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Abstract

Let G be a locally compact group and let SUB(G) be the hyperspace of closed subgroups of G endowed
with the Chabauty topology. The main purpose of this paper is to characterise the connectedness of the
Chabauty space SUB(G). More precisely, we show that if G is a connected pronilpotent group, then
SUB(G) is connected if and only if G contains a closed subgroup topologically isomorphic to R.
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1. Introduction

Let G be a locally compact group whose identity element is denoted by e. The
Chabauty space of G is SUB(G), the hyperspace of closed subgroups of G endowed
with the Chabauty topology: a basis of neighbourhoods for a closed subgroup H is
formed by the subsets

U(H; C, U) = {K ∈ SUB(G) | K ∩ C ⊂ HU and H ∩ C ⊂ KU} ,
where C runs over the compact subsets of G and U runs over the neighbourhoods
of e. This topology turns SUB(G) into a compact space and therefore the question
of connectedness arises naturally. In [18], Protasov and Tsybenko proved that if the
Chabauty space SUB(G) is connected, then G must contain a subgroup topologically
isomorphic to R, the additive group of real numbers. Moreover, they showed that the
converse holds for abelian groups in light of the following statement.

PROTASOV–TSYBENKO’S STATEMENT [18, Lemma 1]. For every locally compact
group G, the Chabauty space SUB(R × G) is connected.

However, in contrast to these facts, they conjectured a negative answer to the
following question.

QUESTION 1.1. Is the Chabauty space SUB(G) connected for all locally compact
groups G containing a subgroup topologically isomorphic to R?
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The first contribution to this question is due to Tsybenko. In fact, he proved that
their conjecture is correct by showing the following result.

THEOREM 1.2 (Tsybenko’s theorem; see [14, page 182]). Let G be the group of
matrices of the form

[m, n; x] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 m x
0 1 n
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where m, n ∈ Z and x ∈ R. Then G contains a central subgroup topologically isomor-
phic to R, but SUB(G) is not connected.

The second contribution is due to Cornulier.

THEOREM 1.3 (Cornulier’s theorem; see [6, Proposition 8.6]). Let G be a nonsolvable
finite group. Then SUB(R × G) is not connected.

Cornulier’s theorem is remarkable and has many important consequences. In
addition to reconfirming the conjecture, it constitutes a counterexample to the connect-
edness statement of Protasov and Tsybenko. Thus, the consideration of the following
question was very natural.

QUESTION 1.4. Under which conditions on the group G is the Chabauty space
SUB(R × G) connected?

In [6, Theorem 1.3], Cornulier gave an answer to this question as follows.

THEOREM 1.5. Let G be a locally compact abelian group. Then the Chabauty space
SUB(R × G) is connected.

Recall that a topological group is called prosolvable (respectively, pronilpotent) if
every open neighbourhood of the identity contains a closed normal subgroup whose
corresponding quotient is a solvable (respectively, nilpotent) group. In [10, Theorem
7.3], the author and Hamrouni generalised the result of Cornulier as follows.

THEOREM 1.6. For every locally compact prosolvable group G, the Chabauty space
SUB(R × G) is connected.

In particular, we have the following characterisation.

PROPOSITION 1.7. Let G be a finite group. Then the Chabauty space SUB(R × G) is
connected if and only if G is solvable.

In the same direction, we recall that Bridson et al. provided an interesting result
about the connectedness of Chabauty spaces in the class of nilpotent Lie groups. More
precisely, in [5, Theorem 1.3], they proved the following result.

THEOREM 1.8. Let H3 be the three-dimensional Heisenberg group. Then SUB(H3) is
arc connected but not locally connected.
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In light of these facts and by taking Tsybenko’s theorem into account, the
consideration of the following statement is very reasonable and one might well ask
whether it is true.

QUESTION 1.9. Is the Chabauty space SUB(G) connected when G is a noncompact
connected nilpotent group?

In this paper, our main theorem responds positively to this question. Namely, the
following stronger result is proved.

THEOREM 1.10 (Main theorem). Let G be a connected locally compact pronilpotent
group. Then the Chabauty space SUB(G) is connected if and only if G contains a
subgroup topologically isomorphic to R.

2. Background on the Chabauty topology

The main objective of this section is to compile several facts about the Chabauty
topology and to present them in the manner in which they are used in the paper.

2.1. Chabauty topology. Let G be a topological group and let SUB(G) be the
hyperspace of all closed subgroups of G. The Chabauty topology on SUB(G) has
the sets

O1(C) = {H ∈ SUB(G) | H ∩ C = ∅} ,

O2(U) = {H ∈ SUB(G) | H ∩ U � ∅} ,

as an open subbase, where U and C run respectively over all open and compact subsets
of G. The Chabauty space of a locally compact group is very remarkable. In fact, we
have the following well-known result.

PROPOSITION 2.1 (Compactness of Chabauty spaces). If G is a locally compact
group, then the Chabauty space SUB(G) is compact.

PROOF. See [4, Théoréme 1, page 181] or [3, Lemma E.1.1]. �

In light of this compactness, it will be helpful to introduce the following important
result about the convergence of nets of closed subgroups in the Chabauty topology.

PROPOSITION 2.2. If a net (Hα)α∈J of closed subgroups of a locally compact group G
converges to a closed subgroup H, then the following assertions are equivalent.

(1) The points x1, x2, . . . , xn belong to H.
(2) There exists a subnet (Hαβ)β∈I of the given net (Hα)α∈J and there exist nets
{xβ1}β∈I , . . . , {x

β
n}β∈I of G converging, respectively, to x1, . . . , xn in the topology of

G, with xβ1, . . . , xβn ∈ Hαβ for all β ∈ I.

PROOF. This follows from Remark 1.1 and Lemma 1.2 in [17]. �
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REMARK 2.3. Besides its compactness, if G is second countable, then SUB(G) is also
second countable and therefore metrisable by Urysohn’s metrisation theorem (see [3,
Lemma E.1.1]).

2.2. Examples of Chabauty spaces. In this section, we present some examples of
Chabauty spaces of familiar groups.

PROPOSITION 2.4 [8, Proposition 1.7]. The mapping φR : [0,∞] −→ SUB(R)
defined by

φR(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if r = 0,

1
r
·Z if 0 < r < ∞,

R if r = ∞,

is a homeomorphism.

We leave the proof of the following two propositions to the reader.

PROPOSITION 2.5. The mapping φT : (N\{0}) ∪ {∞} −→ SUB(T) defined by

φT(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if n = 1,

1
n
·Z/Z if n > 1,

T if n = ∞,

is a homeomorphism.

PROPOSITION 2.6. The mapping φQp : Z ∪ {±∞} −→ SUB(Qp) defined by

φQp (k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if k = −∞,

1
pk ·Zp if k ∈ Z,

Qp if k = +∞,

is a homeomorphism.

In contrast with the previous examples, the situation is subtle even for apparently
simple examples of groups like the additive group Rn. For instance, the first nontrivial
description of Chabauty spaces is due to Pourezza and Hubbard in [16], where they
proved the following result.

PROPOSITION 2.7. The Chabauty space SUB(R2) is homeomorphic to S4, the
four-dimensional sphere.
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REMARK 2.8. For n ≥ 3, the Chabauty space SUB(Rn) is connected and simply
connected. However, it is not a topological manifold and its structure is far from
understood (see [15]).

2.3. Chabauty segments. Let G be a topological group. For two closed subgroups
H and K of G such that H ⊆ K, we define the Chabauty segment of H and K by

�H, K� := {L ∈ SUB(G) | H ⊆ L ⊆ K}.

DEFINITION 2.9 (Proper mapping). A continuous mapping f : X −→ Y is said to be
proper if X is a Hausdorff space, f is a closed mapping and all fibres f −1(y) are
compact subsets of X.

PROPOSITION 2.10 [9, Proposition 2.1]. If φ : G1 −→ G2 is a proper morphism
between locally compact topological groups, then the mapping

SUB(φ) : SUB(G1) −→ SUB(G2), H 
−→ φ(H)

is continuous. Moreover, if φ is surjective, then SUB(φ) is surjective.

COROLLARY 2.11. Let Γ be a closed subgroup of a locally compact group G and let
i : Γ −→ G be the canonical injection. Then the mapping

SUB(Γ) −→ �{e}, Γ�, H 
−→ i(H)

is a homeomorphism.

PROPOSITION 2.12 [9, Proposition 2.5]. Let φ : G1 −→ G2 be an open continuous
morphism between locally compact topological groups. Then the mapping

SUB(G2) −→ SUB(G1), H 
−→ φ−1(H)

is an embedding.

COROLLARY 2.13. Let N be a closed normal subgroup of a locally compact group G
and let π : G −→ G/N be the canonical morphism. Then the mapping

SUB(G/N) −→ �N, G�, H 
−→ π−1(H)

is a homeomorphism.

REMARK 2.14. Chabauty segments of a locally compact group are compact.

3. Connectedness of the Chabauty space of a pronilpotent group

We begin our investigation of the connectedness by providing two lemmas about
the additive group of real numbers. The first one provides a criterion for the existence
of a closed copy of R in locally compact groups.

LEMMA 3.1 [19, page 156]. Let G be a locally compact group. Then the following
statements are equivalent.

(1) G contains a subgroup topologically isomorphic to R.
(2) The connected component of the identity is not compact.
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The second lemma deals with the structure of an extension of a compact normal
subgroup by a group topologically isomorphic to R.

LEMMA 3.2 [12, Remark 1.9]. Let K be a compact normal subgroup of a locally
compact group G such that G/K � R. Then G � R × K.

For a topological group G, we shall denote by Z(G) the centre of G and by E(G)
the connected component of the singleton subgroup in the Chabauty space SUB(G).

PROPOSITION 3.3. Let G be a noncompact connected nilpotent Lie group. ThenZ(G)
belongs to E(G).

PROOF. If Z(G) is not compact, the result follows immediately from combining
Lemma 3.1 and Theorem 1.5. Now let us suppose that Z(G) is compact. In view of
Lemma 3.1, G contains a closed subgroup N that is topologically isomorphic to R.
Then, by combining Lemma 3.2 and Theorem 1.5, SUB(NZ(G)) is connected and
thereforeZ(G) ∈ E(G). �

REMARK 3.4. If G is a compact connected nilpotent group, then it is a pro-torus.
It follows then that the Chabauty space SUB(G) is totally disconnected. For more
details about the total disconnectedness of Chabauty spaces, we refer to [11].

PROPOSITION 3.5. Let G be a locally compact group and let N(G) be the compact
space of closed normal subgroups of G. If K is a compact subgroup of G, then the
mapping

SUB(G) × (SUB(K) ∩ N(G)) −→ SUB(G), (H, L) 
−→ HL

is continuous.

PROOF. Let (Hi, Li)i∈I be a net ofSUB(G) × (SUB(K) ∩ N(G)) converging to (H, L).
In order to prove the continuity, we shall prove that the net (HiLi)i∈I converges to HL
in SUB(G). So, let U be an open set of G such that HL ∈ O2(U) and let (h, k) ∈
HL ∩ U. Taking an open neighbourhood Uh × Uk of (h, k) such that UhUk ⊂ U shows
that the net (Hi, Li)i is eventually in O2(Uh) × O2(Uk). Clearly, this implies that the
net (HiLi)i is eventually in O2(U). Now let C be a compact subset of G such that
HL ∈ O1(C). Aiming for a contradiction, assume that there is an infinite subset J of
I such that HjLj ∩ C � ∅ for every j ∈ J. So, let (gj)j = (hjkj)j be a net of elements of
G such that for every j ∈ J, we have (hj, kj) ∈ Hj × Lj and gj ∈ C. Moreover, in light
of the compactness of C and K, we may assume that the net (gj, kj)j is convergent to
some (g, k) ∈ C × K. Thus, k ∈ L in view of Proposition 2.2. On the other hand, by
applying Proposition 2.2 again, we deduce that the net (hj)j converges to gk−1 in H
and therefore g belongs to HL. This contradiction proves the claim and finishes the
proof. �

REMARK 3.6. In the previous result, the normality of compact subgroups was needed
only to show that the products are also subgroups. Thus, with the same hypothesis as
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above, the mapping

N(G) × SUB(K) −→ SUB(G), (H, L) 
−→ HL

is also continuous.

DEFINITION 3.7 (Compact-free group). A topological group is called compact-free if
it has no compact subgroup except the trivial one.

PROPOSITION 3.8. Let G be a noncompact connected nilpotent Lie group. If Z(G) is
not compact-free, then the Chabauty space SUB(G) is connected.

PROOF. We proceed by induction on the nilpotency class c of G. If G is abelian, then
the connectedness follows from Theorem 1.5. Now suppose that G is of class c > 1
and the connectedness is guaranteed for lower nilpotency classes. Since the centre of
G is not compact-free, one can find (Kn)n∈N, a sequence of nontrivial compact central
subgroups converging to the identity subgroup. Moreover, it is clear that the subgroups
Kn are not cocompact. By the induction hypothesis, all the Chabauty segments �Kn, G�
are connected. Thus, in view of Proposition 3.3, (Kn)n ⊂ E(G). On the other hand,
if H is a closed subgroup of G, then HKn ∈ �Kn, G� ⊂ E(G) for every n ∈ N. Thus,
Proposition 3.5 makes H ∈ E(G). Hence, the Chabauty space SUB(G) is connected,
as desired. �

Before treating the compact-free case, we need to deal with the following concept.

DEFINITION 3.9 (Z-Group). We say that a locally compact group G is a Z-group if
the factor group of G modulo its centre is compact.

PROPOSITION 3.10 (Structure theorem for Z-groups; [7, Theorem 4.4]). Every
Z-group is the direct product of a vector group and a locally compact group having a
normal compact open subgroup.

As an immediate consequence of this result and Theorem 1.6, we obtain the
following generalisation of Theorem 1.5.

COROLLARY 3.11. Let G be a prosolvableZ-group. Then the following properties are
equivalent.

(1) The Chabauty space SUB(G) is connected.
(2) G contains a subgroup topologically isomorphic to R.

We shall also need the following lemma.

LEMMA 3.12 [2, Lemma 1.1]. Let H and N be two closed subgroups of a connected
and simply connected nilpotent Lie group G. If N is connected and normal, then the
product subgroup HN is closed in G.

NOTATION 3.13 (Derived subgroup). If G is a group, we denote its derived subgroup
by D(G).
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PROPOSITION 3.14. Let G be a noncompact connected nilpotent Lie group. IfZ(G) is
compact-free, then the Chabauty space SUB(G) is connected.

PROOF. We argue by induction on the nilpotency class c of G. If G is abelian, then the
connectedness follows from Theorem 1.5. Now suppose that G is of class c > 1 and
the connectedness is ensured for lower nilpotency classes. Let N be a closed central
subgroup of G that is topologically isomorphic to the group of real numbers R and
let H be an arbitrary closed subgroup of G. In order to show that H belongs to the
connected component E(G), we shall distinguish two cases.

Case 1: N ∩D(H) � {e}. If the subgroup N ∩D(H) is cocompact, then the connected-
ness follows immediately from Corollary 3.11. If this is not the case, then in light of the
induction hypothesis, H belongs to the connected Chabauty segment �N ∩D(H), G�.
Hence, the claim follows immediately from Proposition 3.3.

Case 2: N ∩D(H) = {e}. According to Lemma 3.14 in [13], we know that G is simply
connected. Then, by Lemma 3.12, the subgroups NH and ND(H) are closed in G. Let π
be the canonical morphism from NH onto NH/D(NH). It is clear that D(NH) = D(H).
Then π(N) is isomorphic to N and therefore the Chabauty segment �D(H), NH� is
connected. On the other hand, in light of the induction hypothesis and Corollary 3.11,
the Chabauty segment �N, G� is also connected. Hence, H ∈ E(G) since HN belongs
to �D(H), NH� ∩ �N, G�. �

By combining Propositions 3.8 and 3.14, we obtain the following result.

THEOREM 3.15. Let G be a connected nilpotent Lie group. Then the Chabauty space
SUB(G) is connected if and only if G contains a subgroup topologically isomorphic
to R.

We say that a subgroup N of a topological group G is a co-Lie subgroup if it is
normal and the quotient G/N is a Lie group. Furthermore, we shall denote by Nc(G)
the set of all compact co-Lie subgroups of G.

PROPOSITION 3.16 [9, Theorem 4.7]. Let G be a locally compact pro-Lie group. Then
the following statements are equivalent.

(1) The space SUB(G) is connected.
(2) For every N ∈ Nc(G), the space SUB(G/N) is connected.

Finally, by combining Theorem 3.15 and Proposition 3.16, we deduce the main
theorem of the paper.

THEOREM 3.17 (Main theorem = Theorem 1.10). Let G be a connected locally
compact pronilpotent group. Then the Chabauty space SUB(G) is connected if and
only if G contains a subgroup topologically isomorphic to R.

We conclude the paper by taking a look at simple groups. We start by dealing with
the following concept.
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DEFINITION 3.18 (Topologically perfect group). We say that a topological group G is
topologically perfect if the derived subgroup D(G) is dense in G.

It is shown, in Proposition 2.2 of [1], that the Chabauty space of a nontriv-
ial topologically perfect group is never connected. More precisely, the following
characterisation is given.

PROPOSITION 3.19. Let G be a connected Lie group. Then G is an isolated point in
SUB(G) if and only if G is topologically perfect.

On the other hand, we recall that a topological group is said to be topologically sim-
ple if it has no proper closed normal subgroups. Then, by combining Proposition 3.19
and Lemma 5 in [18], we obtain the following result.

COROLLARY 3.20. Let G be a locally compact group. If G is topologically simple,
then SUB(G) is not connected.

Finally, an important example arises out of this discussion.

EXAMPLE 3.21. For every n ≥ 2, the Chabauty space of the special linear group
SLn(R) is not connected.
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