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S. A hydrolase activity that cleaves lysyl-p-nitroanilide (Lys-pNA) has
been purified from the cytoplasm of Lactococcus lactis subsp. cremoris AM2 by
chromatography on DE52, DEAE Affi-Gel Blue Gel, Hydroxyapatite Bio-Gel HTP
and Phenyl Sepharose. The purified aminopeptidase was found to have a native M

r

of 50000–55000 by gel filtration chromatography and by FPLC gel filtration on
Superose 12 and to be composed of a single polypeptide chain following SDS-PAGE.
Enzyme activity was almost completely inhibited by EDTA, amastatin, puromycin
and bestatin, while the sulphydryl-reactive agents p-chloromercuribenzoate and
iodoacetamide were inhibitory. The enzyme was found to be very unstable during the
purification procedures at 4 °C and its stability was greatly improved when 10 ml
glycerol}l and 2 m-dithiothreitol were included in the purification buffers. The
purified enzyme was found to hydrolyse a wide range of dipeptides, tripeptides and
longer peptides provided that proline was not present in the penultimate position
from the N-terminus or that a pyroglutamyl residue was not present at the
N-terminus. While neither Asp-pNA nor Pro-pNA was hydrolysed by the purified
enzyme, the release of N-terminal acidic residues from peptides was observed in
addition to the release of N-terminal proline from Pro–Leu–Gly–NH

#
, Pro–Leu–

Gly–Gly and Pro–His–Pro–Phe–His–Leu–Phe–Val–Tyr. This ability of Lys-pNA
hydrolase to release N-terminal proline residues was employed in concert with a
purified aminopeptidase P preparation to release alternate N-terminal amino acids
from Tyr–Pro–Phe–Pro–Gly. The complementary action of these enzymes represents
an alternative mechanism to that of post-proline dipeptidyl aminopeptidase for
metabolism of proline-containing peptides.

The initial stages of casein breakdown during cheese manufacture are mediated
by cell wall proteinases derived from the starter cell culture in conjunction with
chymosin and endogenous plasmin. Many of the peptides produced are small enough
to be transported into the starter cells together with the free amino acids that are
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also produced. It has recently been shown that the genes encoding some
aminopeptidases in starter cultures do not contain signal sequences required for
transport to the outside or to the surface of the cell (Van Alen-Boerrigter et al. 1991;
Chapot-Chartier et al. 1993). This suggests that casein-derived peptides, which are
not small enough to be transported into the starter cells, are not further degraded by
aminopeptidase action at this stage. Those peptides that do gain access to the starter
cells are then hydrolysed by intracellular aminopeptidases and dipeptidases to free
amino acids, which are necessary for cell growth (Mills & Thomas, 1981).

It is now apparent that certain strains of starter cultures lyse during the ripening
process, releasing their contents into the cheese matrix (Wilkinson et al. 1994). This
brings the partly digested peptides of the cheese matrix into contact with the range
of cytoplasmic aminopeptidases and dipeptidases. These include aminopeptidases
A, C, N and P, prolyl aminopeptidase, post-proline dipeptidyl aminopeptidase,
tripeptidase, dipeptidase and prolinase (Kunji et al. 1996). While the cheese matrix
may not provide optimum conditions for the activity of the released cytoplasmic
enzymes, they may be able to make a contribution to the hydrolysis of bitter
peptides and to the provision of free amino acids which may be further metabolized
to flavour-providing compounds. In the present study we examined one such
cytoplasmic enzyme, a lysyl-p-nitroanilide (Lys-pNA) hydrolase and compared its
properties with those of previously reported aminopeptidases.

  

Reagents

Lactococcus lactis subsp. cremoris AM2 and low heat skim-milk powder were
provided by the National Dairy Products Research Centre (Moorepark, Fermoy, Co.
Cork, Irish Republic). Tris(hydroxymethyl)aminomethane, fructose 1,6-diphos-
phate, NADH disodium salt, disodium ATP, pyruvic acid, iodoacetamide, 1,10-
phenanthroline, 8-hydroxyquinoline, benzamidine, amastatin, bestatin, puromycin,
bacitracin, N-ethylmaleimide, p-chloromercuribenzoate, dithiothreitol (DTT) and
phenylmethylsulphonylfluoride were obtained from Sigma Chemical Company (Poole
BH17 7NH, UK). Diethylaminoethyl (DEAE) cellulose anion exchanger and 0±2 µm
syringe filters were supplied by Whatman (Maidstone ME14 2LE, UK). Precoated
silica gel type 60 plates and ethylene glycol were obtained from Merck (D-64293
Darmstadt 1, Germany). Bio-Rad Laboratories (Hemel Hempstead HP2 7TD, UK)
supplied Hydroxyapatite Bio-Gel HTP and DEAE Affi-Gel Blue Gel. Sephacryl
S-100 high resolution gel, Superose 12 (HR 10}30), Phenyl Sepharose CL4B, and gel
electrophoresis and gel filtration molecular mass markers were obtained from
Pharmacia Chemicals AB (S-751 82 Uppsala, Sweden). Immobilon-P membrane and
0±45 µm HA (low protein binding) filter were supplied by Millipore (UK) Ltd
(Watford WDY 8YW, UK). All peptides and peptide derivatives were obtained from
Bachem Feinchemikalien (CH-4416 Bubendorf, Switzerland), with the exception of
Leu–Pro–Pro which was supplied by Peninsula Laboratories Europe Ltd (St Helens
WA9 3AJ, UK). Coomassie protein assay reagent was supplied by Pierce &
Warringer (UK) Ltd (Chester CH1 4EF, UK).

Subcellular fractionation of Lactococcus lactis subsp. cremoris AM2

Lc. lactis subsp. cremoris AM2 was grown in reconstituted skim milk, harvested,
washed and subjected to subcellular fractionation as described previously (Booth et
al. 1990a).
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Protein determination

Protein was determined by a modification of the Bradford (1976) method, using
the Pierce Coomassie protein assay reagent.

Determination of enzyme activity

Lys-pNA hydrolysing activity was measured by a modification of the method of
Exterkate (1975) using Lys-pNA as substrate. Enzyme preparation (50 µl) was
incubated with 50 m-potassium phosphate buffer, pH 7±5 (400 µl) at 30 °C; after
5 min preincubation the reaction was initiated by the addition of 50 µl 20 m-Lys-
pNA. The reaction was terminated after 30 min at 30 °C by the addition of 1 ml
1±5 -acetic acid. The absorbance of the liberated p-nitroaniline was measured at
410 nm and its concentration calculated using a molar extinction coefficient of
8800 −" cm−" (Niven et al. 1995). The release of p-nitroaniline from Lys-pNA was
found to be linear with respect to time over 30 min. Post-proline dipeptidyl
aminopeptidase was assayed by incubating 50 µl sample with 450 µl 0±11 m-
Gly–Pro-7-amido-4-methylcoumarin in 0±1 -potassium phosphate buffer, pH 7±5 at
30 °C. After 15 min the reaction was terminated by addition of 1 ml 1±5 -acetic acid
and the liberated 7-aminocoumarin was determined fluorimetrically using excitation
and emission wavelengths of 370 and 440 nm respectively.

Stabilization of enzyme activity

As Lys-pNA hydrolase proved to be highly unstable the effect of various agents
on its stability was investigated. A cytoplasmic fraction was dialysed against 50 m-
potassium phosphate, pH 7±5 (buffer 1) and applied to a DE52 (27¬27 mm) anion-
exchange column pre-equilibrated with buffer 1. The activity was eluted in a linear
salt gradient and fractions containing Lys-pNA hydrolase activity were pooled and
divided into aliquots. These aliquots were diluted 1:2 with buffer 1 and with buffer
1 containing each of the following: 20 g bovine serum albumin}l, 4 m-DTT alone,
600 ml glycerol}l alone, and 4 m-DTT containing glycerol at 600, 300, 150, 70 and
20 ml}l. These mixtures were stored at ®20, 4 and 18 °C and assayed on days 0, 2,
4 and 6.

Purification of enzyme

The cytoplasmic fraction recovered from the subcellular fractionation of Lc. lactis
subsp. cremoris AM2 was dialysed at 4 °C against 2 m-DTT–50 m-potassium
phosphate, pH 7±5 containing 10 ml glycerol}l (buffer A) and then applied to a DE52
anion-exchange column (27¬27 mm) pre-equilibrated with buffer A. Lys-pNA
hydrolase activity was eluted with a linear gradient established between buffer A and
buffer A containing 0±25 -NaCl at a flow rate of 15 ml}h. Fractions (2 ml) were
collected and assayed for aminopeptidase activity as described above. Fractions
containing activity were pooled, dialysed overnight at 4 °C against 2 m-
DTT–50 m-potassium phosphate, pH 6±8 containing 10 ml glycerol}l (buffer B) and
applied to a DEAE Affi-Gel Blue Gel (a bifunctional affinity–ion-exchange
chromatography matrix) column (35¬17 mm), pre-equilibrated with buffer B. The
column was then washed with two column volumes of buffer B and enzyme activity
was eluted in a linear gradient between buffer B and buffer B containing 0±25 -NaCl
at a flow rate of 15 ml}h. Fractions (2 ml) were collected and assayed for
aminopeptidase activity. The fractions containing activity were pooled and dialysed
overnight at 4 °C against 2 m-DTT–1 m-potassium phosphate–0±15 -KCl, pH 7±2
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containing 10 ml glycerol}l (buffer C) and applied to a hydroxyapatite column
(30¬13 mm). The column was then washed with two column volumes of buffer C and
enzyme activity was eluted in a linear gradient between buffer C and 2 m-
DTT–300 m-potassium phosphate–0±15 -KCl, pH 7±2 containing 10 ml glycerol}l.
Fractions (1 ml) were collected and assayed for Lys-pNA hydrolase activity. The
active fractions were pooled and dialysed overnight at 4 °C against 2 m-
DTT–50 m-potassium phosphate–2 -NaCl, pH 7±0 containing 10 ml glycerol}l
(buffer D) and then applied to a Phenyl Sepharose CL4B (a hydrophobic interaction
chromatography matrix) column (22¬12 mm) pre-equilibrated with buffer D. This
was washed with two column volumes each of the equilibrating buffer and 2 m-
DTT–50 m-potassium phosphate, pH 7±0 containing 10 ml glycerol}l (buffer E).
The column was then washed with two column volumes of buffer E containing 500 ml
ethylene glycol}l followed by two column volumes of buffer E containing 700 ml
ethylene glycol}l. Fractions (1 ml) were collected at a flow rate of 15 ml}h and Lys-
pNA hydrolase activity was determined. The fractions containing activity were
pooled, dialysed against buffer A at 4 °C overnight and stored at ®20 °C.

Purification of aminopeptidase P

Aminopeptidase P was purified from Lc. lactis subsp. cremoris AM2 as described
previously (Mc Donnell et al. 1997).

Determination of relative molecular mass

The M
r

of Lys-pNA hydrolase was determined by gel filtration on a Sephacryl
S-100 column (913¬27 mm); the running buffer was 2 m-DTT–50 m-potassium
phosphate–0±1 -NaCl, pH 7±5 containing 10 ml glycerol}l. The column was cali-
brated using albumin (67000), ovalbumin (43000), chymotrypsinogen A (25000) and
cytochrome C (12700). Lys-pNA hydrolase activity was eluted from the column in
3 ml fractions at a flow rate of 16 ml}h and the M

r
computed.

The M
r

was also determined on a calibrated Superose 12 FPLC gel permeation
column. The Lys-pNA hydrolase was brought through the first three chroma-
tography steps of the purification procedure, dialysed against 2 m-DTT–50 m-
potassium phosphate, pH 7±5 containing 10 ml glycerol}l and stored at ®20 °C until
applied to the Superose 12 column. The sample was diluted 1:2 (total volume 600 µl)
and filtered through a 0±2 µm Whatman filter ; then 200 µl was applied to the
column, which had been pre-equilibrated with 0±1 -Tris-HCl–0±1 -NaCl, pH 7±0
containing 100 ml methanol}l which had been filtered through a 0±45 µm Millipore
filter. The Lys-pNA hydrolase was eluted from the column in 1 ml fractions and the
eluted fractions were assayed for Lys-pNA hydrolase activity and the M

r
computed.

To determine the M
r

of subunits, SDS-PAGE was performed as described by
Laemmli (1970) using acrylamide gels of 100 g}l. Coomassie blue R-250 was used to
visualize the protein bands and the M

r
was estimated by reference to the migration

of protein standards: thyroglobulin (300000), ferritin half unit (220000), albumin
(67000), catalase (60000), lactate dehydrogenase (30000) and ferritin (18700).

Electroblotting and N-terminal protein sequencing

Purified Lys-pNA hydrolase (1 ml after Phenyl Sepharose, containing 45 µg
protein) was dialysed overnight at 4 °C against Millipore water, freeze dried and
stored at ®70 °C until SDS-PAGE was performed. Following the electrophoresis
run, the protein was electroblotted using an Immobilon-P membrane. The N-
terminal sequence was determined on an Applied Biosystems model 477 A protein
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sequencer (Applied Biosystems, Foster City, CA94404, USA) at 50 °C with detection
at 269 nm and analysed using an Applied Biosystems analyser (model 120 A).

Effect of pH

The effect of pH on Lys-pNA hydrolase was tested using 100 m-sodium citrate
(pH 4±6–7±6), 100 m-Tris-HCl (pH 7±0–8±8) and 100 m-sodium borate (pH 8±8–9±7)
in place of the normal assay buffer.

Effect of chemical reagents and divalent metals

Purified enzyme (50 µl) was preincubated with chemical or metal ion (10 m,
50 µl) and 50 m-potassium phosphate, pH 7±5 (350 µl) for 15 min at 30 °C. The
reaction was initiated by the addition of 20 m-Lys-pNA (50 µl) and terminated
after 30 min. Appropriate controls were set up in which 50 µl water, acetone or
ethanol replaced the material being investigated. Dilutions of selected inhibitors
were incubated with Lys-pNA hydrolase and inhibitor concentrations giving 50 %
inhibition of activity (IC

&!
) values were calculated.

Substrate specificity of lysyl-p-nitroaniline hydrolase

Purified Lys-pNA hydrolase in 50 µl 2 m-DTT–50 m-potassium phosphate,
pH 7±5 containing 10 ml glycerol}l was incubated with 50 µl of each peptide to be
tested (4 m in water) for 16 h at 30 °C. Then 30 µl of each incubate was applied to
a thin layer chromatography plate precoated with silica gel G60. The chromatograms
were developed in vapour-saturated tanks using butanol–formic acid–water (20:6:5
by vol.), chloroform–methanol–ammonia (350 g}l)–water (125:75:18:7 or
120:75:10:7 by vol.), butanol–acetic acid–water (200:100:100 by vol.) or iso-
propanol–ethyl acetate–acetic acid (50 ml}l) (100:100:50 by vol.). Appropriate
amino acid and peptide standards were co-chromatographed. Both standards and
reaction products were visualized by spraying the thin layer chromatography plate
using ninhydrin (10 g}l in acetone) containing 170 g trichloroacetic acid}l followed by
heating to 105 °C for 5 min.

Enzyme activity on various p-nitroanilide substrates

Purified Lys-pNA hydrolase (50 µl) was preincubated with 50 m-potassium
phosphate, pH 7±5 (350 µl) at 30 °C for 5 min. The reaction was initiated by the
addition of various p-nitroanilide substrates (50 µl) and terminated after 30 min by
addition of 1±5 -acetic acid. Controls were carried out in which 50 µl enzyme was
added after adding 1±5 -acetic acid or 50 µl deionized water replaced the enzyme.
In the latter case, no spontaneous release of p-nitroanilide could be detected after
30 min.

Sequential hydrolysis of Tyr–Pro–Phe–Pro–Gly with purified aminopeptidase P and
purified lysyl-p-nitroaniline hydrolase

Purified aminopeptidase P (100 µl) was incubated with Tyr–Pro–Phe–Pro–Gly
(100 µl, 4 m in water) for 16 h at 30 °C. The reaction was stopped by heating at
95 °C for 1 min and 30 µl incubate (product A) was stored at ®20 °C. Product A
(50 µl) was then incubated with purified Lys-pNA hydrolase (50 µl) for 16 h at 30 °C;
the reaction was terminated by heating at 95 °C for 1 min and 30 µl incubate
(product B) was stored at ®20 °C. Product B (50 µl) was then incubated with
purified aminopeptidase P (50 µl) for 16 h at 30 °C; the reaction was terminated by
heating at 95 °C for 1 min and 30 µl incubate (product C) was stored at ®20 °C.
Portions (30 µl) of products A, B and C were applied to a thin layer chromatography
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plate precoated with silica gel G60. The chromatograms were developed in vapour-
saturated tanks using chloroform–methanol–ammonia (350 g}l)–water (120:75:10:7
by vol.) and appropriate standards were co-chromatographed. Both standards and
reaction products were visualized by spraying the plates with ninhydrin (10 g}l in
acetone containing 170 g trichloroacetic acid}l) followed by heating at 105 °C for
5 min.

Stability of purified enzyme at low temperatures and acidic pH

Purified Lys-pNA hydrolase was dialysed overnight at 4 °C against 100 m-
sodium acetate, pH 5±2 containing 50 g NaCl}l. The dialysed Lys-pNA hydrolase
preparation was stored at 8 °C and samples were withdrawn at 6 h and 1, 2, 3 and
7 d and assayed for residual aminopeptidase activity.



Cultures of Lc. lactis subsp. cremoris AM2 were harvested and resolved into cell
wall, cell membrane and cytoplasmic fractions. Lys-pNA hydrolase activity was
found predominantly in the soluble cytoplasmic fraction. Lys-pNA hydrolase was
highly unstable and could only be carried through the four chromatography steps in
the presence of stabilizing agents. The results of stability studies indicated that the
inclusion of both 10 ml glycerol}l and 2 m-DTT in the running buffers maintained
the stability of the enzyme during purification procedures carried out at 4 °C. Lys-
pNA hydrolase was stable for up to 6 d at 4 °C in the presence of the buffer with 10 ml
glycerol}l and 2 m-DTT. In the first purification step, dialysed cytoplasm was
chromatographed on a DE52 anion-exchange column. The major peak of Lys-pNA
hydrolase eluted in 2 m-DTT–50 m-potassium phosphate–0±15 -NaCl, pH 7±5
containing 10 ml glycerol}l, whereas a second minor peak of Lys-pNA hydrolase
activity (C 25% of the total recovered Lys-pNA hydrolase) eluted from the DE52
column in 2 m-DTT–50 m-potassium phosphate–0±25 -NaCl, pH 7±5. The major
peak of Lys-pNA hydrolase was selected for further purification and the overall
purification scheme involved chromatography on DE52, DEAE Affi-Gel Blue Gel,
Hydroxyapatite HTP and Phenyl Sepharose CL4B (Table 1). The Lys-pNA
hydrolase eluted from the hydroxyapatite column at 0±09 -potassium phosphate
whereas post-proline dipeptidyl aminopeptidase eluted at 0±23 -potassium phos-
phate. Chromatography of the purified enzyme on Sephacryl S-100 revealed an M

r
of

55000 while chromatography on a Superose 12 FPLC gave Lys-pNA hydrolase an M
r

of 50 000. When the purified activity was subjected to SDS-PAGE a single band was
observed with an M

r
of 50000 (Fig. 1). Further chromatography of the minor peak

of Lys-pNA hydrolase, recovered from the DE52 column, on a calibrated Superose
12 column revealed an M

r
of 100000. The N-terminal sequencing of the purified Lys-

pNA hydrolase showed that the sequence of the first six amino acids was
Ala–Val–Phe–Arg–Leu–Phe. Optimal activity of Lys-pNA hydrolase was observed
at pH 7±0.

Effect of chemical reagents and metal ions

When the purified enzyme was incubated with a wide range of chemical reagents
(all at 1 m), amastatin, puromycin and bestatin were found to be strongly
inhibitory (Table 2). The chelating agents EDTA and 1,10-phenanthroline were also
inhibitory. The sulphydryl reagents p-chloromercuribenzoate and iodoacetamide
were less inhibitory, but N-ethylmaleimide gave an IC

&!
value comparable to that

https://doi.org/10.1017/S0022029999003489 Published online by Cambridge University Press

https://doi.org/10.1017/S0022029999003489


L
y
s-p

N
A

h
y
d
rola

se
from

L
a
cto

co
ccu

s
la

ctis
2
6
3

Table 1. Purification of lysyl-p-nitroanilide hydrolase from Lactococcus lactis subsp. cremoris AM2†

Specific
Total Total activity,

activity, protein, nmol}min Yield,
Sample nmol}min mg per mg % Purification

Cytoplasm 3±54 57±6 0±06 100±0 1±0
DE52 chromatography 2±83 14±7 0±19 79±9 3±2
DEAE Affi-Gel Blue Gel chromatography 2±36 6±2 0±38 66±7 6±3
Hydroxyapatite chromatography 1±17 2±5 0±47 33±0 7±8
Phenyl Sepharose CL4B chromatography 0±70 0±13 5±18 19±9 86±3

† See text for experimental details.
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Fig. 1. SDS-PAGE of soluble lysyl-p-nitroanilide hydrolase purified from Lactococcus lactis subsp.
cremoris AM2. Samples were separated by SDS-PAGE under reducing and denaturing conditions and
protein was visualized by Coomassie blue R-250 staining. Lane 1 (M

r
in parentheses), thyroglobulin

(300000), ferritin half unit (220000), bovine serum albumin (67000), catalase (60000), lactate
dehydrogenase (30000) and ferritin (18700) ; lane 2, purified enzyme (fractions eluted after the four
step chromatographic procedure described in the text), loading 15 µg protein.

Table 2. Effect of chemicals and divalent metals on the activity of purified
lysyl-p-nitroanilide hydrolase from Lactococcus lactis subsp. cremoris AM2

Residual
activity, % IC

&!
, m

No chemical or metal 100±0 —
Chemical, 1 m

N-ethylmaleimide 39±0 0±11
Iodoacetamide 83±7 " 5±00
p-Chloromercuribenzoate 50±0 1±00
EDTA 0 0±01
8-Hydroxyquinoline 18±5 ND
1,10-Phenanthroline 0±0 0±18
Bacitracin 18±0 ND
Puromycin 9±5 0±115
Benzamidine 100±0 ND
Phenylmethylsulphonylfluoride 88±0 ND
Dithiothreitol 100±0 ND
Bestatin 12±5 0±125
Amastatin 1±1 0±003

Metal, 1 m
MgCl

#
88±0 ND

BaCl
#

54±0 ND
MnCl

#
50±0 ND

CoCl
#

20±0 ND
ZnCl

#
16±0 ND

CuCl
#

0 ND
NiCl

#
0 ND

ND, not determined; IC
&!

, concentration of inhibitor giving 50 % inhibition of activity.

obtained with 1,10-phenanthroline. Bacitracin was also strongly inhibitory. All other
materials tested were non-inhibitory. The activity of Lys-pNA hydrolase was also
measured in the presence and absence of various metal ions (Table 2). While all ions
inhibited activity, Mg#+ caused least inhibition.
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Table 3. Substrate specificity of lysyl-p-nitroanilide hydrolase purified from Lactococcus lactis subsp. cremoris AM2

Substrates hydrolysed
Dipeptides Tripeptides Longer peptides

Asp–Leu Leu–Trp–Met Leu–Trp–Met–Arg
Asp–Lys Leu–Leu–Leu Leu–Trp–Met–Arg–Phe
Glu–Val Leu–Gly–Gly Asp–Arg–Val–Tyr–Ile–His–Pro
Glu–Tyr Pro–Leu–Gly–NH

#
Pro–Leu–Gly–Gly

Val–Tyr Ala–Gly–Gly Pro–Phe–Pro–Gly
Gly–Tyr Gly–Gly–Leu Ala–Gly–Gly–Gly
Gly–Leu Gly–Gly–Lys Ala–Gly–Gly–Gly–Gly
Gly–Phe Arg–Gly–Asp–Ser
Gly–Lys Asp–Tyr–Met–Gly
Leu–Leu Asp–Tyr–Met–Gly–Trp–Met
Met–Gly Lys–Phe–Gly–Lys
Ala–Leu His–His–Leu–Gly–Gly–Ala–Lys–Gln–Ala–Gly–Asp–Val
Ala–Gly Asp–Arg–Val–Tyr–Ile–His–Pro–Phe

Asp–Arg–Val–Tyr–Ile–His–Pro–Phe–His–Leu–Leu–Val–Tyr–Ser
Pro–His–Pro–Phe–His–Leu–Phe–Val–Tyr

Substrates not hydrolysed
Ala–Pro Arg–Pro–Pro Arg–Pro–Lys–Pro (Substance P(1–4))
Arg–Pro Leu–Pro–Pro Arg–Pro–Gly–Pro
Lys–Pro Lys–Pro–Arg Arg–Pro–Pro–Gly–Phe–Ser (Bradykinin (1–6))
Pro–Leu Pro–Gly–Gly Pro–Pro–Gly–Phe–Ser (Bradykinin (2–6))
Pro–Gly Gly–Gly–Gly Gly–Pro–Gly–Gly
Gly–Gly Tyr–Pro–Phe–Pro–Gly
Gly–Gly-NH

#
Glp–His–Trp–Ser–Tyr–Gly–Leu–Arg–Pro–Gly-NH

#
(Luliberin)

Glp–Leu–Tyr–Glu–Asn–Lys–Pro–Arg–Arg–Pro–Tyr–Ile–Leu
(Neurotensin)
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Table 4. Activity of a lysyl-p-nitroanilide hydrolase purified from Lactococcus lactis
subsp. cremoris AM2 towards aminoacyl p-nitroanilides

Substrate Activity, µmol}min

Lys-pNA 0±050
Arg-pNA 0±011
Leu-pNA 0±009
Ala-pNA 0±001
Asp-pNA 0
Pro-pNA 0

Substrate specificity

The purified enzyme was tested for its ability to remove the N-terminal amino
acid from a wide range of peptides. The results presented in Table 3 indicate that the
purified enzyme removed the N-terminal amino acid from a wide range of dipeptides,
tripeptides and longer peptides, provided that proline was not the penultimate
residue from the N-terminus. Lys-pNA hydrolase could act on peptides containing
up to 14 amino acids. While it did not hydrolyse Pro–Leu or Pro–Gly–Gly (Table 3),
Lys-pNA hydrolase had the ability to remove N-terminal proline residues from
longer peptides. In addition, while it did not hydrolyse Gly–Gly, Gly–Gly–NH

#
or

Gly–Gly–Gly, it did hydrolyse Gly–Gly–Lys and Gly–Gly–Leu. Table 3 also lists the
peptides that were not hydrolysed by Lys-pNA hydrolase and includes those
containing N-terminal pyroglutamyl residues and peptides that contain proline in
the penultimate position from the N-terminus. Purified Lys-pNA hydrolase was
incubated with a number of aminoacyl p-nitroanilides (2 m) and Lys-pNA was
hydrolysed most rapidly (Table 4). Pro-pNA and Asp-pNA were not hydrolysed, and
the rate of hydrolysis of Leu-pNA was only a fifth that of Lys-pNA.

Cooperation between lysyl-p-nitroanilide and aminopeptidase P in the hydrolysis of
peptides containing proline

When Tyr–Pro–Phe–Pro–Gly was incubated with purified aminopeptidase P
followed by heat inactivation an examination of the products from thin layer
chromatography showed that tyrosine was cleaved. When these products were then
incubated with purified Lys-pNA hydrolase followed by heat inactivation, both
tyrosine and proline were observed as cleaved products on thin layer chroma-
tography. Further addition of purified aminopeptidase P to the second heat
inactivated product resulted in the additional appearance of phenylalanine.

Stability of lysyl-p-nitroanilide hydrolase at low temperatures and low pH

Purified Lys-pNA hydrolase was highly unstable when stored at 8 °C after
dialysis into 100 m-sodium acetate, pH 5±2 containing 50 g NaCl}l, and had a half
life of 24 h.



Broad specificity aminopeptidases have previously been purified and charac-
terized from a number of strains of lactococci and lactobacilli. Two of the classes into
which they can be grouped are aminopeptidases N and aminopeptidases C (Tan et al.
1993). Aminopeptidases that consist of one polypeptide chain with M

r
in the range

87000–95000 and that are inhibited by chelating agents are placed within the
aminopeptidase N grouping (Tan & Konings, 1990; Rul et al. 1994), whereas
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aminopeptidases that consist of either tetramers or hexamers with subunit M
r

of
50000–54000 and that are inhibited by sulphydryl reactive agents but not by
chelating reagents are placed within the aminopeptidase C grouping (Neviani et al.
1989; Wohlrab & Bockelmann, 1993). The native M

r
value obtained for Lys-pNA

hydrolase in this study suggested a resemblance between Lys-pNA hydrolase and the
subunit M

r
of aminopeptidase C. However, the amino acid sequence for the first six

N-terminal amino acids (Ala–Val–Phe–Arg–Leu–Phe) of the purified Lys-pNA
hydrolase revealed a homology in four positions with the sequence reported for
aminopeptidase N from Lc. lactis subsp. cremoris Wg2 (Tan & Konings, 1990). The
second, minor, peak of Lys-pNA hydrolase activity recovered from the DE52 column
was found to possess an M

r
of 100000, suggesting that this might be the classic

aminopeptidase N activity described by a number of workers (Tan & Konings, 1990;
Arora & Lee, 1992; Bockelmann et al. 1992; Exterkate et al. 1992; Miyakawa et al.
1992).

While aminopeptidase N preparations from Lc. lactis subsp. cremoris Wg2 (Tan
& Konings, 1990), Lc. lactis subsp. cremoris HP (Exterkate et al. 1992), Streptococcus
cremoris AC1 (Geis et al. 1985) and Lactobacillus helveticus CNRZ 32 (Khalid & Marth,
1990) are all inhibited by chelating reagents, each activity is also partly inhibited by
sulphydryl-reactive agents, as we also found for the activity in the present study.
The aminopeptidase N preparations from Str. thermophilus CNRZ 302 (Rul et al.
1994) and Lc. lactis subsp. cremoris HP (Exterkate et al. 1992) are also inhibited by
bestatin, in common with the enzyme studied here. Our results were in agreement
with those obtained with the purified enzyme from Str. thermophilus CNRZ 302,
which also shows that hydrolysis of peptides containing an internal proline proceeds
only as far as the residue immediately preceding the proline residue (Rul et al. 1994).
The capacity of the present enzyme to release N-terminal proline from peptides
containing more than one or two peptide bonds was a property not previously
reported for aminopeptidase N or aminopeptidase C preparations, but it has been
reported for a novel broad specificity aminopeptidase from Lb. helveticus SBT 217
(Sasaki et al. 1996). Lc. lactis subsp. cremoris HP contains an aminopeptidase capable
of removing an N-terminal proline residue from dipeptides and tripeptides (Baankreis
& Exterkate, 1991).

While neither the present enzyme nor aminopeptidase N preparations from Str.
thermophilus CNRZ 302 (Rul et al. 1994) and from Lc. lactis subsp. cremoris Wg2 (Tan
& Konings, 1990) could hydrolyse Asp-pNA, the present enzyme was found to release
aspartate from a range of peptides of different lengths. In contrast, the
aminopeptidase N preparation from Str. thermophilus CNRZ 302 can hydrolyse the
peptide glucagon, which contains 29 amino acids, until an aspartyl residue is
exposed, at which point hydrolysis ceases (Rul et al. 1994). In its capacity to
hydrolyse aspartyl peptides the specificity of the present enzyme overlaps with that
of an Asp-pNA-hydrolysing aminopeptidase A that has been purified from Lc. lactis
subsp. cremoris AM2 (Bacon et al. 1994) with specificity restricted to peptides
containing N-terminal aspartyl, glutamyl and seryl residues. In Table 5 the
properties of Lys-pNA hydrolase are compared with those of preparations of PepN
and an aminopeptidase from Lb. helveticus. While the present Lys-pNA hydrolase
was a metalloenzyme and exhibited a broad specificity, it is discriminated from
previously reported aminopeptidase N preparations by its smaller M

r
and by its

ability to release N-terminal proline and acidic amino acid residues.
Two mechanisms may exist in the cytoplasm of Lc. lactis subsp. cremoris AM2 to

circumvent the blockage to further Lys-pNA hydrolase activity caused by proline.
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Table 5. Comparison of properties of a lysyl-p-nitroanilide hydrolase purified from Lactococcus lactis subsp. cremoris AM2 and
those of aminopeptidases from other lactic acid bacteria

Aminopeptidase N
Aminopeptidase

Lysyl-p-nitroanilide Tan & Konings Rul et al. Sasaki et al.
hydrolase (1990) (1994) (1996)

Native M
r

50000 95000 97000 95000
Subunit M

r
50000 95000 97000 95000

Inhibition by metal chelators Strong Strong Strong Strong
Inhibition by SH-reactive agents Intermediate Strong Absent Intermediate
Inhibition by 1 m-bestatin Strong ND Strong Intermediate
Hydrolyses aminoacyl prolines No ND No No
Hydrolyses longer peptides with Pro in second position No Yes No No
Hydrolyses prolyl dipeptides No No No Some
Hydrolyses Pro–Gly–Gly No No No No
Hydrolyses longer prolyl peptides Yes ND ND Yes
Hydrolyses aspartyl and glutamyl peptides Yes Some No Some
Hydrolyses neurotensin No Yes No No

ND, not determined.
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Post-proline dipeptidyl aminopeptidase can remove the N-terminal aminoacyl
proline in the form of a dipeptide (Booth et al. 1990c) and the proline residue can then
be hydrolysed from the dipeptide by prolidase (Booth et al. 1990b). The original
peptide would be susceptible to further hydrolysis by Lys-pNA hydrolase.
Alternatively, our previous results show that aminopeptidase P from Lc. lactis subsp.
cremoris AM2 can remove Tyr from Tyr–Pro–Phe–Pro–Gly and so remove an N-
terminal residue that precedes a proline residue (Mc Donnell et al. 1997). This exposes
an N-terminal proline, and the present study showed that the Lys-pNA hydrolase
removes the N-terminal proline, exposing the Phe residue preceding the second
proline to further aminopeptidase P action. These results indicated that amino-
peptidase P and Lys-pNA hydrolase may together represent an alternative
mechanism for circumventing the blockage to aminopeptidase action represented by
proline residues.
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