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Topological analysis of separation phenomena
in liquid metal flow in sudden expansions.

Part 1. Hydrodynamic flow
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Numerical simulations are performed to study three-dimensional hydrodynamic flows
in a sudden expansion of rectangular ducts. Separation phenomena are investigated
through the analysis of flow topology and streamline patterns. Scaling laws describing
the evolution of the reattachment length of the vortical areas that appear behind the
cross-section enlargement are derived. The results discussed in this paper are required
as a starting point to investigate the effects of an applied homogeneous magnetic field
on separation phenomena in a geometry with a sudden expansion.
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1. Introduction
In the past, flows in expanding geometries have attracted considerable attention

because, although the geometric configuration is simple, the resulting flow field
behind the cross-section enlargement has complex features including separation and
reattachment regions. Their study is of great practical interest since the existence of
recirculations has an influence on heat, mass and momentum transport and therefore
on the performance of engineering systems. The present work has been carried out
with the aim of obtaining a good understanding of the hydrodynamic flow in a
specific sudden expansion. In this paper, only the main flow features are presented,
whose discussion is required as a starting point for the analysis of the influence of
magnetic fields on flow separation (Mistrangelo 2011).

In a duct with a sudden cross-section enlargement, a pressure increase occurs behind
the expansion. If the flow close to the wall, in the boundary layer, is sufficiently slowed
down by surface friction and adverse pressure gradient, the motion of the near-wall
fluid is eventually brought to rest at the so-called separation point or line. At this
location the streamline closest to the surface leaves the wall and the boundary layer
separates (Maskell 1955). This phenomenon is associated with the formation of
reversed flow and vortices. Separation of a steady, two-dimensional boundary layer
was explained first by Prandtl (1904), who defined a criterion stating that at separation
and reattachment points the wall shear stress (τw = ρν ∂u/∂y, where u is the axial
velocity parallel to the wall and y is the wall-normal coordinate) is zero. However,
for three-dimensional (3D) or unsteady separated flows, the point of vanishing wall
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shear does not necessarily coincide with separation (Williams 1977). Lighthill (1963)
suggested the use of the theory of critical points introduced by Legendre (1956) for
describing the separation of 3D boundary layers. Critical points are singularities in
the flow field where the velocity becomes zero and the direction of the vector quantity
under consideration (the streamline slope) is undetermined. These singular points
can be classified into nodes and saddle points (Hunt et al. 1978). The former ones
include nodal points and foci. It can be observed that a three-dimensional flow tends
to separate along a line and the shear stress at the wall is equal to zero at a finite
number of points along it. The number and type of these singular points must satisfy
certain topological rules (Lighthill 1963; Hunt et al. 1978).

The three-dimensional features of the flow can be deduced and interpreted by
studying limiting streamline patterns and analysing the flow topology, namely
distribution, type and relations of critical points (Tobak & Peake 1982; Délery
2001). Limiting streamlines are so called because they are drawn on a plane whose
distance from a no-slip wall tends to zero (Maskell 1955). In a separation process,
limiting streamlines converge towards a common line called separation line. Instead,
a reattachment line is characterized by the fact that the streamlines diverge from it.
Therefore, Prandtl’s separation criterion based on the identification of isolated wall-
shear zeros valid for 2D flows is replaced for 3D flows by a criterion of convergence
and divergence of skin-friction lines to and from a critical line. Mathematical rules
for locating flow separation in three-dimensional flows have been derived by Surana,
Grunberg & Haller (2006) by applying the nonlinear dynamics system theory as used
by Haller (2004) for two-dimensional flows.

Two-dimensional incompressible laminar flows in symmetric sudden expansions
have been the subject of several numerical and experimental investigations. According
to experimental studies (Durst, Mellin & Whitelaw 1974; Cherdron, Durst & Whitelaw
1978; Sobey & Drazin 1986; Fearn, Mullin & Cliffe 1990; Durst, Pereira & Tropea
1993) at sufficiently low Reynolds numbers Re, a unique steady state solution is found.
The resulting flow field is symmetric with respect to the channel middle plane, with
two recirculation zones of equal size near the corners of the expansion. Their length
increases linearly with Re. At a critical value of the Reynolds number, which depends
on the expansion ratio of the duct, the steady symmetric solution becomes unstable,
bifurcates at a pitchfork point from where a pair of stable, asymmetric solutions
emerges (Fearn et al. 1990). This behaviour is called exchange of stability and the
bifurcation is classified as supercritical. Experimental findings have been confirmed by
numerical investigations (Durst et al. 1993; Alleborn et al. 1997; Drikakis 1997). With
increasing the Reynolds number, the asymmetry becomes stronger and then a third
separation region appears downstream of the smaller recirculation zone (Durst et al.
1993). As the Reynolds number is further increased, the flow becomes time-dependent
and the unsteadiness is associated with three-dimensional effects (Fearn et al. 1990;
Durst et al. 1993). For larger Re, the flow finally becomes turbulent.

In contrast to the significant number of 2D investigations, only few studies of 3D
flows in sudden expansions have been performed (Baloch, Townsend & Webster 1995;
Chiang, Sheu & Wang 2000; Schreck & Schäfer 2000; Chiang et al. 2001). Williams &
Baker (1997) carried out three-dimensional numerical simulations of hydrodynamic
flow over a backward-facing step of high aspect ratio. They found that, depending
on the Reynolds number, the flow in the separation region becomes highly three-
dimensional due to the effect of the sidewalls. The presence of the sidewalls results
in the formation of a spiralling motion from the lateral wall of the channel to
the middle plane. The occurrence of this vortical structure was supported by the
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H = 2L

2L
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Figure 1. Sketch of the geometry used for the numerical study. The expansion ratio is
H/h = 4. The geometry expands along the y-direction and the cross-section enlargement is
located at x =0. The quantity L is chosen as characteristic size of the channel.

numerical results of Chiang & Sheu (1999) and by experiments and simulations
of Tylli, Kaiktsis & Ineichen (2002). Chiang et al. (2000) studied the effects of the
sidewalls on flow structures in a sudden expansion and showed that, for a fixed
expansion ratio, a critical aspect ratio exists beyond which an initially symmetric flow
becomes asymmetric.

2. Problem formulation
The three-dimensional flow of a viscous, incompressible fluid is studied in a

rectangular channel of width 2L and height h, which expands symmetrically, with
right angles, into a duct having same width and high H =4h = 2L as shown in figure 1.
The geometry is chosen according to the features of the experimental test section
used in the MEKKA laboratory of the Karlsruhe Institute of Technology (Bühler &
Horanyi 2006). The flow field is described in a Cartesian coordinate system such that
x, y and z are the streamwise, the vertical and the spanwise directions, y = z = 0 is
the axis of the channel and the junction between small and large duct is at x =0.
The inlet of the channel is far enough upstream not to influence the flow pattern
near the sudden expansion and the duct is sufficiently long to ensure fully developed
conditions at the exit.

For the following analysis, all the dimensions are scaled by half of the channel width,
L =47 mm, so that the non-dimensional size of the inlet duct is −0.25 � y � 0.25 and
−1 � z � 1, and that of the outlet channel is −1 � y � 1. The velocities are normalized
by the average value v0 in the exit channel so that the mean dimensionless velocity
in the large duct becomes v̄2 = 1 and that in the small duct becomes v̄1 = 4.

The three-dimensional, incompressible flow in the ducts is governed by the
dimensionless equations accounting for conservation of momentum and mass:

∂v

∂t
+ (v · ∇) v = −∇p +

1

Re
∇2v, ∇ · v = 0. (2.1)

The variables v and p denote velocity and pressure scaled by the reference quantities
v0 and ρv2

0 , respectively. The non-dimensional group governing the problem is the
Reynolds number Re = v0L/ν, which represents the importance of inertia compared
with viscous forces. The fluid density ρ and the kinematic viscosity ν are assumed to
be constant.
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Figure 2. Limiting streamlines on the lateral wall of the duct for the symmetric flows at
(a) Re = 10 and (b) Re = 20. Lines lu = 0 indicate locations where the u-velocity component is
zero or changes sign. The points where the reattachment lines lr meet the top and bottom
walls of the duct are marked by x1 and x2, respectively. The foci, centre of the vortical motion,
are called F1 and F2.

3. Results and discussion
The numerical analysis has been carried out by using an extended version of the

finite volume CFD code CFX-5.6, where the pressure–velocity coupling is based
on the SIMPLE (semi-implicit method for pressure-linked equations) algorithm and
an algebraic multi-grid method is used to obtain the solution (for more details, see
Mistrangelo 2011). A biased mesh is used in all the directions with nodes clustered
at the walls and across the sudden expansion. Upstream and downstream where the
flow approaches fully developed conditions the number of nodes per unit length is
reduced. The length of the square outlet duct as well as the total number of points
has been changed depending on the set of parameters under study. Grid sensitivity
studies have been performed to obtain mesh-independent results.

In the following, the outlined concepts of the theory of critical points and limiting
streamline patterns are employed to describe the three-dimensional separated flow
occurring behind a symmetric sudden expansion. In order to achieve a good
understanding of the flow features, a topological study of the velocity field is
performed. The location of critical points in the pattern of skin-friction lines is
found as the position where both components of the wall shear stress on the plane
of interest change sign or vanish simultaneously.

The numerical analysis shows that at low Reynolds number, the flow is symmetric
with respect to the plane y =0 and the size of the recirculations increases with the
Reynolds number. In figure 2, limiting streamlines are plotted on the lateral wall of
the channel for the symmetric flows at Re = 10 and Re = 20. The lines lu= 0 indicate
the points on the considered wall where the axial velocity component changes its sign
or becomes zero. They pass through the critical points of the velocity field and give
an indication of the reattachment length of the separation region.
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Figure 3. Limiting streamlines on the lateral wall of the channel for asymmetric flows at
(a) Re = 30, (b) Re = 35 and (c) Re = 40. The saddle point and the node that appear for
Re > Rec1 � 27 are labelled S1 and N1, respectively.

The flow topology on the lateral wall consists of two half saddle points or stagnation
points, x1 and x2, which correspond to the reattachment locations of the primary
recirculation zone on the upper and lower walls of the channel, and by two stable foci
(F1 and F2), which the streamlines spiral on. The identified foci are the traces on the
lateral wall of a 3D spiralling path that transports the fluid from the sidewalls to the
middle plane of the duct at z = 0. Each focus is the starting point of an isolated line,
which the other streamlines in the separation region spiral around taking on helical
shape. Henceforth, this line will be referred to as vortex core line.

It has been observed that the flow coming from points very close to the lateral
walls enters the large duct and starts swirling around the vortex core line reaching
the middle plane of the channel. Fluid injected farther from the sidewalls turns only
a few times around the vortex core line and it only approaches the symmetry plane
at z = 0 without touching it. Particles released at a sufficiently large distance from
the lateral walls move directly downstream and they are no longer trapped into the
vortices.

In figure 2, a reattachment line lr can be identified as the one from which the limiting
streamlines diverge. It meets top and bottom walls of the duct at the stagnation points
x1 and x2. This line is the trace on the lateral wall of a surface that separates the
reversed flow from the rest of the stream that moves directly towards the exit of the
duct. With increasing the Reynolds number, the recirculations become longer and
the two foci move further downstream as shown in figure 2(b).

Beyond a critical value of the Reynolds number, Rec1
∼= 27, the flow becomes

asymmetric and as a result the topology on the sidewall changes, as shown in
figure 3(a) for the flow at Re = 30. At these flow conditions, two foci (F1 and F2)
and two reattachment points (x1 and x2) are present on the lateral wall like for
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Figure 4. Characteristic streamlines originating from node N1 drawn on the lateral wall of
the channel for the flow at Re =40. The streamlines in the dashed areas enter focus F1, those
in the central white zone feed the vortex with centre F2.

the symmetric flow. However, two additional critical points appear which describe
the interaction between primary vortices. They consist of a node N1 that feeds the
recirculations and a saddle point S1 that separates the two bubbles. At a saddle point
only two lines, called separatrices, pass through the critical point whereas the other
streamlines avoid it and take on hyperbolic shape moving asymptotically along the
two characteristic lines.

In this new topological configuration, the reattachment lengths x1 and x2 of the
primary separation zones remain comparable by increasing the Reynolds number and
the longitudinal distance between the node N1 and the stagnation point x1 becomes
larger. This is due to the fact that by rising the Reynolds number the two singularities,
N1 and x1, move in opposite direction as shown in figure 3(b) for the flow at Re = 35.
Downstream immediately after node N1, next to the top wall of the duct, the fluid
strongly slows down and at Re = Rec2

∼= 37 the limiting streamline closest to the upper
wall touches it in a point near node N1 and a secondary recirculation appears. Two
new characteristic points named x3 and x4 are present, as illustrated in figure 3(c)
for the flow at Re =40. The first point is now the reattachment point of the smaller
bubble of the primary recirculation and x4 marks the position where the secondary
separation zone forms. The velocity between x3 and x4 is very small and this is one
of the reasons that make it difficult to identify exactly the occurrence and position of
these two points.

In figure 4, characteristic limiting streamlines originating from node N1 are depicted
on the lateral wall of the duct for the flow at Re = 40. Streamlines that flow into the
dashed areas enter focus F1 and feed the smaller primary recirculation, while those in
the central white zone form the larger bubble with centre F2. It is interesting to note
that the backflow that occurs after x4 remains localized near the corners of the duct
and it transports the fluid downstream, while the primary vortices have a preferential
direction from the lateral walls to the middle plane of the channel. This could be the
reason why at the sidewall no focus can be identified for the additional reversed flow
zone.

Differences are observed between the development of the separation regions on the
sidewalls (z = ±1) and the middle plane (z =0) of the duct: the described points N1

and S1 as well as the secondary recirculation disappear at some distance from the
lateral walls where the flow pattern resembles that of the 2D hydrodynamic flow. This
can be seen in figure 5, where limiting streamlines are drawn on the duct symmetry
plane at z = 0 for flows at Re = 20, 30, 35 and 40. The reattachment points on the
top and bottom of the channel are named x01 and x02, respectively, and the foci are
called Fs1 and Fs2. The latter ones are unstable and the velocity streamlines first move
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Figure 5. Limiting streamlines on the symmetry plane of the duct at z = 0 for the flow at
(a) Re = 20, (b) Re = 30, (c) Re = 35 and (d ) Re = 40. The reattachment points at the top and
bottom of the channel are named x01 and x02, respectively. The foci are called Fs1 and Fs2.

towards them, flowing around a vortex core line, and then spiral out. On the contrary,
foci F1 and F2 on the lateral walls are stable (attracting). The different behaviour can
be seen in figure 6, where a vortical flow path is visualized as an example for the
symmetric flow at Re = 20. The discussed critical points and characteristic lines lu =0

and lr are also shown.
The evolution of reattachment (x1, x2 and x3) and separation (x4) points on the

lateral wall of the channel as a function of the Reynolds number is illustrated in figure
7(a). Even when the flow becomes asymmetric (Re >Rec1), the axial position of x1

and x2 on the lateral wall is comparable. Scanning the axial location of the node N1,
typical of asymmetric flows (see figures 3 and 4), in the range Rec1 <Re <Rec2, it is
found that its position changes following the dotted curve drawn in figure 7(a). If we
consider the diagram formed by x2, N1 and x3, a pitchfork-like bifurcation similar to
that for the points on the middle plane (figure 7b) is obtained. This diagram describes
the changes in the size of the bubbles forming the primary recirculations.

With increasing Reynolds number, the additional separation zone included between
x4 and x1 moves downstream as suggested by the raising of the distance between the
reattachment point x3 of the small recirculation and the separation point x4 of the
secondary flow.

Regarding the evolution of the recirculation lengths on the symmetry plane z =0,
shown in figure 7(b), it can be noted that after the onset of the asymmetry, by
increasing the supercritical Reynolds number (Re >Rec1), one of the recirculations
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Figure 6. Limiting streamlines on the bottom of the duct and solution trajectories on the
middle plane (z = 0) for the symmetric flow at Re = 20. The reattachment lines lr on top and
bottom of the channel meet the lateral walls at x1 and x2, and the symmetry plane at x01 and
x02. Here F2 is a stable focus (attracting) and F 2s is an unstable one (repelling).

becomes smaller, x01, and finally remains almost constant, whereas the other one,
x02, grows progressively with the Reynolds number. The backflow region is shorter
than that on the lateral wall. The bifurcation diagram for the flow on the symmetry
plane is analogous to that for the 2D hydrodynamic flow. The latter has also been
numerically investigated and the identified critical Reynolds number corresponding
to the symmetry-breaking bifurcation point (Rec2D

∼= 18) agrees well with the results
in the literature (Drikakis 1997; Revuelta 2005). The comparison with the solution for
the 3D flow confirms the stabilizing effect of the sidewall, as observed by Cherdron
et al. (1978) and Schreck & Schäfer (2000), which results in a higher critical Reynolds
number for the onset of asymmetry for the three-dimensional flow (Rec3D

∼= 27).
It is also worth describing the changes of the flow topology near the bottom wall of

the channel when raising the Reynolds number. In figure 8, the limiting streamlines
are depicted on the lower wall of the duct for the symmetric flows at Re = 10 and
Re =25. At Re = 10, a node N+ acting as a streamline source is present on the
reattachment line lr and a sink N− lies on the separation line ls close to the expansion
wall. This line indicates the presence at the duct corners of small vortical paths. For
higher Reynolds numbers (e.g. Re = 25 in figure 8b) two sinks N− appear near the
external corners of the expansion wall, on the separation line, and they are associated
with a saddle point S2 located at z = 0. The topology along the reattachment line is
equal to that described for smaller Reynolds numbers.

Above the symmetry-breaking Reynolds number, Rec1, the topological structure on
the bottom of the duct changes as depicted in figure 9, where limiting streamlines
are drawn for the asymmetric flow at Re = 30. The node N+ that was present on the
reattachment line, at z = 0, splits into two nodes of reattachment and a new saddle
point S1 appears between them. With increasing further the Reynolds number, these
two nodes move towards the lateral walls. The separation line that connects the two
saddle points S1 and S2 prevents the limiting streamlines that emerge from nodes N+

from crossing the centreline at z =0.
The flow topology becomes more complex for larger Reynolds numbers even in

the laminar stationary regime. This is indicated by an increasing number of critical
points which describe the kinematic aspects of the streamlines.
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Figure 7. Locations of reattachment (x1, x2, x3) and separation (x4) points of the recirculations
(a) on the lateral wall of the duct and (b) on the symmetry plane at z = 0 as a function of
the Reynolds number. In (a), the dotted line drawn between Rec1 and Rec2 indicates the axial
position of node N1 (see figures 3 and 4).

4. Conclusions
Hydrodynamic flows in a sudden expansion of rectangular ducts with expansion

ratio equal 4 have been studied numerically with the aim of achieving a good insight
into the separation phenomena that occur in this geometry.

The flow features have been analysed by performing a topological study of the
velocity field in the duct, i.e. by identifying critical points and characteristic curves
connecting them. Limiting streamline patterns have been used for this purpose.
Changes in the type and number of these topological elements allow inferring to a
certain extent the structure of the entire velocity field and the interaction between
the various separation and vortical zones. It has been found that the increase of
complexity of the flow field with the Reynolds number is well described by the
occurrence of a larger number of critical points.

The numerical analysis shows that for Re <Rec1 � 27, two recirculations of the
same size are present in the channel and their reattachment length increases linearly
with the Reynolds number. For larger Reynolds numbers, the flow is asymmetric:
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Figure 8. Limiting streamlines on the bottom of the channel for the symmetric flows at
(a) Re = 10 and (b) Re = 25. By increasing the Reynolds number, the topology close to the
reattachment line lr remains the same, while it changes near the expansion wall along the
separation line ls (new saddle point S2).
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Figure 9. Limiting streamlines on the bottom of the duct for the asymmetric flow at
Re = 30. Downstream along the reattachment line new topological features are present: two
reattachment nodes N+ acting as sources of streamlines and a saddle point S1.

one bubble shrinks and the other one becomes longer. It should be noted that it
is equally probable to get a solution that is mirrored with respect to the plane
y = 0 compared with that described in the paper. For Re >Rec2 � 37, a secondary
recirculation appears downstream, behind the smaller primary vortical zone.

For all the investigated Reynolds numbers (Re � 150), the topology of the flow on
the symmetry plane at z =0 resembles that of the 2D flow. The additional critical
points present on the lateral walls when the flow is asymmetric as well as the
secondary vortex disappear at some distance from the wall. The evolution of the
separation areas, in terms of reattachment and separation points, is represented by a
pitchfork-like bifurcation diagram analogous to that obtained for the two-dimensional
flow in the same geometry. However, the critical symmetry-breaking Reynolds number
is larger for the 3D flows (Rec3D

∼= 27 >Rec2D
∼=18), indicating a stabilizing effect of

the sidewalls on the velocity field.
As already mentioned, the present paper is intended as a brief overview of the main

topological characteristics of hydrodynamic flows in a specific sudden expansion.
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An exhaustive description of this fundamental hydrodynamic problem is out of the
scope of this paper. The results shown here are a starting point required to assess
the effects of an imposed uniform magnetic field on separation phenomena in the
considered geometry as discussed in Part 2 (Mistrangelo 2011). Only the knowledge
of the complexity of the hydrodynamic flow allows appreciating the strong action of
the electromagnetic forces on flow structures and their role in the balance of forces
established in the ducts.
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