Q < min
1�w�mi

|A′
1w| � |A′

1h| � |λ2 · A1j + · · · + λk−1 · A1j + λk · A1h|,

we see that there exists a

y ∈ λ2 · A′
1j + · · · + λk−1 · A′

1j + λk · A′
1h,

such that

λk

g1
(a1h − a1j) + x + y ∈ λ1 · A′

1j + · · · + λk · A′
1j .

Thus there is a x2 ∈ λ1 · A′
1j such that

λk

g1
(a1h − a1j) + x ≡ x2 mod g1.

We may repeat this argument with x2 in place of x, and so on, to obtain that for any

v ∈ Z there is a x3 ∈ λ1 · A′
1j such that

v
λk

g1
(a1h − a1j) + x ≡ x3 mod g1.

We may also repeat this argument with x3 in place of x and with λc in place of λk for

each 2 � c � k. Since (
λ2

g1
, . . . ,

λk

g1

)
= 1,

we have that there are integers v2, . . . , vk such that

k∑
c=2

vc
λc

g1
= 1.
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From this, we may infer that there is an x4 ∈ λ1 · A′
1j such that

(a1h − a1j) + x =

k∑
c=2

vc
λc

g1
(a1h − a1j) + x ≡ x4 mod g1.

Now we may repeat this argument with x4 in place of x, and so on, and for each

1 � h � m1. We conclude for each u1, . . . , um1
∈ Z that there is a x5 ∈ λ1 · A′

1j such that

u1(a11 − a1j) + · · · + um1
(a1m1

− a1j) + x ≡ x5 mod g1.

Since A is reduced, the set of possible values of x5 meets every residue class mod g1, so

we find that λ1 · A′
1j is FD mod g1. Since (λ1, g1) = 1, it follows that A′

1j is FD mod g1.

Let p =
∏k

i=1 gi. We partition A into its residue classes mod p, that is,

A =

m⋃
e=1

Pe, Pe = pe + p · P ′
e, Pe �= ∅, 0 � pe < p,

where the union is disjoint. Then we have

|A| =

m∑
e=1

|Pe|.

For a fixed 1 � e � m and 1 � i � k, let ei ∈ {1, . . . , mi} such that pe ≡ aiei mod gi.

Clearly Pe ⊂ Aiei , and actually

Pe =

k⋂
i=1

Aiei .

Lemma 2.4. Let 1 � e � m. Suppose for all 1 � i � k that A′
iei

is FD mod gi. Then either

P ′
e is FD mod gi for all 1 � i � k or

|λ1 · A1e1
+ · · · + λk · Akek | � |λ1 · Pe + · · · + λk · Pe| + |Pe|.

Proof. Suppose

|λ1 · A1e1
+ · · · + λk · Ak,ek | − |λ1 · Pe + · · · + λk · Pe| < |Pe|.

We show that P ′
e is FD mod g1 and the rest will follow by symmetry. Using that

Pe ⊂ A1e2
, . . . , A1ek ,

we find that

Q := |(λ1 · A1e1
+ λ2 · Pe + · · · + λk · Pe) \ (λ1 · Pe + · · · + λk · Pe)| < |Pe|.

Let d := p/g1. Translation by (λ1 + · · · + λk)(−pe) and then dilation by 1/g1 reveals that

Q = |λ1
(a1e1

− pe)

g1
+ λ1 · A′

1e1
+ dλ2 · P ′

e + · · · + dλk · P ′
e) \ (dλ1 · P ′

e + · · · + dλk · P ′
e)|.
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Observe that

λ1
(a1e1

− pe)

g1

is an integer. Fix a′ ∈ A′
1e1

. Since Q < |P ′
e|, there is a y ∈ dλ2 · P ′

e + · · · + dλk · P ′
e such that

λ1
(a1e1

− pe)

g1
+ λ1a

′ + y ∈ dλ1 · P ′
e + · · · + dλk · P ′

e.

Thus we may find a p′ ∈ P ′
e such that

λ1
(a1e1

− pe)

g1
+ λ1a

′ ≡ dλ1p
′ mod g1.

Since (λ1, g1) = 1, this set of

λ1
(a1e1

− pe)

g1
+ λ1a

′

meets every residue class mod g1. It follows that dλ1 · P ′
e is FD mod g1. But (dλ1, g1) = 1

and so P ′
e is FD mod g1.

We informally sketch the argument of our next proposition, Proposition 2.5, which

will immediately imply Theorem 1.1. We shall prove a sequence of estimates of the form

|λ1 · A + · · · + λk · A| � M|A| − C for various values of M and C . We start with the trivial

inequality |λ1 · A + · · · + λk · A| � |A|, and then successively improve the multiplicative

constant M, only asking to increase it by

1

|λ1| + · · · + |λk|
in each step. The proof splits into four cases.

(i) If some Aij is small, then we use (2.1),

(ii) If some Aij is not FD mod gi, then use Lemma 2.3 and Aij is big from (i),

(iii) If P ′
e is not FD mod gi, then use Lemma 2.4 and Aiei is FD mod gi from (ii),

(iv) If P ′
e is FD mod gi for all 1 � i � k, then use Lemma 2.2.

The first three cases use the previous estimates of |λ1 · A + · · · + λk · A| � M|A| − C for

various choices of A. Note that (iv) is what prevents us from improving upon the

multiplicative constant beyond |λ1| + · · · + |λk|.
Let

C ′′ =
1

k − 1
(|λ1 · · · λk|)(Cλ2 ...,λk + · · · + Cλ1 ,...,λk−1

+ 1) (2.4)

which is a modest upper bound for

1

k − 1
(C ′ + |λ1 · · · λk|),

where C ′ is defined in (2.3).

Proposition 2.5. Let λ1, . . . , λk ∈ Z be coprime, A ⊂ Z be finite. Then, for all

|λ1| + · · · + |λk| � u � (|λ1| + · · · + |λk|)2,
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we have

|λ1 · A + · · · + λk · A| � u

|λ1| + · · · + |λk| |A| − C ′′(|λ1| · · · |λk|)u,

where C ′′ is defined in (2.4).

Proof. For convenience, let S = |λ1| + · · · + |λk| and Cu = (|λ1| · · · |λk|)u. We use induction

on u, where the inequality |λ1 · A + · · · + λk · A| � |A| starts the induction for u = S .

First, assume there is a 1 � j � m1 such that |A1j | � 1
S

|A|. Then, using the induction

hypothesis and (2.1), we obtain

|λ1 · A + · · · + λk · A|
� |λ1 · A1j + λ2 · A + · · · + λk · A| + |λ1 · (A \ A1j) + · · · + λk · (A \ A1j)|

� |A1j | + |A| − 1 +
u

S
(|A| − |A1j |) − Cu

� u + 1

S
|A| − Cu+1,

using in the last step that u < S2 and Cu + 1 � Cu+1. By the symmetry of λ1, . . . , λk , we

may assume, for every 1 � i � k and 1 � j � mi, that Aij has more than 1
S

|A| elements.

Suppose there is some 1 � j � m1 such that A′
1j that is not FD mod g1. Then by

Lemma 2.3 and the induction hypothesis,

|λ1 · A + · · · + λk · A|
� |λ1 · A1j + λ2 · A + · · · + λk · A| + |λ1 · (A \ A1j) + · · · + λk · (A \ A1j)|

� |λ1 · A1j + . . . + λk · A1j | + min
1�w�m1

|A1w| +
u

S
(|A| − |A1j |) − Cu

� u

S
|A1j | − Cu +

1

S
|A| +

u

S
(|A| − |A1j |) − Cu

� u + 1

S
|A| − Cu+1,

using Cu+1 � 2Cu in the last step. By the symmetry of λ1, . . . , λk , we may now assume, for

each 1 � i � k and for each 1 � j � mi, that A′
ij is FD mod gi.

Fix 1 � e � m. Then using Lemma 2.4, we obtain either

|λ1 · A1e1
+ · · · + λk · Akek | � |λ1 · Pe + · · · + λk · Pe| + |Pe|

� u

S
|Pe| − Cu + |Pe|

� u + 1

S
|Pe| − Cu,

by the induction hypothesis, or that P ′
e is FD mod gi for all 1 � i � k. In the latter case,

by Lemma 2.2, using that u < S2, we have

|λ1 · Pe + · · · + λk · Pe| = |λ1 · P ′
e + · · · + λk · P ′

e| � S |P ′
e| − C ′′ � u + 1

S
|Pe| − Cu,
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where C ′′ is defined in (2.4). In either case we obtain

|λ1 · A1e1
+ · · · + λk · Akek | � u + 1

S
|Pe| − Cu.

Using (2.2), we find

|λ1 · A + · · · + λk · A| =

m1∑
j1=1

. . .

mk∑
jk=1

|λ1 · A1j1 + · · · + λk · Ak,jk |

�
m∑
e=1

(
u + 1

S
|Pe| − Cu

)
� u + 1

S
|A| − Cu+1

since Cu+1 � |λ1 · · · λk|Cu � mCu.

Allowing u = (|λ1| + · · · + |λk|)2 in Proposition 2.5 yields Theorem 1.1, where we may

take

C =
1

k − 1
(Cλ2 ,...,λk + · · · + Cλ1+···+λk−1

+ 1)|λ1 · · · λk|(|λ1···λk |)2+1

� 1

3

(
k + 1

2

)
|λ1 · · · λk|(k−1)(|λ1|+···+|λk |)2+k−1.
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