
Math. Struct. in Comp. Science (2011), vol. 21, pp. 1253–1299. c© Cambridge University Press 2011

doi:10.1017/S096012951100020X

Modelling declassification policies using abstract

domain completeness

I SABELLA MASTROENI† and ANINDYA BANERJEE‡

†Università di Verona, Verona, Italy

Email: isabella.mastroeni@univr.it
‡IMDEA Software Institute, Madrid, Spain

Email: anindya.banerjee@imdea.org

Received 2 June 2008; revised 15 June 2010

This paper explores a three dimensional characterisation of a declassification-based

non-interference policy and its consequences. Two of the dimensions consist of specifying:

(a) the power of the attacker, that is, what public information a program has that an

attacker can observe; and

(b) what secret information a program has that needs to be protected.

Both these dimensions are regulated by the third dimension:

(c) the choice of program semantics, for example, trace semantics or denotational

semantics, or any semantics in Cousot’s semantics hierarchy.

To check whether a program satisfies a non-interference policy, one can compute an abstract

domain that over-approximates the information released by the policy and then check

whether program execution can release more information than permitted by the policy.

Counterexamples to a policy can be generated by using a variant of the Paige–Tarjan

algorithm for partition refinement. Given the counterexamples, the policy can be refined so

that the least amount of confidential information required for making the program secure is

declassified.

1. Introduction

The secure information flow problem is concerned with protecting data confidentiality by

checking that secrets are not leaked during program execution. In the simplest setting,

data channels, such as program variables and object fields, are annotated with security

labels, H (high/private/secret) and L (low/public/observable), where the labels denote

levels in a two point lattice, L � H. Protection of data confidentiality amounts to ensuring

that L outputs are not influenced by H inputs (Cohen 1977).

The labels serve to regulate information flow based on the mandatory access control

assumption, namely, that a principal can access a H channel only if it is authorised to

† Isabella Mastroeni was partially supported by the PRIN projects SOFT.
‡ Anindya Banerjee was partially supported by US NSF grants CCF-0296182, ITR-0326577, CNS-0627748; by

Microsoft Research, Redmond; by the Madrid Regional Government projects S2009TIC-1465 Prometidos,

TIN2009-14599-C03-02 Desafios; and by the EU IST FET Project 231620 Hats.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1254

access H channels. The assumption leads to the classic ‘no reads up’ and ‘no writes down’

information flow control polices of Bell and LaPadula (1973): a principal at level L (H)

is authorised to read only from channels at level L (H and L) and a principal at level H

is not authorised to write to a channel at level L. A more formal description of the Bell

and La Padula policies is non-interference (NI) (Goguen and Meseguer 1984): for any two

runs of a program, L indistinguishable input states yield L indistinguishable output states,

where two program states are said to be L indistinguishable if and only if they agree on

the values of the L variables, but not necessarily on the values of H variables. Hence, L

outputs are not influenced by H inputs.

NI is enforced by an information flow analysis. Enforcement involves checking that

information about initial H inputs of a program do not flow to L output variables either

directly, by way of data flow, or implicitly, by way of control flow. One can consider leaks

of initial H inputs through other covert channels, such as power consumption or memory

exhaustion, but modes of information transmission like this are not considered in this

paper. A variety of information flow analyses have been formulated using technologies

such as data flow analysis, security type systems and program logics – see the survey in

Sabelfeld and Myers (2003) and references therein.

The above discussion implicitly assumes that given a program that manipulates mixed

data – some secret and some public – there is an attacker (a principal at level L) trying to

obtain information about secret program inputs. But how can the attacker discover this

information if it cannot look up values of secret input variables directly?

1.1. First contribution

We address this question by suggesting that an NI policy is characterised by three

dimensions:

(a) the observation policy, that is, what the attacker can observe/discover (also called

the ‘attacker model’) (Section 3.2);

(b) what must be protected – or dually, declassified – which we call the ‘protection policy’

or dually, the ‘declassification policy’ (Section 3.3);

(c) the choice of concrete semantics for the program (Section 3.1).

For (c), there is a hierarchy of semantics from which to choose (Cousot 2002): two

example elements in the hierarchy are trace semantics and denotational semantics, with

the latter being an abstraction of the former. But a concrete semantics represents an

infinite mathematical object, and by Rice’s theorem, all non-trivial questions about the

concrete semantics are undecidable. Thus, for (a), it is clear that the attacker can only

observe/discover, through program analyses, approximated, abstract properties of secret

inputs and public outputs rather than their exact, concrete values. For example, given

a program that manipulates numeric values, the attacker might discover – using an

Octagon abstract domain (Miné 2006) – that a particular secret input, say h , lies in a

range 5 � h � 8. The choice of semantics also places limits on where the attacker might

be able to make the observations, for example, only at input–output (for denotational

semantics) or all intermediate program points (for trace semantics).

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1255

Finally, (b) specifies the protection policy, namely, what property of the initial secret

input must be protected. This is often stated dually by making explicit what property

of the initial secret may be released or declassified. For example, the policy may say, as

in classic NI, that nothing may be declassified. On the other hand, an organisation may

enroll in a statistical survey that would require declassifying the average salary of its

employees. Here again, the choice of semantics plays a crucial role: for example, with a

denotational semantics we only care that the declassification policy be honoured at the

output, rather than at intermediate program points (in contrast to a trace semantics).

1.2. Second contribution

Our second contribution (Sections 4 and 5) is to show that given a fixed program

semantics, the declassification policy-dimension of NI can be expressed as a completeness

problem in abstract interpretation: the program points where completeness fails are the

ones where some secret information is leaked, thus breaking the policy. Hence, we can

check if a program satisfies a declassification policy by checking whether its semantics is

complete with respect to the policy.

Moreover, we show that when a program does not satisfy a declassification policy (that

is, when completeness fails):

(i) counterexamples that expose the failure can be generated (Section 7);

(ii) there is an algorithm that generates the best refinement of the given policy such that

the program respects the refined policy (Section 7.1).

1.3. Third contribution

We provide an algorithmic approach to refinement of declassification policies and to

counterexample generation.

To achieve this, we connect declassification and completeness (Section 5) to completeness

and stability, which have themselves been related through the Paige–Tarjan algorithm

(Paige and Tarjan 1987; Ranzato and Tapparo 2005; Mastroeni 2008). The upshot is

that we are able to show in Proposition 7.1 that the absence of unstable elements in

the program input domain (in the Paige–Tarjan sense) corresponds to the absence of

information leaks in declassified non-interference (Section 8). This relation is shown also

by means of examples, where we use the Paige–Tarjan algorithm to reveal information

leaks and to refine the corresponding declassification policy.

Finally, we create a bridge between declassified non-interference and abstract model

checking: the absence of spurious counterexamples in abstract model checking can be

understood as the absence of information leaks in declassified non-interference.

1.4. Road map of the paper

In Section 3 we discuss how we can describe a non-interference policy in terms of

three different dimensions: semantic, observation and protection policies. In particular

we focus on the semantic policy, which determines the ground where we can fix what

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1256

an attacker can observe (observation policy) and what we aim to protect (protection

policy) – see Figure 2. At this point we introduce a technique based on two main

ingredients: completeness in abstract interpretation and weakest precondition semantics,

whose relation with non-interference is explained in Section 4.

Then, in Section 5, we explain how we can check declassified non-interference policies by

using a weakest precondition semantics-based technique whose theoretical foundations are

based on abstract interpretation completeness. In particular, we introduce this technique

using policies defined in terms of I/O semantics, that is, where the attacker can only

observe the public input and the public output.

In order to show that this technique can be used in the more general formalisation of

non-interference (specifically, the one proposed in terms of three dimensions in Section 3),

we show, in Section 6, how we can easily extend the technique to non-interference policies

defined in terms of the trace semantics, where the attacker can also observe intermediate

public states.

Finally, we explain how we can use our technique to characterise counterexamples to

a given declassified non-interference policy (Section 7) and how we can refine a given

declassified policy in order to characterise the most restrictive declassified policy satisfied

by the program (Section 8). The interesting aspect of our technique is that these last

characterisations can be used in the more general formalisation of non-interference since

they are independent of the semantics, in fact, the semantics characterises what the attacker

can use for attacking a program (observed public information), but not how it uses this

information, which depends only on what it has deduced from its observations.

2. Background

In this section, we consider the semantics of Winskel’s simple imperative language Imp

(Winskel 1993), introduce relevant terminology and review the completeness of abstract

interpretations.

2.1. The imperative language

Syntax of IMP. The syntactic categories associated with Imp are:

— Numerical values �;

— Truth values � = {true, false};
— Variables Var;

— Arithmetic expressions Aexp;

— Boolean expressions Bexp;

— Commands Com .

We assume that the syntactic structure of numbers is given.

We will use the following conventions:

— m ,n range over values �;

— x , y range over variables Var;

— a ranges over arithmetic expression Aexp;

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1257

〈skip, s〉 → s
〈e , s〉 → n ∈ �x

〈x := e , s〉 → s[x �→ n]

〈c0, s〉 → s ′, 〈c1, s
′〉 → s ′′

〈c0; c1, s〉 → s ′′

〈b, s〉 → true, 〈c0, s〉 → s ′

〈if b then c0 else c1, s〉 → s ′

〈b, s〉 → false, 〈c1, s〉 → s ′

〈if b then c0 else c1, s〉 → s ′

〈if b then (c; while b do c endw) else skip, s〉 → s ′

〈while b do c endw, s〉 → s ′

Fig. 1. Big-step semantics of Imp

— b ranges over boolean expression Bexp;

— c ranges over commands Com .

We describe the arithmetic and boolean expressions in Aexp and Bexp as follows:

a ::= n | x | a0 + a1 | a0 − a1 | a0 · a1

b ::= true | false | a0 = a1 | a0 � a1 | ¬b | b0 ∧ b1 | b0 ∨ b1.

Finally, the syntax for commands is

c ::= skip | x := a | c0; c1 | while b do c endw | if b then c0 else c1.

A complete program is a command. Later in the paper we will consider a slight extension

of this language with explicit syntax for declassification as in Jif (Myers et al. 2001) or

in the work on delimited release (Sabelfeld and Myers 2004). Such syntax often takes the

form l := declassify(h), where l is a public variable and h is a secret variable.

Semantics. � is structured as a flat domain with additional bottom element ⊥, denoting

the value of uninitialised variables. We use Vars(P) to denote the set of variables of the

program P ∈ Imp. The standard big-step semantics of Imp is given in Figure 1. In the

figure, the notation 〈c, s〉 → s ′ means that command c transforms state s to state s ′,
where a state associates a variable with a value. State s ′ is called the successor of state s .
The semantics naturally induces a transition relation, →, on a set of states, Σ, specifying

the relation between a state and its possible successors. We say that 〈Σ,→〉 is a transition

system. States are represented as tuples of values indexed by variables. For example, if

|Vars(P)| = n , then Σ is a set of n-tuples of values, that is, Σ = �n . We abuse notation

by using ⊥ to denote the state where all the variables are undefined.

Traces – maximal trace semantics. In the following, we use Σ+ and Σω def
= �−→Σ,

respectively, to denote the non-empty sets of finite and infinite sequences of symbols

in Σ. Given a sequence σ ∈ Σ∞
def
= Σ+ ∪ Σω , its length is denoted by |σ| ∈ � ∪ {ω} and its

i th element is denoted by σi . A non-empty finite (infinite) trace σ ∈ Σ∞ is a finite (infinite)

sequence of program states where two consecutive elements are in the transition relation

→, that is, for all i < |σ|: σi → σi+1. If σ ∈ Σ+, then σ
 and σ� denote the final and

initial states, respectively, of σ. The maximal trace semantics (Cousot 2002) of a transition

system associated with a program P is 〈|P |〉 def
= 〈|P |〉+ ∪ 〈|P |〉ω , where Σ
 ⊆ Σ is a set of

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1258

final/blocking states and Σ� denotes the set of initial states for P . Hence

〈|P |〉ω = {σ ∈ Σω| ∀i ∈ � . σi → σi+1}
〈|P |〉+ = {σ ∈ Σ+ | σ
 ∈ Σ
, ∀i ∈ [1, |σ|). σi−1 → σi}.

The denotational semantics is obtained by abstracting trace semantics to the input and

output states only, that is,

�P� = λσ�.

{
σ
 if σ ∈ 〈|P |〉+
⊥ if σ ∈ 〈|P |〉ω.

In this case we assume that the output observation of an infinite computation is the state

where all the variables are undefined (Cousot 2002).

In the following, we will also use the weakest precondition semantics (wlp for short)

(Dijkstra 1975), isomorphic to the denotational one (Cousot 2002). Weakest precondition

semantics, denoted Wlp, associates with each terminating program P and set of valid

post-conditions Φ, the weakest set of pre-conditions Φ′ leading to Φ after the execution

of P . In general, the post- and pre-conditions are sets of states, hence Wlp(P ,Φ) = Φ′

means that Φ′ is the greatest set of states leading to the states Φ by executing P .

2.2. Review: completeness of abstract interpretation

Abstract interpretation is typically formulated using Galois connections (GC) (Cousot

and Cousot 1977), but an equivalent framework (Cousot and Cousot 1979), which we use

in this paper, uses upper closure operators. An upper closure operator (uco) ρ : C → C
on a poset C is monotone, idempotent and extensive, that is, ∀x ∈ C . x �C ρ(x). The set

of all upper closure operators on C is denoted by uco(C).

In Example 2.1, H : ℘(Σ) → ℘(Σ) defined as H(X) = �H × X L, is an upper closure

operator on ℘(Σ), because H is monotone, idempotent and extensive. We often call

a closure operator an abstract domain. In particular, H is called the output (that is,

observed) abstract domain, which ignores secret information.

The completeness of abstract interpretation based static analysis has its origins in the

work of P. and R. Cousot, for example, Cousot and Cousot (1977; 1979), and means

that the analysis is as expressive as possible. The following example is taken from

Schmidt’s excellent survey on completeness (Schmidt 2006). To validate the Hoare triple,

{?} y := −y; x := y + 1 {isPositive(x)}, a sound analysis may compute the precondition

isNegative(y). But if it can express properties like isNonNegative and isNonPositive , a

complete analysis will calculate the weakest precondition property isNonPositive(y).

An abstract domain is complete for a concrete function f if the ‘abstract state transition

function precisely mimics the concrete state-transition function modulo the GC between

concrete and abstract domains’ (Schmidt 2006). There are two notions of completeness,

backward (B) and forward (F) completeness, according to whether the concrete and

abstract computations are compared in the abstract or concrete domain (Giacobazzi

and Quintarelli 2001). Formally, let C be a complete lattice and f be the concrete state

transition function, f : C → C . Abstract domain ρ is a sound abstraction for f provided

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1259

ρ ◦ f ◦ρ � ρ ◦ f . For instance, in Example 2.1,

H(�P�(H(X))) ⊇H(�P�(X)),

so H is a sound abstraction for �P�. Completeness is obtained by demanding equality:

— ρ is a B-complete abstraction for f if and only if ρ ◦ f = ρ ◦ f ◦ρ.

— ρ is a F-complete abstraction for f if and only if f ◦ρ = ρ ◦ f ◦ρ.

Completeness can be generalised to pairs (ρ, η) of abstract domains: B-completeness holds

for (ρ, η) when ρ ◦ f ◦ η = ρ ◦ f ; F-completeness holds for (ρ, η) when ρ ◦ f ◦ η = f ◦ η (see

Giacobazzi et al. (2000) for details). Algorithms for completing abstract domains exist –

see Giacobazzi et al. (2000), Giacobazzi and Quintarelli (2001) and Mastroeni (2008)

and Schmidt’s survey, Schmidt (2006), for details. Basically, F-completeness is obtained

by adding all the direct images of f to the output abstract domain; B-completeness is

obtained by adding all the maximal of the inverse images of the function to the input

domain.

2.3. On NI as a completeness problem

By starting from Joshi and Leino’s characterisation of classic NI, Giacobazzi and

Mastroeni (2005) noted that classic NI is a completeness problem in abstract inter-

pretation. Joshi and Leino (2000) uses a weakest precondition semantics of imperative

programs to arrive at an equational definition of NI: a program P containing H and L

variables (ranged over by h and l , respectively) is secure if and only if

HH ;P ;HH = P ;HH

where HH is an assignment of an arbitrary value to h . ‘The postfix occurrences of HH
on each side mean that we are only interested in the final value of l and the prefix HH
on the left-hand-side means that the two programs are equal if the final value of l does

not depend on the initial value of h ’ (Sabelfeld and Sands 2001).

An abstract interpretation is (backwards) complete for a function f if the result obtained

when f is applied to any concrete input x and the result obtained when f is applied to an

abstraction of the concrete input x both abstract to the same value. Thus, the essence of

completeness is that an observer who can see only the final abstraction cannot distinguish

whether the concrete input value was x or any other concrete value x ′ with the same

abstract value as that of x . The completeness connection is implicit in Joshi and Leino’s

definition of secure information flow and the implicit abstraction in their definition is

‘each H value is associated with �, that is, the set of all possible H values’. We will now

explain these ideas using an example.

Let �H,�L be the sets of possible H and L values. In particular, if

n = | {x ∈ Vars(P) | x is H} |,

then �H def
= �n , and analogously for L variables. The set of program states is Σ = �H×�L.

Σ is implicitly indexed by the H variables followed by the L variables. For any X ⊆ Σ, X H

(respectively, X L) is the projection of the H (respectively, L) variables. L indistinguishability

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1260

of states s1, s2 ∈ Σ, written s1 =L s2, denotes the fact that s1, s2 agree when indexed by L

variables.

We start with Joshi and Leino’s semantic definition of security (Joshi and Leino 2000),

HH ;P ;HH = P ;HH . Because HH is an arbitrary assignment to h , its semantics can

be modelled as an abstraction function H on sets of concrete program states Σ; that

is, H : ℘(Σ) → ℘(Σ), where ℘(Σ) is ordered by subset inclusion ⊆. For each possible

value of an L variable, H associates all possible values of the H variables in P . Thus

H(X) = �H × X L, where �H = �, the top element of ℘(�H). Now the Joshi–Leino

definition can be rewritten (Giacobazzi and Mastroeni 2005) as follows, where �P� is the

concrete, denotational semantics of P :

H◦ �P� ◦H =H◦ �P�. (1)

This is exactly the definition of backwards completeness in the abstract interpretation

(Cousot and Cousot 1979; Giacobazzi et al. 2000). The next example shows how we can

interpret the completeness equation when non-interference does not hold.

Example 2.1. Let h1, h2 ∈ {0, 1} and l ∈ {0, 1}. So �H = {0, 1} × {0, 1}, �L = {0, 1}.
Consider any X ⊆ Σ: for example, let X = {〈0, 0, 1〉}, that is, X denotes the state where

h1 = 0, h2 = 0, l = 1. So H(X) = �H × {1}. Let P be the obviously insecure program,

l := h1, so �P�(X) = {〈0, 0, 0〉} and H(�P�(X)) = �H × {0}. On the other hand,

�P�(H(X)) = {〈0, 0, 0〉, 〈0, 1, 0〉, 〈1, 0, 1〉, 〈1, 1, 1〉},

so we haveH(�P�(H(X))) = �H×{0, 1}, and thusH(�P�(H(X))) ⊇H(�P�(X)). Because

H(�P�(H(X))) contains triples 〈1, 0, 1〉 and 〈1, 1, 1〉 that are not present in H(�P�(X)),

the dependence of l on h1 has been exposed. In other wordsH�P�H collects in output all

the possible observations due to the variation of h1, whileH�P� provides the observation

for a particular value h1. Hence, if these two sets are different, we have a dependency

of the observable output on the value of h1. Thus P violates classic NI: for any two

distinct values, 0 and 1 of h1 inH(�P�(H(X))), two distinct values, 0 and 1, of l may be

associated.

In this paper, we consider more flexible abstractions than Joshi and Leino considered, and

show that such abstractions naturally describe declassification policies that are concerned

with what information is declassified (Sabelfeld and Sands 2007).

3. The three dimensions of non-interference

We mentioned the following three dimensions of NI in the introduction:

(a) the semantic policy;

(b) the observation policy; and

(c) the protection/declassification policy.

These dimensions are represented pictorially in Figure 2. In general, to describe any NI

policy for a program, we first fix its semantic policy. The semantic policy consists of the

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1261

Fig. 2. The three dimensions of non-interference

concrete semantics of the program (the solid arrow in Figure 2 shows Cousot’s hierarchy of

semantics), the set of observation points, that is the program points where the attacker can

observe data, and the set of protection points, that is the program points where information

must be protected. Next we fix the program’s observation and protection policies, which

say what information can be observed and what information needs to be protected at

these program points. This is how we interpret the what dimension of declassification

policies espoused by Sabelfeld and Sands (2007).

As an example, consider classic NI, whose formal definition is given below (for a

deterministic program P†):

∀l ∈ �L, h1, h2 ∈ �H. �P�(h1, l)L = �P�(h2, l)L.

Notice that the initial states (h1, l) and (h2, l) are L indistinguishable and the definition

requires that the L projection of the final states be L indistinguishable.

For the P above, the three dimensions of classic NI are as follows. For the semantic

policy, the concrete semantics is P ’s denotational semantics. Both inputs and outputs

constitute the observation points while inputs constitute the protection points because it

is secret data at the program inputs that need to be protected. The observation policy is

the identity on the public input–output because the attacker can only observe L inputs

and L outputs. Such an attacker is the most powerful attacker for the chosen concrete

semantics because its knowledge (that is, the L projections of the initial and final states

of the two runs of the program) is completely given by the concrete semantics. Finally,

the protection policy is the identity on the secret input. This means that all secret inputs

must be protected, or, dually, no secret inputs can be declassified.

† If P is not deterministic, the definition still works if we simply interpret �P�(s) as the set of all the possible

outputs starting from s .

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1262

3.1. The semantic policy

In this section our goal is to provide a general description of a semantic policy that is

parametric on any set of protection and observation points. To this end, it is natural to

move to a trace semantics. Our first step in this direction is to consider a function post as

defined below.

Let →P be the transition relation induced by the big-step semantics (Figure 1) of a

program P . We define

postP
def
= {〈s , t〉 | s , t ∈ Σ, s →P t } .

We can recover classic NI from this definition of postP as follows. We first define the

input–output relation below, which forms a function as P is deterministic†. Let→i
P be the

transitive composition of→P , i times. This implies, by construction, that→i
P corresponds

to the result in the i th program point.

post+P
def
=

{
〈s , t〉

∣∣ s ∈ Σ�, t ∈ Σ
, ∃i . s →i
P t

}
.

In other words, post+P associates with each initial state s the final state t reachable from

s . It is then straightforward to note that an equivalent characterisation of classic NI (that

uses denotational semantics) is given by

∀s1, s2 ∈ Σ�. s1 =L s2 ⇒ post+P (s1) =L post+P (s2)

where the set of initial states is Σ�. We will now use post to consider NI for trace

semantics.

NI for trace semantics. A denotational semantics does not take into account the whole

history of computation, and thus restricts the kind of protection/declassification policies

one can model. In order to handle more precise policies that take into account where

(Sabelfeld and Sands 2007) information is released in addition to what information is

released, we must consider a more concrete semantics, such as trace semantics. First, we

define classic NI on traces:

∀l ∈ �L, ∀h1, h2 ∈ �H. 〈|P |〉(h1, l)L = 〈|P |〉(h2, l)L,

where we have used 〈|P |〉 to denote the trace semantics of P . This definition says that

given two L indistinguishable input states (h1, l) and (h2, l), the two executions of P must

generate two sequences of states, which are either both finite or both infinite sequences,

in which the corresponding states in each sequence are L indistinguishable. Equivalently,

we can use a set of post relations: that is, for i ∈ Nats, we define the family of relations

postiP
def
=

{
〈s , t〉

∣∣ t ∈ Σ, s ∈ Σ�, s →i
P t

}
† If P is not deterministic, the only thing to note is that we have to define the function post as a set of

tuples 〈s ,T 〉, where T is the set of all the final states reachable from s . The observation is similar for all

the subsequent definitions of post functions. Note, moreover, that these definitions hold trivially even if the

program is not terminating.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1263

Fig. 3. Different notions of non-interference for trace semantics

(because P is deterministic, each postiP is indeed a function). The following result is

straightforward.

Proposition 3.1. NI on traces holds if and only if for each program point i of program

P , we have

∀s1, s2 ∈ Σ�.s1 =L s2 ⇒ postiP (s1)
L = postiP (s2)

L.

Proof. We just need to note that 〈|P |〉(s1)
L = 〈|P |〉(s2)

L holds if and only if postiP (s1) =L

postiP (s2) holds for each i .

The post characterisation of trace non-interference precisely identifies the observation

points as the outputs of the post relations, that is, any possible intermediate state of

computation and the protection points are identified as the inputs of the post relations,

that is, the initial states. We will now show how to generalise the semantic policy following

this schema.

General semantic policies. We have just shown how we can define for denotational and

trace semantics a corresponding set of post relations fixing protection and observation

points. In order to understand how we can generalise this definition, we consider the

graphical representation of the situations considered in Figure 3.

(i) In the first picture, the semantic policy says that an attacker can observe the public

inputs and outputs only, while we can protect only the secret inputs. This notion

corresponds to classic NI.

(ii) In the second picture, the semantic policy says that an attacker can observe each

intermediate state of computation, including the input and the output, while the

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1264

protection point is the same as in part (i) — only secret inputs must be protected.

Any possible leakage of secret data in intermediate states is not taken into account as

only the protection of secret input is mandated by the policy. This notion corresponds

to the non-interference policy introduced in robust declassification (Zdancewic and

Myers 2001), up to an abstraction of traces. This is the notion characterised above in

terms of trace semantics.

(iii) In the last picture, we show another possible choice. In this case the semantic policy

says that an attacker can observe each intermediate state of computation, while the

protection points are all intermediate states of the computation. In order to check

this notion of non-interference for a program, we have to check non-interference

separately for each statement of the program itself. It is worth noting that this

corresponds exactly to

∀s1, s2 ∈ Σ. s1 =L s2. postP (s1) =L postP (s2).

Because P is deterministic, postP corresponds to an input–output function that can

have any possible reachable state/program point as output (the attacker can observe

any program point), and any possible state/program point as input (we want to

protect secret data at any program point)†. Note that (iii) differs form (ii) only in

interactive contexts, where there are intermediate private inputs to protect.

It is clear that there are several notions of non-interference lying between (i) and (ii),

depending on what intermediate states of the computation the attacker can observe (ob-

servation points in Figure 3). For example, gradual release (Askarov and Sabelfeld 2007a)

considers as observation points only those program points corresponding to low events

(that is, assignment to low variables, declassification points and termination points).

Likewise, there are several notions of non-interference lying between (ii) and (iii),

depending on the points of the computation at which we have to protect the secret part

of the state (protection points in Figure 3). In general, there are also several possibilities

lying between (i) and (iii) in which particular observation points as well as particular

protection points are fixed. In order to model these intermediate possibilities, consider the

following relation, which is again a function for deterministic programs:

posti ,jP
def
= {〈s , t〉| s , t ∈ Σ, ∃s ′ ∈ Σ�. s ′ →i

P s →j−i
P t}.

In other words, i is the program point where the secret input can change, so we want

to protect the secret input at program point i , while j is the program point where the

attacker can observe the computation. Hence, consider a set P of protection points and

the set O of observation points, with both sets of indexes such that 0 corresponds to the

initial program point. In the following, for each index i ∈ P, we use pi to denote the

corresponding protection point, while for i ∈ O, we use oi to denote the corresponding

observation point. We can now define a notion of NI parametric on these two sets of

program points as follows. Consider any i in P and any j in O with i < j , and consider

† This notion is also the one proposed for approximating abstract non-interference (Giacobazzi and

Mastroeni 2004).

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1265

any s1, s2 ∈ Σ� such that s1 →i
P s ′1 and s2 →i

P s ′2. Then,

s ′1 =L s ′2 ⇒ posti ,jP (s ′1) =L posti ,jP (s ′2).

In this way we can also characterise the where dimension of declassification, which

allows us to specify where we want to protect secret data, for example, in the input or in

any possible intermediate state, and where the attacker can observe, for example, in the

input–output or in any intermediate state, thus revealing the states in which information

leakage happens. However, as we emphasised earlier, unless we consider interactive systems

that can provide inputs in arbitrary states, the secret inputs of a program in its initial state

are the only interesting secrets to protect. Thus we will restrict ourselves to initial secrets

in the rest of the paper. Hence, in the definition above, P will always be {0}, namely, we

will consider that the initial input states are the only ones to be protected. Hence, (ii) and

(iii) collapse to the same notion.

Definition 3.2 (Trace-based NI). Given a set O of observation points, the notion of NI

based on the semantic policy with O as observation points and the input as protection

point is defined as follows:

∀j ∈ O. ∀s1, s2 ∈ Σ�. s1 =L s2 ⇒ postjP (s1) =L postjP (s2).

Note that this is a general notion, and that any of the other NI notions described in

Section 3 can be formulated as an instance of it, depending on O. In particular, we

obtain standard NI by fixing O = {p | p is the final program point}, we obtain the most

concrete trace-based NI policy by fixing O = {p | p is any program point}. But we can

also obtain intermediate notions depending on O: for example, we obtain gradual release

by fixing O = {p | p is a program point corresponding to a low event}. We can observe

that, without intermediate inputs, the last two possibilities provide the same notion,

namely, observing all the states does not provide the attacker with any more information

than observing only the low event states. Nevertheless, the parametric notion allows us

to model situations where the environment can, for example, avoid some low event being

observed.

Example 3.3. Consider the program fragment P with the semantic policies represented in

the following picture.

p0 → ← o0

h1 := h2;

h2 := h2 mod 2;

l1 := h2

l2 := h1

l2 := l1
← o5

(a)

p0 → ← o0

h1 := h2;

h2 := h2 mod 2;

l1 := h2

← o3

l2 := h1

← o4

l2 := l1
← o5

(b)

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1266

The semantic policy represented in picture (a) is the I/O one. In this case, for each pair

of initial states s1, s2 such that sL1 = sL2 , we have to check whether post5(s1)
L = post5(s2)

L,

and it is clear that this does not hold since, for instance, if s1 = 〈h1, h2 = 2, l1, l2〉 and

s2 = 〈h1, h2 = 3, l1, l2〉, we have different l2 values in output: viz. l2 = 0 and l2 = 1,

respectively.

On the other hand, the policy in picture (b) considers O = {3, 4, 5} (the low events). In this

case, for each pair of initial states s1, s2 such that sL1 = sL2 , we have to check post5(s1)
L =

post5(s2)
L, but also whether post4(s1)

L = post4(s2)
L and post3(s1)

L = post3(s2)
L, and all

these tests fail since in all the corresponding program points there is a leakage of private

information.

3.2. The observation policy

Suppose the observation points fixed by the chosen semantics are input and output. Then

the observation policy might require that the attacker observes a particular property ρ of

the public output, for example, parity, and a particular property η of the public input, for

example, signs. (Technically, η, ρ are both closure operators.) Then we obtain a weakening

of classic NI as follows:

∀x1, x2 ∈ � . η(x L
1) = η(x L

2) ⇒ ρ(�P�(x1)
L) = ρ(�P�(x2)

L). (2)

This weakening was first advanced in Giacobazzi and Mastroeni (2004), where it was

called narrow (abstract) non-interference (NNI). Classic NI is recovered by setting ρ and

η to be the identity.

If the attacker cannot access the code, the above observation policy only allows it

to understand whether the secret input interferes with the public output or not. In the

absence of the code, the attacker cannot understand the manner in which this interference

happens. However, given the observation policy, the programmer of the code can analyse

the code for vulnerabilities by performing a backwards analysis that computes the maximal

relation between secret inputs and public outputs.

Observation policy for a generic semantic policy. We will now give an example of how

to combine a semantic policy consisting of a trace-based semantics with an observation

policy. In other words, we will show how we abstract a trace by a state abstraction.

Consider the following concrete trace, where each state in the trace is represented as the

pair 〈h , l〉:
〈3, 1〉 → 〈2, 2〉 → 〈1, 3〉 → 〈0, 4〉 → 〈0, 4〉.

Suppose also that the trace semantics fixes the observation points to be each intermediate

state of the computation. Now suppose the observation policy is that only the parity

(represented by the abstract domain Par) of the public data can be observed. Then the

observation of the above trace through Par is

〈3, odd〉 → 〈2, even〉 → 〈1, odd〉 → 〈0, even〉 → 〈0, even〉.

We can formulate the abstract notion of non-interference on traces by saying that all the

execution traces of a program starting from states with different confidential inputs and

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1267

the same property (say η) of public input have to provide the same property (say ρ) of

public parts of reachable states. Therefore, the general notion of narrow non-interference

simply consists of abstracting each state of the computational trace. This leads us to the

following definition.

Definition 3.4 (Trace-based NNI). Given a set of observation points O,

∀j ∈ O. ∀s1, s2 ∈ Σ� . η(sL1) = η(sL2) ⇒ ρ(postjP (s1)
L) = ρ(postjP (s2)

L).

The following example shows the meaning of the observation policy, though it will not

be considered any further in this paper.

Example 3.5. Consider the program fragment in Example 3.3 together with the semantic

policies shown so far. If we consider the semantic policy in (a) and an attacker who

is only able to observe in the output the sign of integer variables, that is, η = id and

ρ = {�, < 0,� 0,�}, we trivially have that for any pair of initial states s1 and s2 agreeing

on the public part, ρ(post5(s1))
L = (� 0) = ρ(post5(s2))

L. In other words, the program is

secure. Consider now the semantic policy in (b) and the same observation policy. In this

case, non-interference is still satisfied at o5 but it fails at o3 and o4 since by changing the

sign of h2 we change the signs of l1 and l2, respectively.

It is worth noting that the output abstraction decides what is observable. In the example

above, and in the abstract non-interference framework in general, the abstraction ρ is

a property of public data, but it can also be interpreted as a further state projection

on some public variables only. In other words, in the example, we suppose that in all

the observable points the attacker can observe all the public variables, but we can also

suppose that it can only observe some of them, for instance only those modified at the

observed point: in the example, we could have assumed that only l2 was observable at o4.

However, in the following we will assume that the attacker can always observe the whole

public state.

3.3. The protection/declassification policy

This component of the non-interference policy specifies what must be protected or, dually,

what must be declassified.

For a denotational semantics, classic NI says that nothing can be declassified. Formally,

just as in the example in Section 1.2, we can say that the property � has been declassified.

From the perspective of an attacker, this means that every secret input has been mapped

to �. On the other hand, suppose we want to declassify the parity of the secret inputs.

Then we do not care if the attacker can observe any change due to the variation of

parity of secret inputs. For this reason, we only check the variations of the output when

the secret inputs have the same parity property. Formally, consider an abstract domain

φ – the declassifier, which is a function that maps any secret input to its corresponding

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1268

parity†. Then a program P satisfies declassified non-interference (DNI) provided

∀x1, x2 ∈ � . x L
1 = x L

2 ∧ φ(x H
1) = φ(x H

2) ⇒ �P�(x H
1 , x

L
1)L = �P�(x H

2 , x
L
2)L. (3)

This notion of DNI has been advanced several times in the literature, for example, in

Sabelfeld and Myers (2004); the particular formulation using abstract interpretation is due

to Giacobazzi and Mastroeni (2004), and is further explained in Mastroeni (2005), where

it is called ‘declassification by allowing’. The generalisation of DNI to Definition 3.2 is

straightforward. Since we can only protect the secret inputs, we simply add the condition

φ(sH1) = φ(sH2) to Definition 3.2. In general, we can consider a different declassification

policy φj corresponding to each observation point oj , j ∈ O.

Definition 3.6 (Trace-based DNI.). Consider a set of observation points O. Let ∀j ∈ O φj

be the input property declassified at oj . Then

∀j ∈ O. ∀s1, s2 ∈ Σ� . sL1 = sL2 ∧ φj (sH1) = φj (sH2)⇒ postjP (s1)
L = postjP (s2)

L.

As we show in the following example, this definition allows a versatile interpretation of

the relation between the where and the what dimensions for declassification. Indeed, if

we have a unique declassification policy φ that holds for all the observation points, then

∀j ∈ O.φj = φ. On the other hand, with explicit declassification, we have two different

choices. We can combine where and what and assume that the attacker’s knowledge can

only increase. In this case, for any i in O, using φ′i to denote the information declassified

in the corresponding program point i , the family of declassification policies φj used in

Definition 3.6 is φj = �i�jφ
′
i . In other words, at each observation point, we declassify not

only what is explicitly declassified at that point, but also what was declassified previously.

For instance, consider the following program fragment:

P =

⎡⎢⎢⎢⎢⎣
p0 → ← o0

l1 := declassify(h � 0);

← o1

l2 := declassify(h � 0);

← o2

Then

φ′1 = φ1 = {�, h � 0,�},
but at o2 we have

φ′2 = {�, h � 0,�}
and

φ2 = φ′1 � φ′2 = {�, h � 0, h � 0, h = 0,�}.
So at program point o2 we only explicitly declassify h � 0, but taken together with what

was previously declassified, we also declassify h = 0. We call this kind of declassification

† More precisely, φ maps a set of secret inputs to the join of the parities obtained by mapping φ to each secret

input; the join of even and odd is �.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1269

incremental declassification. On the other hand, we can combine where and what in a

stricter way: namely, the information is only declassified at the specific observation point

where it is explicitly declared, and not at any following points. In this case it is sufficient

to consider as φj exactly the property corresponding to the explicit declassification – we

will call this localised declassification. This kind of declassification can be useful when

we consider the case where the information obtained at the different observation points

cannot be combined, for example, if different points are observed by different attackers,

as can happen in the security protocol context.

Example 3.7. Consider the program fragment in Example 3.3, but with the third line

substituted by l1 := declassify(h2). Consider the I/O semantic policy in picture (a), so we

do not consider where the declassification is declared, as in delimited release (Sabelfeld

and Myers 2004). Indeed, for delimited release, the underlying security policy is that h
is declassified at the input, and the program point where the declassification actually

happens is ignored (Askarov and Sabelfeld 2007a). In other words, declassification of

h is visible to the entire program. Hence, φ5(h1, h2) = 〈�(h1), id(h2)〉
def
= idh2

, that is, we

declassify the value of h2. With this declassification policy, non-interference is satisfied.

Now consider the semantic policy in picture (b). In this case we have two possibilities.

If we consider incremental declassification, we have φ3 = φ4 = φ5 = idh2
. Of course in

this case the program is trivially secure since everything about h2 is released but nothing

about h1 is released: indeed h1’s value is lost in the first line of P due to a destructive

update. But if we consider local declassification, we have φ3 = idh2
, but also φ4 = φ5 = �

since at o4 and o5 there are no declassifications. In this case the program is insecure since,

as shown in Example 3.3, we release something about h2 at both o4 and o5, namely, its

value and its parity, respectively.

4. F-completeness and non-interference

In the previous section we characterised non-interference in terms of three dimensions:

— the semantic policy, which depends on the set of observation points and protection

points;

— the observation policy, which depends on the property the attacker can observe in

these program points; and

— the protection policy, which depends on the property we want to protect in the private

input (which is the only protection point we are going to consider in the rest of the

paper).

Our goal now is to provide a checking technique that is parametric on all these

characteristics. The technique itself will be introduced in the next section; in this section

we will study the fundamental components of the technique and their formal justification.

For the semantic policy, we will use weakest precondition semantics: the intuition is that

such a semantics models the reverse engineering process that an attacker would perform

to derive private input properties from public outputs. We will rely on this intution for

checking (declassified) NI. The formal justification of this choice of semantics rests on

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1270

the connection between NI and completeness of abstract interpretations (Giacobazzi and

Mastroeni 2005), which we will now consider.

The example in the introduction (Section 1.2) showed that, as expected, the program

l := h1 violates classic NI by demonstrating the fact that the backwards completeness

equation (1) does not hold for the program. Equation (1) gives us a way to check

dynamically whether a program satisfies a confidentiality policy: indeed, we employ the

denotational semantics of a program in the process. Can we carry out this check statically?

We will see presently that static checking involves F-completeness, rather than B-

completeness, and the use of weakest preconditions instead of the denotational semantics.

With weakest preconditions, written WlpP , equation (1) has the following equivalent

reformulation:

H◦WlpP ◦H = WlpP ◦H. (4)

Equation (4) says thatH isF-complete for WlpP . In other words, consider the abstraction

of a concrete input state X through H, which yields a set of states where the secret

information is abstracted to ‘any possible value’. The equation asserts that WlpP (H(X))

is a fixpoint of H, meaning that WlpP (H(X)) yields a set of states where each public

output is associated with any possible secret input: a further abstraction of the fixpoint

(cf., the left-hand side of equation (4)) yields nothing new. Because no distinctions between

secret inputs get exposed to an observer, the public output is independent of the secret

input. Hence, equation (4) asserts classic NI.

The following theorem asserts that the two ways of describing non-interference by

means of B- and F-completeness are equivalent.

Theorem 4.1. H◦ �P� ◦H =H◦ �P� if and only if H◦WlpP ◦H = WlpP ◦H.

Proof. By Giacobazzi and Quintarelli (2001, Section 4), we know that if f is additive,

it has a right adjoint (written f +), so for any ρ, we have

ρ ◦ f ◦ρ = ρ ◦ f

if and only if

ρ ◦ f + ◦ρ = f + ◦ρ.

By Cousot (2002, Section 9), we have �P�+ = WlpP . Then, choosingH and �P� as ρ and

f , respectively, we are done.

The following example shows how we can interpret in the weakest precondition-based

completeness equation when NI holds.

Example 4.2. Consider the following program P with �H = {0, 1}×{0, 1} and �L = {0, 1}:

P def
=

[
if h1 �= h2 then l := h1 + h2

else l := h1 − h2 + 1;

�P� : 〈h1, h2, l〉 �→ 〈h1, h2, 1〉 WlpP :

{
〈h1, h2, 1〉 �→ {〈h1, h2〉} ×�L

〈h1, h2, l〉 �→ � l �= 1.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1271

The public output l is always 1, so P is secure, as the following calculation shows. Given

�H × {l} ∈ H, we can prove that B-completeness for �P� holds:

H(�P�(�H × {l})) =H(�H × {1})
= �H × {1}
=H(〈h1, h2, 1〉)
=H(�P�(〈h1, h2, l〉)).

F-completeness for WlpP also holds:

H(WlpP (�H × {1})) =H(�H ×�L)

= �H ×�L

= WlpP (�H × {1})

H(WlpP (�H × {l �= 1})) =H(�)

= �

= WlpP (�H × {l �= 1}).

This equality says exactly that the set of all the private inputs leading to a particular

observation (WlpP (�H × {1})) is the set of all the private inputs (since H abstracts the

private inputs to �). Thus NI holds.

Therefore, in the following, we will use the wlp semantics to check non-interference in

terms of completeness. Together with completeness, we inherit, in particular, an abstract

domain transformer, which refines the input abstract domain for inducing completeness

(Giacobazzi et al. 2000). In this context, this transformer would refine the input domain

for inducing non-interference, and it has been proved (Giacobazzi and Mastroeni 2005)

that this input domain characterises the maximal amount of information disclosed by the

program semantics. Intuitively, this refinement process for an abstract domain O with

respect to a function f : I −→ O adds all the direct images of f to O , that is, f (I)

(Giacobazzi and Quintarelli 2001). For instance, if we consider Example 2.1, we have

Wlp(〈�H,�H, {1}〉) = 〈{1},�H,�L〉, which means that the observation of 1 in output is

due to the private input h1 = 1, which is clearly different from H ◦Wlp(〈�H,�H, 1〉) =

〈�H,�H,�L〉 (and analogously if we observe 0 in output). Hence, completeness does not

hold, and the refinement process would enrich the abstract domain � = {�H} with the

elements {1} and {0}, and thus {�} (since it is an abstract domain), modelling the fact

that we are releasing the exact value of the binary variable h1.

5. Declassified NI for I/O semantics

We are now ready to explore the connection between completeness and DNI. In

preparation, we will revisit the example from Section 1.2, but now assume that the

security policy for the program P def
= l := h1 allows declassification of h1. In this case

the program would be secure. Equation (1) must naturally be modified by ‘filtering’ H
through a declassifier φ : ℘(�H) → ℘(�H) that provides an abstraction of the secret

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1272

inputs. We will write Hφ : ℘(Σ) → ℘(Σ) for this ‘filtered H’, where Hφ will be defined

formally in Section 5.1. So we require

H◦ �P� ◦Hφ =H◦ �P�. (5)

That is, �P� applied to a concrete input x and �P� applied to the abstraction of x where

the H component of x has been declassified by φ both abstract to the same value. It is easy

to show that Hφ is a uco and that (H,Hφ) is B-complete for �P�.
As in Section 1.2, let X be {〈0, 0, 1〉}. We are interested in φ’s behaviour on {〈0, 0〉},

because {〈0, 0〉} specifies the values of h1, h2 in X . We have φ({〈0, 0〉}) = {〈0, 0〉, 〈0, 1〉}
since φ is the identity on what must be declassified (we are releasing the exact value of h1)

but φ is � on what must be protected, which explains why both 〈0, 0〉 and 〈0, 1〉 appear.

Now

Hφ(X) = φ{〈0, 0〉} ×X L = {〈0, 0, 1〉, 〈0, 1, 1〉},

so

�P�(Hφ(X)) = {〈0, 0, 0〉, 〈0, 1, 0〉}

and

H(�P�(Hφ(X))) = �H × {0},

which is equal to H(�P�(X)). We can show equation (5) for any X ⊆ Σ, so l := h1 is

secure. Note how φ partitions ℘(�H) into blocks {〈0, 0〉, 〈0, 1〉} (the range of 〈0, 0〉 and

〈0, 1〉) and {〈1, 0〉, 〈1, 1〉} (the range of 〈1, 0〉 and 〈1, 1〉). Intuitively, φ allows us to expose

distinctions between blocks at the public output, for example, between 〈0, 0〉 and 〈1, 0〉,
while in classic NI, φ’s range is � and no distinctions should be exposed.

5.1. Modelling declassification

The discussion in Section 4 did not provide any motivation for why we might want WlpP ,

so we will do that now in the context of declassification. Moreover, declassification is a

‘property’ of the system input, so it is natural to characterise/verify it with a backward

analysis from the outputs towards the inputs, that is, by means of the wlp semantics of

the program.

Consider secrets h1, h2 ∈ {0, 1} and the declassification policy ‘at most one of the secrets

h1, h2 is 1’. The policy releases a relation between h1 and h2 but not their exact values.

Does the program P def
= l := h1 + h2 satisfy the policy?

Here �H = {0, 1} × {0, 1} and the declassifier φ is defined as:

φ(�) = �

φ{〈0, 0〉} = φ{〈0, 1〉}
= φ{〈1, 0〉}
= {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1273

(that is, we collect together all the elements with the same declassified property)

φ{〈1, 1〉} = �H

φ(X) =
⋃
x∈X

(φ({x})).

A program that respects the above policy should not expose the distinctions between inputs

〈0, 0〉, 〈0, 1〉 and 〈1, 0〉 at the public output. But it is permissible to expose the distinction

between 〈1, 1〉 and any pair from the partition block {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}, because this

latter distinction is supported by the policy. So does P expose any distinctions it should

not expose?

To answer this question, we consider WlpP (l = a), where a is some generic output

value. But why Wlp? This is because we can then statically simulate the kind of analysis

an attacker would do to obtain the initial values of (or initial relations among) the secret

information. And why does l = a? This is because it gives us the most general Wlp,

parametric on the output value (following Gorelick (1975)). Now we note that WlpP (l =

a) = (h1 + h2 = a), and let Wa
def
= (h1 + h2 = a). Because a ∈ {0, 1}, we have W0 =

(h1 + h2 = 0). This allows the attacker to solve for h1, h2: h1 = 0, h2 = 0. Thus when

l = 0, a distinction {〈0, 0〉} in the partition block {〈0, 0〉, 〈0, 1〉, 〈1, 0〉} gets exposed, so the

program does not satisfy the policy.

So we now consider a declassified confidentiality policy, and model the declassified

information by means of the abstraction φ of the secret inputs, which collects together all

the elements with the same property, declassified by the policy. Let Hφ : ℘(Σ) → ℘(Σ)

be the corresponding abstraction function. Let X ∈ ℘(Σ) be a concrete set of states and

X L be the L slice of X , and consider any l ∈ X L. Now define the set

Xl
def
= {h ∈ �H | 〈h , l〉 ∈ X };

that is, given an l , Xl contains all the H values associated with l in X . Then the ‘declassified’

abstract domain Hφ(X) corresponding to X is defined by

Hφ(X) =
⋃

l∈X L

φ(Xl)× {l}.

Note that the domain H for ordinary non-interference is the instantiation of Hφ, where

φ maps any set to �. The analogue of equation (5),

Hφ ◦WlpP ◦H = WlpP ◦H, (6)

asserts that (Hφ,H) is F-complete for WlpP . For example, F-completeness fails for the

program P above. With X = 〈0, 0, 0〉, we have H(X) = �H × {0} and WlpP (H(X)) =

{〈0, 0, 0〉}. But

Hφ(WlpP (H(X))) = {〈0, 0, 0〉, 〈0, 1, 0〉, 〈1, 0, 0〉} ⊃WlpP (H(X)).

We are now in a position, using Theorem 5.1 below, to connect Hφ to DNI: the only

caveat is that φ must partition the input abstract domain, that is,

∀x . φ(x) = {y | φ(x) = φ(y)}.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1274

The intuition behind partitioning is that φ’s image on singletons is all we need for deriving

the property of any possible set.

Theorem 5.1. Consider a partitioning φ. Then P satisfies non-interference declassified by

φ if and only if H◦ �P� ◦Hφ =H◦ �P�.
Proof. We first prove that the abstract domain is complete if the program satisfies

declassified non-interference. Note that, by hypothesis, we have

x L
1 = x L

2 ∧ φ(x H
1) = φ(x H

2) ⇒ �P�(x1)
L = �P�(x2)

L.

Note also that all the functions involved in the equation are additive, and thus their

composition is additive too. This means that we can prove the equality simply on the

singletons. Moreover, since φ is partitioning, we have φ(x) = {y | φ(x) = φ(y)}, so for

any z ∈ φ(x H), we have φ(z) = φ(x H), so

�P�(φ(x H), x L)L =
⋃

z∈φ(x H)

�P�(z , x L)L = �P�(x H, x L)L,

from the NI hypothesis. Hence the following equalities hold:

H◦ �P� ◦Hφ(x) =H◦ �P�(φ(x H), x L)

=H◦ �P�(x) for what we proved above.

For the other direction, completeness says that for any x we have

�P�(φ(x H), x L)L = �P�(x H, x L)L,

which trivially implies non-interference declassified by φ.

Taken together with a straightforward generalisation of Theorem 4.1 to different input

and output abstractions, this leads to the following corollary.

Corollary 5.2. Consider a partitioning φ. Then P satisfies non-interference declassified by

φ if and only if Hφ ◦WlpP ◦H = WlpP ◦H, that is, (Hφ,H) is F-complete for WlpP .

The equality in the corollary asserts that nothing more is released by the Wlp than is already

released by φ. If F-completeness did not hold, but (Hφ,H) were merely sound, then

Hφ ◦WlpP ◦H �WlpP ◦H. In this case Wlp (that is, the right-hand side) releases more

information (technically, is more concrete) than what is declassified (that is, the left-hand

side). Our goal is not only to check whether a program satisfies a particular confidentiality

policy, but also to find the public observations that may breach the confidentiality policy

and also the associated secret that each offending observation reveals. Consider, for

example, the following program (Darvas et al. 2005), where l , h ∈ Nats:

P def
= while (h > 0) do (h := h − 1; l := h) endw.

If we observe l = 0 at the output, all we can say about input h is h � 0. But with output

observation l �= 0, we can deduce h = 0 in the input, so the loop cannot have been

executed.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1275

Hence, because Wlp relates the observed (public) output to the private (secret) inputs,

we can derive from the final observation the exact secret released by that observation as

follows:

(a) Compute wlp with respect to each observation obtaining a most general predicate on

the input states.

(b) Check whether the states described by the wlp are ‘more abstract’, that is, do not

permit more distinctions of secret inputs than those permitted by the policy, and if

this is the case, there is no breach.

The following examples show how we can use weakest precondition semantics to check

declassified policies.

Example 5.3. Consider the following code (Sabelfeld and Myers 2004):

P def
= h := h mod 2; if h = 0 then (h := 0; l := 0) else (h := 1; l := 1).

Let �H = Nats = �L. Suppose we wish to declassify the test h = 0. Then φ({0}) = {0}
and φ({h}) = Nats � {0}. Thus {{h | h �= 0}, {0}} is the partition induced by φ on �H and

we obtain

Hφ = {�,�} ∪ {{h | h �= 0} ×�L} ∪ {{0} ×�L}
(where the elements {�,�} are required to make it an upper closure operator). Let

Ha
def
= �H × {a}. Now consider the wlp of the program, WlpP (l = a), where a ∈ �L:

P =

⎡⎢⎢⎢⎢⎣
p0 → {(a = 0, h mod 2 = 0) ∨ (a = 1, h mod 2 = 1)} ← o0

h := h mod 2;

{(a = 0, h = 0) ∨ (a = 1, h = 1)}
if (h = 0) then (h := 0; l := 0) else (h := 1; l := 1)

{l = a} ← o2

So Wlp maps the output set of states H0 to the input states {〈h , l〉 | h mod 2 = 0, l ∈ �L}.
But this state is no more abstract than the state {h | h �= 0} ×�L specified by Hφ: for

example, it distinguishes (8, 1) from (7, 1), which is not permitted under the policy. Indeed,

consider two runs of P with initial values 8 and 7 of h and 1 for l . So φ(8) = φ(7), but

we get two distinct output values of l .

Example 5.4. Consider (Sabelfeld and Myers 2004)

P def
= if (h � k) then (h := h − k ; l := l + k) else skip,

where l , k : L. Also consider

Ha ,b
def
= {〈h , l , k〉 | h ∈ �H, l = a , k = b},

and suppose the declassification policy is �, that is, nothing should be released. So,

P =

⎡⎣p0 → {(h � b, l = a − b, k = b) ∨ (h < b, l = a , k = b)} ← o0

if (h � k) then (h := h − k ; l := l + k) else skip

{l = a , k = b} ← o1

WlpP : Ha ,b �→ {〈h , a − b, b〉 | h � b} ∪ {〈h , a , b〉 | h < b}.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1276

In this case, we can say that the program does not satisfy the security policy. In fact, in

the presence of the same public inputs, we can distinguish between values of h greater

than the initial value of k and those lower than this value.

6. Declassified NI on traces

In this section, we show that we can use the weakest precondition-based approach

described in the previous section to check declassification policies with respect to trace-

based DNI (Definition 3.6). Before we explain how our approach works on trace-based

non-interference by means of examples, we will provide the formal justification for the

technique we use on traces.

Since the denotational semantics is the post of a transition system where all traces

are two-states long (because they are input–output states), we can immediately obtain

a straightforward generalisation of the completeness reformulation that also copes with

trace-based NI (Definition 3.2). Theorem 6.1 below also shows the connection between

completeness and non-interference for traces.

Theorem 6.1. Let 〈Σ,→P 〉 be the transition system for a program P , and O be a set of

observation points. Then non-interference as in Definition 3.2, that is,

∀j ∈ O. ∀s1, s2 ∈ Σ�. s1 =L s2 ⇒ postjP (s1) =L postjP (s2),

holds if and only if ∀j ∈ O.H◦postjP ◦H =H◦postjP .

Proof. In the following we will simply use postj to denote the function postjP . Consider

the property

∀s1, s2 ∈ Σ�. s1 =L s2 ⇒ postj (s1) =L postj (s2),

that is,

H(postj (s1)) =H(postj (s2))

for all s1 =L s2. Hence, for all s1, s2 such that H(s1) =H(s2), we have

H(postj (s1)) =H(postj (s2)).

By the additivity of H, this implies that for all s and for all s ′ ∈ H(s),

H(postj (s ′)) =H(postj (s)).

Again by the additivity of H, we obtain

H(postj (H(s))) =H(postj (s)).

For the other direction, if we have completeness, that is, H(postj (H(s))) =H(postj (s))
we can prove that for all s1, s2 such that s1 =L s2, that is, such thatH(s1) =H(s2), we have

H(postj (s1)) =H(postj (s2)), so the semantics are the same from the public point of view.

Indeed, for all s and for all s ′ ∈ H(s) (that isH(s) =H(s ′)) we have by completeness that

H(postj (s)) =H(postj (H(s))) and thatH(postj (H(s ′))) =H(postj (s ′)). But clearly, by

the hypothesis on s and s ′, we have H(postj (H(s))) =H(postj (H(s ′))), so the proof is

complete, that is, we have shown H(postj (s)) =H(postj (s ′)).

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1277

This theorem implies that we can also characterise NI as a family of completeness

problems when a malicious attacker can potentially observe the whole trace semantics,

namely, when we deal with trace-based NI. As a corollary of the above theorem, together

with Theorem 5.1, we have the following result.

Corollary 6.2. Let 〈Σ,→P 〉 be the transition system for a program P ∈ Imp with O a set

of observation points and φ ∈ uco(℘(�H)) a partitioning closure. Then, non-interference

as in Definition 3.6, that is,

∀j ∈ O. ∀s1, s2 ∈ Σ�. s1 =L s2 ∧ φj (sH1) = φj (sH2)⇒ postjP (s1) =L postjP (s2),

holds if and only if ∀j ∈ O.H◦postjP ◦Hφ =H◦postjP .

Moreover, using p̃re
j

to denote the adjoint map of postj (noting that, by the adjoint

relation, the function p̃re
j

is a weakest precondition of the corresponding function

postj) in the same transition system, the completeness equation can be rewritten as

H ◦ p̃re
j ◦ H = p̃re

j ◦ H. In the NI context, this means that there is no leakage of

information. In particular, for declassification, ifHφ ◦ p̃re
j
P ◦H = p̃re

j
P ◦H holds, there is

no need to further declassify secret information using refinement, even if we suppose that

the attacker can observe every intermediate step of the computation.

These results say that in order to check DNI on traces, we would have to make an

analysis for each observable program point j , combining, afterwards, the information

disclosed. In order to ensure that there is only one iteration on the program, even when

dealing with traces, our basic idea is to combine the weakest precondition semantics,

computed at each observable point of the execution, with the observation of public data

made at the particular observation point.

We will describe our approach using a running example, Example 6.3, where oi and pi

denote the observation and protection points of program P , respectively.

Example 6.3.

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 → {h2 mod 2 = a} ← o0

h1 := h2;

h2 := h2 mod 2;

l1 := h2;

h2 := h1

l2 := h2;

l2 := l1
{l1 = l2 = a} ← o6

In this example, the observation in output of l1 and l2 allows us to derive the information

about the parity of the secret input h2.

6.1. Localised declassification

In trace-based NI we underline how we can easily describe the strong relation between the

observation point and the corresponding declassification policy. This becomes particularly

useful in the presence of explicit declassifications since it allows a precise characterisation

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1278

of the relation between the where and the what dimensions of non-interference policies. The

idea is to track (using the wlp computation) the information disclosed at each observation

point till the beginning of the computation, and then to compare it with the corresponding

declassification policy. The next example shows how we track the information disclosed

at each observable program point. We consider as the set of observable program points

O the same set we used for gradual release, namely, the program points corresponding to

low events. However, in general, our technique allows O to be any set of program points.

When there is more than one observation point, we will use the notation [Φ]O to denote

the fact that the information described by the assertion Φ can be derived from the set of

observation points in O .

Example 6.4.

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 → {[h2 = b]o5 , [h2 mod 2 = a]o3 ,o5 ,o6 , [l2 = c]o3} ← o0

h1 := h2;

{[h1 = b]o5 , [h2 mod 2 = a]o3 ,o5 ,o6 , [l2 = c]o3}
h2 := h2 mod 2;

{[h1 = b]o5 , [h2 = a]o3 ,o5 ,o6 , [l2 = c]o3}
l1 := h2;

{[h1 = b]o5 , [l1 = a]o3 ,o5 ,o6 , [l2 = c]o3} ← o3

h2 := h1

{[h2 = b]o5 , [l1 = a]o5 ,o6}
l2 := h2;

{[l1 = a]o5 ,o6 , [l2 = b]o5} ← o5

l2 := l1
{l1 = l2 = a} ← o6

For instance, at observation point o5, [l1 = a]o5 ,o6 is obtained either through wlp calculation

of l2 := l1 from o6, or using the direct observation of public data at o5, while [l2 = b]o5 ,

where b is an arbitrary symbolic value, is only due to the observation of the value l2 at

o5. The assertion at o3 (viz. [h1 = b]o5 , [l1 = a]o3 ,o5 ,o6) is obtained by computing the wlp

semantics Wlp(h2 := h1, ([h2 = b]o5 , [l1 = a]o3 ,o5 ,o6)), while [l2 = c]o3 is the observation at

o3. We can derive all the other assertions in a similar way.

It is worth noting that this attacker is more powerful than the one considered in

Example 6.3. In fact, in this case the possibility of observing l2 at program point o5 allows

us to derive the exact (symbolic) value of h2 (h2 = b, where b is the value observed at o5).

This was not possible in Example 6.3 based on simple input–output, since the value of l2
was lost in the final assignment.

We can now use the information disclosed at each observation point, and characterised

by computing the wlp semantics, to check if the corresponding declassification policy

is satisfied or not. This is achieved simply by comparing the abstraction modelling the

declassification with the state abstraction corresponding to the information released in

the lattice of abstract interpretations. We explain the idea in the following example.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1279

Example 6.5. Consider the program in Example 6.4, but at o3 replace the statement

l1 := h2 by l1 := declassify(h2). In this case the corresponding declassification policy is

φ3 = idh2
. We can now compare this policy with the private information disclosed at

o3, which is h2 mod 2 = a (h2’s parity) and conclude that the declassification policy at

o3 is satisfied because parity is more abstract than identity. Nevertheless, the program

releases the information h2 = b at program point o5. This means that the security of the

programs depends on the kind of localised declassification we consider. For incremental

declassification, the program is secure because the release is licensed by the previous

declassification since the observation point o5 where we release information corresponds

to the declassification policy φ5 = φ3 = idh2
, while for localised declassification, the

program is insecure since there is no corresponding declassification policy at o5 that

licenses the release.

Multiple declassifications. Consider the following example with multiple declassifications.

Suppose the attacker can observe any step, but only the secret input needs to be protected.

In this case we can see how the attacker can combine, at the protection point, different

information (some obtained by Wlp and others obtained by declassification) obtaining

more information than is explicitly declassified.

Example 6.6.

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 → {[h1 − h2 = a]o3 , [l2 = d]o1 , [h1 + h2 = b]o1 ,o2 ,o3} ← o0

⇒ (h1 = (a + b)/2, h2 = (b − a)/2)

l1 := declassifyo1 (h1 + h2);

{[h1 − h2 = a]o3 , [l1 = b = c]o1 ,o2 ,o3 , [l2 = d]o1} ← o1

l2 := l1;
{[l2 = b]o2 ,o3 , [h1 − h2 = a]o3 , [l1 = c]o2} ← o2

l1 := declassifyo3 (h1 − h2);

{l1 = a , l2 = b} ← o3

This program is not secure since from the conjunction of two declassified conditions we

can also deduce information about the exact (symbolic) values of the secrets. That is, the

information released is id, which is more concrete than both

φ1 = {{〈h1, h2〉 | h1 + h2 = n } | n ∈ �}
φ3 = {{〈h1, h2〉 | h1 − h2 = n } | n ∈ �} .

6.2. Localised declassification versus gradual release

In this section we compare the idea introduced above with gradual release (Askarov

and Sabelfeld 2007a), which was the first notion introduced for dealing with the where

dimension of declassification. In gradual release, the only permitted leakages are at

the points of declassification and the definition characterises the knowledge that can

be deduced from the declassification. Suppose o1, o2 are two consecutive declassification

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1280

points. Then gradual release ensures that the knowledge at o1, together with the knowledge

of the declassification at o1, remains constant until the declassification at o2 happens.

Definition 6.7 (Askarov and Sabelfeld 2007a). A program P satisfies gradual release if

for any initial state s ∈ Σ and any σl ∈ L(P , s) def
=

{
σl

∣∣ σl
0 = s

}† we have the following.

Letting |σl | = n and dj be the indexes of the states obtained after executing an explicit

declassification, we have

∀i , j . 1 � i � n ∧ i �= dj ⇒ K↓(P , σi−1) = K↓(P , σi)

where σi is the prefix of σ with length i , K↓(P , σ)
def
=

{
τ0

∣∣ τ trace such that σl = τl
}

and

τ0 denotes the initial state of the trace τ.

Note that by Definition 6.7, L makes a forward analysis by computing the observed traces

starting from a given initial state, while the knowledge K makes a backward analysis by

computing all the possible input states that can be the initial ones of the observed trace. In

other words, L provides the real observations made by an attacker for a given input state

and K provides the information that the attacker can derive from this observation. This

approach corresponds exactly to the weakest precondition semantics approach proposed

in Section 5. We will now show how gradual release works and how it can be compared

with our approach using some examples.

Example 6.8.

P1
def
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 → ← o0

h1 := h2;

h2 := h2 mod 2;

l1 := declassify(h2);

← o3

h2 := h1;

l2 := h2;

← o5

The low trace of the computation is

〈l1, l2〉 → 〈h2 mod 2, l2〉 → 〈h2 mod 2, h2〉.

Starting from the observable portion 〈l1, l2〉 of the initial state, we discover the parity and

value of h2 in the final state.

Example 6.8 is insecure according to gradual release by the following argument.

Although there is a change of knowledge at o3 owing to the release of h2’s parity

into l2, this release is licensed by the declassify statement. However, in state o5 there is

again a change of knowledge due to the flow of h2 into l2. But this change of knowledge

is not licensed by any explicit declassification.

† σl denotes the projection of the trace σ only on the low events (low assignment, declassification and

termination).

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1281

The above argument is the same as we made for Example 6.5; moreover, the Wlp

calculation allowed us to find the information released by the program.

Note, however, that the example is secure according to delimited release because we

know at the start of the program that the initial value of h2 is declassified.

Askarov and Sabelfed note that the notion of gradual release is not exactly a what

policy because it only considers the presence of declassification statements and not what

information is declassified (Askarov and Sabelfeld 2007a). The two notions, delimited

release and gradual release, are incomparable. The example above gives a scenario where

delimited release holds but gradual release does not. Similarly gradual release may

hold while delimited release does not, as in the following example from Askarov and

Sabelfeld (2007a).

Example 6.9.

P2
def
=

⎡⎢⎢⎣
p0 → ← o0

h1 := h1 mod 2;

l1 := declassify(h1 = 0);

← o2

The low trace here is 〈l1, l2〉 → 〈h1 mod 2, l2〉. In this case we are releasing the parity

since h2 takes its parity just before the declassification statement, but we are explicitly

declassifying the property of being equal to (or different from) 0. Hence, as is shown for

a similar example in Sabelfeld and Myers (2004), this program does not satisfy delimited

release. However, it does satisfy gradual release since all the released information is leaked

at the declassification point, so we never check it.

In contrast to gradual release, our approach considers the what dimension. Thus we

can determine whether what is released is more than what is declassified, even if the

information is only released at the declassification point. Using φ2 to denote the property

corresponding to the information declassified in the program, which corresponds to the

information of being equal or not to 0, consider

P2
def
=

⎡⎢⎢⎢⎢⎣
p0 → {h1 mod 2 = a} ← o0

h1 := h1 mod 2;

{(h1 = 0) = a}
l1 := declassify(h1 = 0);

{l1 = a , l1 = b} ← o2

The only information that flows comes through a declassification, but the information

released is the parity while the declassification is φ2. Because these properties are

incomparable, the program is not secure in our approach. This example again shows

how our approach can combine the what and where dimensions.

6.3. Localised delimited release

Localised delimited release (Askarov and Sabelfeld 2007b) is a notion that combines the

what and the where dimensions of declassification. However, as the authors note, this

combination may lose monotonicity of release (Sabelfeld and Sands 2007): the addition of

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1282

declassification annotations to the code can turn a secure program into an insecure one.

In particular, the problem arises when there are computations where the declassification

statement is not reached, and others where it is executed. Consider the following example

from Askarov and Sabelfeld (2007b).

Example 6.10.

P =

⎡⎢⎢⎣
p0 → ← o0

h ′ := 0;

if h then l := declassify(h ′) else l := 0;

← o2

Intuitively, it is clear that this program is secure since no information about secrets

is released. Without the declassify statement, localised delimited release recognises this

program as secure (Askarov and Sabelfeld 2007b), but with the declassification statement

in the if branch, the program is labelled as insecure. This happens because the definition of

localised release treats declassification with respect to initial states, ignoring the possibility

that a declassification may become harmless in the current state (as declassifying 0 in

the example). If we apply our technique, we obtain the following analysis recognising the

program as secure since no information is derived about h from the observation of l :

P =

⎡⎢⎢⎢⎢⎣
p0 → {((h = 1, a = 0) ∨ ((h = 0, a = 0)} ⇔ true ← o0

h ′ := 0;

{(h = 1, h ′ = a) ∨ (h = 0, a = 0)}
if h then l := declassify(h ′) else l := 0;

{l = a} ← o2

In general, the problem with localised delimited release is that it seems to be a strong

form of delimited release that may add too many false negatives.

7. Deriving counterexamples and refining declassification policies

In this section we show how to generate the set of all possible counterexamples for

which DNI fails by demonstrating the corresponding set of all possible pairs of input

states that break DNI. Note that the difference induced by the semantic policy in DNI

is only in the number of tests (with one test for each observation point) we have to

perform for each pair of input states agreeing on the public part. This means that for each

observation point, the relation between observation and declassification does not depend

on the semantics and can be treated independently. Hence, in the following we show how

we can characterise, for each observation point, the counterexamples to the corresponding

declassification policy for which it is not satisfied.

We have advanced the thesis that non-interference is a completeness problem in abstract

interpretation. Ranzato and Tapparo (2005) studied completeness from another point of

view and showed the strong connection between completeness and the notion of stability –

in particular, when dealing with partitioning closures (Mastroeni 2008). In other words,

there is a correspondence between completeness and the absence of unstable elements

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1283

of a closure with respect to a function f : given a partition Π ⊆ ℘(C) and a function

f : ℘(C) −→ ℘(C), an element X ∈ Π is stable for f with respect to Y ∈ Π if X ⊆ f (Y)

or X ∩ f (Y) = �; otherwise X is said to be unstable. It is clear that in our declassification

context, where we partition the input by Hφ and the output by H, we do not have

the same partition in input and output. This means that we have to consider a slight

generalisation of the stability notion where the constraint on the equality between the

input and the output partition is relaxed (Mastroeni 2008). In particular, if f : I −→ O,

and ΠI and ΠO partition I and O, respectively, then ΠO is stable with respect to f and

Y ∈ ΠI if ∀X ∈ ΠO we have X ⊆ f (Y) or X ∩ f (Y) = �. The understanding of

completeness in terms of stability guarantees that if an abstract domain is not complete,

at least two of its elements are not stable. In our context, f is Wlp; the element for which

we want to check stability is a set of secret inputs in the partition of �H induced by the

declassifier φ; and the element against which we check stability (Y in the definition) is

the particular output observation (for example, l = a). In general, the particular output

will be the set L of all the public data observed in all the different observable points, that

is, L = {Li | Li observation in oi}. For instance, in Example 3.3, if the attacker observes

I/O, in other words, if O = {6}, then L = {l1 = l2 = a} is the particular output observation

against which we check the declassification policy φ = φ3 = idh2
. On the other hand, if

the attacker can observe all the low events (O = {3, 5, 6}), then

L = {L3,L5,L6}
= {[l1 = l2 = a]o6 , [l2 = b]o5 , [l2 = c]o3}

(we only consider the relevant observations) is the set of public observations against which

we check the corresponding declassification policies φ3, φ5 and φ6.

Proposition 7.1. Let O be the set of observable points and ∀i ∈ O, and let φi be the

corresponding declassified property. For each φi , the unstable elements of Hφi with

respect to the output partition induced by oi , i ∈ O, provide counterexamples to φi .

Proof. We will use φ to denote any of the declassification policies φi . Suppose ∃L ⊆ �L

(observation at oi) such that (the input states described by) Wlp(HL) /∈ Hφ. Then there

exist x ∈ Wlp(HL) and h ∈ φ(x H) such that 〈h , x L〉 /∈ Wlp(HL). Note that (φ(x H) ×
{x L}) ∩Wlp(HL) �= � since x is in both, and φ(x H) × {x L} �⊆ Wlp(HL) since we have

〈h , x L〉 ∈ φ(x H) × {x L} and 〈h , x L〉 /∈ Wlp(HL). Hence, the abstract domain Hφ is not

stable. To find a counterexample, consider

h1 ∈ φ(x H) � {k | 〈k , x L〉 ∈Wlp(HL)}

and

h2 ∈ φ(x H) ∩ {k | 〈k , x L〉 ∈Wlp(HL)}.
The latter set is obtained by wlp for the output observation L, hence any of its elements,

for example h2, leads to the observation L, while all the elements outside the set, for

example h1, cannot lead to L. But, both h1 and h2 are in the same element of φ, hence

they form a counterexample to the declassification policy φ.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1284

The next example shows how we can use the above theorem to characterise counter-

examples to a declassification policy.

Example 7.2. Consider the following program with h ’s parity declassified and h ∈ Nats:

P =

⎡⎣p0 → {(h = 0, l = a) ∨ (h > 0, a = 0)} ← o0

while (h > 0) do (h := h − 1; l := h) endw

{l = a} ← o1

We can compute WlpP with respect to l = a ∈ �, and Ha
def
= {〈h , l〉 | h ∈ �H, l = a}.

Wlp :

{
H0 �→ {〈h , l〉 | h > 0, l ∈ �L} ∪ {〈0, 0〉} = (�H × {0}) ∪ {〈h , l〉 | h > 0, l �= 0}
Ha �→ {〈0, a〉} (a �= 0).

Hence, the unstable elements are 〈even , a〉, a �= 0. In fact,

〈even , a〉 ∩Wlp(Ha) = {〈0, a〉} �= �

and

〈even , a〉 �⊆Wlp(Ha)

since, for instance, 〈2, a〉 /∈ Wlp(Ha). Thus, all the input states where l = 0 are not

counterexamples to the declassification policy. On the contrary, for any two runs agreeing

on input l �= 0, whenever h1 = 0 and h2 ∈ even � {0}, we observe different outputs. Hence,

we can distinguish more than the declassified partition {even , odd}.

The following example (Li and Zdancewic 2005) shows that this approach provides

a weakening of non-interference, which corresponds to relaxed non-interference. Both

approaches provide a method for characterising the information that flows and has to be

declassified; in fact, they both give the same result since they are driven by (are parametric

on) the particular output observation.

Example 7.3. Consider the following program P with sec, x , y : H, and in , out , z : L, where

hash is a function (Li and Zdancewic 2005):

P def
=

⎡⎣x := hash(sec)y := x mod 264;

if y = in then out := 1 else out := 0;

z := x mod 3;

Suppose the declassification policy says that the only information allowed to be known

about the secret sec is the equality or not between in and hash(sec) mod 264. Consider the

wlp semantics where out , in and z are the public variable and are a , b and c, respectively,

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1285

with a , b, c ∈ �:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 → {((a = 1, out = a , hash(sec) mod 264 = b) ∨ ← o0

(a = 0, out = a , hash(sec) mod 264 �= b)),

[hash(sec) mod 3 = c]}
x := hash(sec); y := x mod 264;

{(a = 1, out = a , y = b, [x mod 3 = c]) ∨
(a = 0, out = a , y �= b, [x mod 3 = c])}

if y = in then out := 1 else out := 0;

{out = a , in = b, [x mod 3 = c]}
z := x mod 3;

{out = a , in = b, [z = c]} ← o3

We first consider P without the final assignment to z and consider the input domain

formed by the sets

Win ,1
def
= {〈sec, in , out , x , y〉 | in = hash(sec) mod 264, out = 1}

and

Win ,0
def
= {〈sec, in , out , x , y〉 | in �= hash(sec) mod 264, out = 0}.

The set of all these domains embodies the declassification policy since it collects together

all the tuples such that sec has the same value for hash(sec) mod 264. Note that the WlpP

semantics makes the following associations:

Wlp :

⎧⎨⎩
Hin ,1 �→ Win ,1 if in = hash(sec) mod 264

Hin ,0 �→ Win ,0 if in �= hash(sec) mod 264

Hin ,out �→ � otherwise

(recall that Hin ,out
def
= {〈sec, in , out , x , y〉 | sec, x , y ∈ �H }). In this case we can observe that

the only information that an attacker can derive about the variable sec is exactly the

information allowed to flow by the declassification policy, namely if in is equal or not to

hash(sec) mod 264.

We will now consider the final assignment as well. So we have one more variable and

redefine Win ,a as sets of tuples also containing z but without any condition on z since it

is not considered in the declassification policy. In this case, the wlp semantics makes the

following associations:

Wlp :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Hin ,1 �→ Win ,1 ∩ {〈sec, in , out , x , y , z 〉 | hash(sec) mod 3 = z }

if in = hash(sec) mod 264

Hin ,0 �→ Win ,0 ∩ {〈sec, in , out , x , y , z 〉 | hash(sec) mod 3 = z }
if in �= hash(sec) mod 264

Hin ,out �→ � otherwise.

The new elements added to the domain have one more condition on the secret variable sec,

which can further distinguish between the secret inputs by observing the public output.

This means that the initial declassification policy is unsatisfied.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1286

7.1. Refining confidentiality policies

The natural use of the previously described method is to produce a semantic driven

refinement of confidentiality policies. The idea is to start with a confidentiality policy

stating what can be released in terms of abstract domains (or equivalence relations). In

the extreme case, the policy could state that nothing about secret information must be

released.

It is worth noting that the refinement process is meaningful only for semantic declas-

sification policies, namely those not arising from explicit syntactic declassification, since

we do not intend to transform the code. Consider, for instance, the program fragment in

Example 6.9. In this case, the explicit declassification declassifies h = 0 while the semantics

releases the parity of h , hence the refinement of the original declassification policy is the

greatest lower bound of the abstract domains modelling these two policies (the property

characterising whether h: is even and different from 0; is 0; or is odd), and clearly we

would have to transform the code in order to change the declassification policy fixed by

the declassify statement.

A consequence of Corollary 5.2 is that wheneverHφ is not forward complete for WlpP ,

more information is released than declassification φ permits. Thus the partition induced

on the secret domain by φ must be refined by the completion process. When we deal with

partitioning closures, forward completeness with respect to f fails when the partition of

the output domain of f contains unstable elements (Mastroeni 2008, Theorem 2). This

implies, in particular, that the refinement/completion process refines each element X of

the output partition that is unstable with respect to Y , with X ∩ f (Y) and X � f (Y)

(Mastroeni 2008). In our context, where f is WlpP and the output domain of WlpP is

the input domain of P , we have that each element 〈φ(h), l〉 of Hφ that is unstable with

respect to Ha is refined by 〈φ(h), l〉 ∩WlpP (Ha) and 〈φ(h), l〉 � WlpP (WlpP (Ha)). In this

way we obtain a new input domain Hφ′ , from which we can derive the corresponding

protection policy φ′ ∈ uco(℘(�H)).

In order to derive the refined policy φ′, we perform the following steps:

(a) Consider the domain Hφ′ obtained by completion from Hφ.

(b) For each Y ∈ Hφ′ compute sets Πl (Y) that are parametric on a fixed public value

l ∈ �L: formally,

Πl (Y)
def
= {h ∈ �H | 〈h , l〉 ∈ Y }.

(c) For each l , compute the partition Πl induced on the secret domain as

Πl
def
=

∧
X∈Hφ ′

Πl (X).

(d) Let Π
def
=

∧
l∈�L Πl .

The declassification policy φ′ can now be defined as a refinement R(φ) of φ by computing

the partitioning closure corresponding to π (Hunt and Mastroeni 2005), that is, the

disjunctive completion
�

of the sets forming the partition:

φ′ = R(φ)
def
=

�
(Π).

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1287

For instance, in Example 5.4, each output observation k = b induces the partition

πb = {{h | h � b}, {h | h < b}},

which is the information released by the single observation. If we consider the set of all

the possible observations, we derive Π =
∧

b Πb = id, in other words, φ = id.

Proposition 7.4. Let φ model the information declassified. If 〈Hφ,H〉 is not complete for

WlpP , in other words, if Hφ ◦WlpP ◦H � WlpP ◦H, then R(φ) � φ, that is, R(φ) is a

refinement of φ, and it is the minimal transformation of φ†.

Proof. By Corollary 5.2, we have that if

Hφ ◦WlpP ◦H = WlpP ◦H

does not hold, there is at least one k ∈ �L such that WlpP (Hk) /∈ Hφ, where

Hk
def
=

{
〈h , k〉

∣∣ h ∈ �H
}
.

It is clear that this implies that there exist 〈h , l〉 ∈ WlpP (Hk) and h ′ ∈ φ(h) such that

〈h ′, l〉 /∈WlpP (Hk), otherwise WlpP (Hk) would be in Hφ. In other words, we have

〈φ(h), l〉 ∩WlpP (Hk) �= �

and

〈φ(h), l〉 �⊆WlpP (Hk),

which means that the completion refines 〈φ(h), l〉 with

〈φ(h), l〉 ∩WlpP (Hk)

and

〈φ(h), l〉 � WlpP (Hk).

Since, in the public part we have the identity, this refinement corresponds to a refinement

of �H, in other words, the element φ(h) is refined by{
h ′ ∈ �H | 〈h ′, l〉 ∈WlpP (Hk)

}
∩ φ(h)

and

φ(h) �
{
h ′ ∈ �H | 〈h ′, l〉 ∈WlpP (Hk)

}
,

and this happens for each φ(h) such that{
h ′ ∈ �H | 〈h ′, l〉 ∈WlpP (Hk)

}
∩ φ(h) �= �.

Because φ is partitioning, we again obtain a partition, and, in particular, we have

Πl = {X | X def
=

{
h ′ ∈ �H | 〈h ′, l〉 ∈WlpP (Hk)

}
∩ φ(h) �= �}.

† In theory, this refinement can also be computed as the intersection of the policy φ and the refinement of

the undeclassified policy �. An efficiency comparison between these two approaches has been left to the

implementation phase of our work.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1288

By construction, it is straightforward to see that
� (

Πl

)
� φ, and thus, since by

construction we have

R(φ) =
�

(Π) �
� (

Πl

)
,

we get R(φ) � φ as required.

Finally, the minimality of the transformation follows from the minimality of the

completeness transformation (Giacobazzi and Quintarelli 2001, Section 4).

The next example shows how the refinement also works in contexts where we declassify

relations between secrets.

Example 7.5. Consider the following program P with �H = �L = � and its Wlp semantics

(Sabelfeld and Myers 2004):

P =

⎡⎢⎢⎢⎢⎣
p0 → {h1 = a} ← o0

h1 := h1; h2 := h1; . . . hn := h1;

{(h1 + h2 + . . . + hn)/n = a}
avg := (h1 + h2 + . . . + hn)/n

{avg = a} ← o2

WlpP :

{
X �→ � if ∀a ∈ �L. X �= Ha

Ha �→ {〈a , h2, . . . , hn , a〉 | ∀i . hi ∈ �, avg = a }

where

Ha
def
= {〈h1, . . . , hn , avg〉 | hi ∈ �, (h1 + h2 + . . . + hn)/n = avg = a ∈ �}.

Suppose the input declassification policy releases the average of the secret values, that is,

φ(〈h1, . . . , hn〉)
def
= {〈h ′1, . . . , h ′n〉 | (h ′1 + . . . + h ′n)/n = (h1 + . . . + hn)/n}.

The policy collects together all the possible secret inputs with the same average value.

Hence, the average is the only property that this partition of states allows us to observe.

Clearly, the program releases more. Consider n = 5, hi ∈ {1, ..., 8} and X = H4. The

partition induced by Hφ(X) on the states with avg = 4 is {〈5, 2, 3, 6, 4〉, 〈7, 3, 1, 5, 4〉, . . .}.
But, following the definition above, we have WlpP (H4) = {〈4, 3, 7, 2, 4〉, 〈4, 8, 3, 1, 4〉, . . . }.
Thus, we need to refine the original policy, completing Hφ(X) with respect to WlpP : we

add elements WlpP (Ha) for all a ∈ �. In each such element, h1 has the particular value

a , corresponding to the average. Formally, the domain Hφ′(X) contains all the sets

{〈h1, h2, . . . , hn , avg〉 | h1 = avg = a , ∀i > 1. hi ∈ �}.

Hφ′(X) distinguishes all tuples that differ in the first secret input, where φ′ is obtained

as the disjunctive completion of the computed partition and declassifies the value of h1.

This is the closest domain to φ since if we add any other element in the resulting domain,

we would distinguish more than is necessary, that is, more than the distinction on the

value of h1. Indeed, still abstracting the average of the elements, we could add other sets

of tuples with the same average value, but the only ones that we can add (that is, which

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1289

are not yet in the domain) must add some new distinctions. For example, if we add sets

like {〈4, 6, 1, 5, 4〉, 〈4, 6, 3, 3, 4〉, . . . }, where h2 is also fixed, we also allow the value of h2 to

be distinguished, but this is not released by the program.

The next example also shows how the refinement process works, but it also allows us to

compare our technique with Unno et al. (2006)’s characterisation of counterexamples to

declassification policies.

Example 7.6. Consider the following program fragment (Unno et al. 2006):

P def
=

[
if b then x := h; else x := 0;

if x = 1 then l := 1 else l := 0;

Unno et al. (2006) applies a type-based approach to find the following counterexample to

the classic NI policy: b = b ′ = true, x = x ′ = l = l ′ = 0, h = 0, h ′ = 1, where, for example,

h = 0 and h ′ = 1 denote the values of h in the two runs of the program. With this

input constraint, the program violates classic NI. We show that with our approach we can

characterise the set of all counterexamples to the policy, which clearly includes the one

given above†. We will now compute the weakest precondition analysis of the program:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p0 → {(b = false, l = 0) ∨ (b = true, h = 1, l = 1) ← o0

∨ (b = true, h = 0, l = 0)}
if b then x := h; else x := 0;

{(x = 1, l = 1) ∨ (x = 0, l = 0)}
if x = 1 then l := 1 else l := 0;

{l , b, x} ← o2

Wlp :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H〈1,false,x 〉 �→ �

H〈0,false,x 〉 �→ {〈h , l , b, x 〉 | h ∈ �H, x , l ∈ �L, b = false}
H〈1,true,x 〉 �→ {〈h , l , b, x 〉 | h = 1, x , l ∈ �L, b = true}
H〈0,true,x 〉 �→ {〈h , l , b, x 〉 | h = 0, x , l ∈ �L, b = true}

Hence, given the input partition blocks W〈l ,b,x 〉
def
= {〈h , l , b, x 〉 | h ∈ �H }, we have

W〈1,true,x 〉 ∩WlpP (H〈1,true,x 〉) �= �

and

W〈1,true,x 〉 �⊆WlpP (H〈1,true,x 〉).

Therefore, any two input tuples 〈h , l , b, x 〉 and 〈h ′, l ′, b ′, x ′〉 such that

〈h , l , b, x 〉 ∈W〈1,true,x 〉 ∩WlpP (H〈1,true,x 〉)

〈h ′, l ′, b ′, x ′〉 ∈W〈1,true,x 〉 � WlpP (H〈1,true,x 〉)

〈l , b, x 〉 = 〈l ′, b ′, x ′〉

† We are not comparing the power of the two approaches here, just the counterexamples we can derive using

them.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1290

are counterexamples to the non-interference policy for the program P . In particular,

this means that the counterexamples are those such that h = 0, h ′ = 1, b = b ′ = true,

l = l ′ ∈ �L and x = x ′ ∈ �L, which include the counterexample provided in Unno

et al. (2006).

7.2. Refining narrow non-interference policies

The method described for checking and refining a security policy is parametric on public

observations, but one could carry out the same process on properties. If some information

about the execution context of the program is present, we can restrict (or abstract)

the possible observations. These restrictions can be modelled as abstract domains, and

therefore by means of narrow non-interference policies. In particular, it has been proved

that the more we observe about public information, the less secret information can be

kept secret (Giacobazzi and Mastroeni 2005). This means that a security policy, unsafe

in a general context, can become safe if we consider a weaker observation of the public

output.

The next example shows a simple situation where we apply our technique for checking

a declassification policy in the presence of attackers that in output can only observe

properties of public data, rather than values.

Example 7.7. Consider the following program fragment, which is a slight variation of the

electronic wallet (Sabelfeld and Myers 2004):

P def
= x := 0; if h � k then (h := h − k ; l := l + k ; x := 1)

where h , k : H, x , l : L. We now just consider the observation of a property of x , and,

in particular, of the equality to 0 in the output, that is, ρ(〈x , l〉) = 〈ρx (x), l〉, where

ρx = {�, 0, �= 0,⊥}, and the identity in input, that is, η = id.

We define

Ha
def
=

{
〈h , x , k , l〉

∣∣ ρ(�P�(〈h , x , k , l〉)L) = 〈a , l〉
}

(noting that x can only be 0 or 1 in the output). Then we have

WlpP :

⎧⎪⎪⎨⎪⎪⎩
H0 �→ {〈h , x , k , l〉 | ρ(�P�(〈h , x , k , l〉)L) = 〈0, l〉}

= {〈h , x , k , l〉 | h − k < 0}
H �=0 �→ {〈h , x , k , l〉 | ρ(�P�(〈h , x , k , l〉)L) = 〈�= 0, l〉}

= {〈h , x , k , l〉 | h − k � 0} .

Hence, in this case we can again derive the input property characterising the information

released about the relation between h and k , which is

φ = {{〈h , x , k , l〉 | h − k < 0} , {〈h , x , k , l〉 | h − k � 0}}.

Example 7.8. It is clear that we can consider more complex abstractions of data, such as

the following program P with two secret inputs x and y , and two public outputs xL and

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1291

yL, where d , dx and dy are constant public inputs with dx > d and dy > d :

P def
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

if(d � x + y � d + dx + dy ∧ −dy � x − y � dx) then

if(x � 0 ∧ x � d) then xL := d ;

if(x > d ∧ x � dx) then xL := x ;

if(x > dx ∧ x � dx + d) then xL := dx ;

if(y � 0 ∧ y � d) then yL := d ;

if(y > d ∧ y � dy) then yL := y;

if(y > dy ∧ y � dy + d) then yL := dy ;

Instead of concrete inputs and outputs, we might want to track properties, for example,

in what interval a particular variable lies. The following figure represents the input and

output of the program in graphical form:

The program transforms an input property, namely, an octagon (in the secret variables

x , y , represented by sets of constraints of the form ±x ± y � c) to an output property,

namely, a rectangle (in the variables xL, yL). Thus, if we take WlpP with respect to the

property of intervals (this corresponds to rectangles in the 2-dimensional space), then the

WlpP semantics returns an octagon abstract domain (Miné 2006), that is, we derive an

octagonal relation between the two secret inputs. Thus the security policy has to declassify

at least the octagon domain in order to make the program secure.

Note that, by abstracting the public domain, we can ensure that the number of

observations the attacker can make is finite; in practice, this means that when we compute

Wlp(ρ(l) = A), we are guaranteed that there will be finitely many Wlp computations

whenever the abstract domain is finite.

This example shows that we can combine narrow non-interference with declassification

in the following completeness equation. Let Hρ
def
= λX .�H × ρ(X L) (Giacobazzi and

Mastroeni 2005) and

Hφ
η

def
= λX .φ(Hη(l))× η(l),

where

Hη(l)
def
= {h | η(l ′) = η(l), 〈h , l ′〉 ∈ X }.

Then

Hφ
η ◦WlpP ◦Hρ = WlpP ◦Hρ.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1292

P : Partition

PTSplitR(S ,P) :

{
Partition obtained from P by replacing

each block B ∈ P with B ∩ f (S) and B � f (S)

PTRefinersR(P)
def
= {S | P �= PTSplitR(S ,P) ∧ ∃{Bi}i ⊆ P . S =

⋃
i Bi }

PT-AlgorithmR :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
while (P is not R-stable) do

choose S ∈ PTRefinersR(P);

P := PTSplitR(S ,P);

endwhile

Fig. 4. A generalised version of the PT algorithm.

8. An algorithmic approach to declassification refinement

In Sections 5 and 7 we showed how we can verify and refine confidentiality policies that

admit some leak of secret information. The whole study is carried out by considering

post functions semantics and modelling DNI as a completeness problem. On the other

hand, the strong relationship between completeness and stability enables us to view the

completeness refinement process for partitions, and hence for declassification, from an

algorithmic perspective. Indeed, there is a well-known algorithm, the Paige–Tarjan (PT)

algorithm (Paige and Tarjan 1987), which allows us to find the coarsest stable partition,

which is a refinement of an unstable one; in other words, it finds the coarsest bisimulation

of a given partition. The relationship between this algorithm and completion refinement

has been studied extensively (Mastroeni 2008; Ranzato and Tapparo 2005; Giacobazzi and

Quintarelli 2001), and has led to the discovery of a strong relation between completeness

and strong preservation in abstract model checking (Ranzato and Tapparo 2005).

To understand how we can exploit these connections to get an algorithmic approach

to the refinement of declassification policies, we note that stability corresponds to B
completeness with respect to the post function of a given transition system (Ranzato and

Tapparo 2005; Mastroeni 2008). On the other hand, both NI and DNI are characterised

as B completeness problems with respect to a (family of) post functions (Theorem 5.1

and Corollary 6.2). This means that the PT algorithm, which, by inducing stability by

partition refinement, induces completeness for partitioning closures, also allows us to

refine declassification policies to make DNI hold.

The well-known Paige–Tarjan algorithm computes the coarsest bisimulation of a given

partition as follows. Consider a relation R such that f = p̃re(R). The algorithm is given

in Figure 4, where P is a partition, PTSplitR(S ,P) partitions each unstable block in P
with respect to R with B ∩ f (S) and B � f (S), while PTRefinersR(P) is the set of all the

blocks in P , or obtained as the union of blocks in P that make other blocks unstable.

This algorithm has been shown to be a forward completeness problem for the function

f (Ranzato and Tapparo 2005), and, equivalently, a backward completeness problem for

the adjoint of f (Giacobazzi and Quintarelli 2001), which is exactly a post function.

Moreover, the notion of stability has been generalised to different input and output

partitions (Mastroeni 2008), and, as a consequence, we can also trivially generalise the

algorithm to different partitions in the input and output, respectively (see Section 7). The

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1293

following example, where the p̃re is the Wlp semantics, shows how the algorithm works

in this case.

Example 8.1. Consider Example 7.2. For this example we showed that this declassification

policy is not sufficient to ensure non-interference. Now we show that the same result can

be obtained using the PT-algorithm on the partition induced by the declassification policy

in the input, that is, PI = {even , odd}, and on the output partition induced by the output

observation, namely, the partition PO = {Ha | a ∈ �L}. This partition, is not stable with

respect to the wlp semantics and to the output partition because

even ∩ Wlp(Ha)|H �= � ∧ even �⊆Wlp(Ha)|H

where a �= 0 and Wlp(Ha)|H represents the result of Wlp(Ha) restricted to secret data. In

fact, Ha , with a �= 0 belongs to

PTRefinersR(PI) =

{
S ∈ PO

∣∣∣∣∣ PI �= PTSplitR(S ,PI) ∧ ∃{Bi}i ⊆ PO . S =
⋃
i

Bi

}
,

hence PI is refined by substituting the block even with the new blocks

{0} = even ∩ Wlp(Ha)|H

and

even � {0} = even � Wlp(Ha)|H .

At this point the input partition is stable and, indeed, is P ′I = {{0},Even � {0}, odd},
which says that not only can we distinguish even secret inputs from the odd ones, but we

can also distinguish between 0 and not 0 within the set of even numbers.

The next example again shows the refinement technique, but this time on the program

fragment proposed in Zdancewic and Myers (2001), in order to show the relationship

between the two refinement techniques.

Example 8.2. Consider the following transition system (Zdancewic and Myers 2001),

which uses a password system to launder confidential information:

〈t , h , p, q , r〉 �→ 〈t , h , p, q , r〉
〈0, h , p, p, 0〉 �→ 〈1, h , p, p, 1〉
〈0, h , p, p, 1〉 �→ 〈1, h , p, p, 0〉
〈0, h , p, q , 0〉 �→ 〈1, h , p, q , 0〉 p �= q
〈0, h , p, q , 1〉 �→ 〈1, h , p, q , 1〉 p �= q

where t ∈ {0, 1} is the time (1 indicates that the program has been executed), r ∈ {0, 1}
denotes the result of the test (it is left unchanged if the equality test between the password

p and the query q fails). The public variables are t , q , r , so the partition induced byH is

〈t , h , p, q , r〉 ≡ 〈t ′, h ′, p ′, q ′, r ′〉 if and only if t = t ′ ∧ q = q ′ ∧ r = r ′.

The above says we are considering two states that are L indistinguishable (as in ordinary

NI). By checking completeness, we characterise the information that can be released. For

example, consider the set of possible input states that are in the same equivalence class

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1294

and for which the state 〈0, h , p, q , 0〉 is a representative. Applying the transition rules, we

see (below, left) that this state reveals a different public output. Thus there is a leakage

of confidential information. In order to characterise what information is released, we

complete the domain H by p̃reP (below, right):

〈0, h , p, q , 0〉 �→
{
〈1, h , p, p, 1〉
〈1, h , p, q , 0〉 p̃reP :

{
〈1, h , p, p, 1〉 �→ 〈0, h , p, p, 0〉
〈1, h , p, q , 0〉 �→ 〈0, h , p, q , 0〉 p �= q

Hence we have to refine the original partition by adding the new blocks 〈0, h , p, p, 0〉 and

〈0, h , p, q , 0〉, where p �= q , that is, we release the information whether p = q or p �= q .

In the picture above, we have represented the partition of states induced by the input

and output observation (in this case they coincide). Note that this partition is not stable

with respect to the function p̃reP , in particular, we have

{〈0, h , p, q , 0〉 | h , p ∈ �H } ∩ p̃reP ({〈1, h , q , q , 1〉 | h , p ∈ �H }) �= � ∧
{〈0, h , p, q , 0〉 | h , p ∈ �H } �⊆ p̃reP ({〈1, h , q , q , 1〉 | h , p ∈ �H }).

Hence, the PT-algorithm splits the block {〈0, h , p, q , 0〉 | h , p ∈ �H } into the two new

blocks {
0, h , q , q , 0

∣∣ h , p ∈ �H
}

=
{
〈0, h , p, q , 0〉

∣∣ h , p ∈ �H
}
∩

p̃reP (
{
〈1, h , q , q , 1〉

∣∣ h , p ∈ �H
}
){

0, h , p, q , 0
∣∣ h , p ∈ �H, p �= q

}
=

{
〈0, h , p, q , 0〉

∣∣ h , p ∈ �H
}

�

p̃reP (
{
〈1, h , q , q , 1〉

∣∣ h , p ∈ �H
}
).

This result corresponds exactly to what we would obtain by considering the completeness

refinement. Moreover, this also corresponds to the result in Zdancewic and Myers (2001)

obtained by refining the input partition induced by ≡.

We can use the relation between the PT-algorithm and the abstract model checking

(AMC) refinement of models for strong preservation (Ranzato and Tapparo 2005) as

the bridge between non-interference and AMC. AMC techniques are usually applied to

Kripke structures. A Kripke structure consists of a set of states, a set of transitions

between states, and a function that labels each state with a set of properties that are

true in the state. The Kripke model for a program corresponds to the standard transition

system associated with the program, where states are labelled with the values of the

variables. The connection between declassification and AMC suggests the use of existing

algorithms for AMC in order to derive the information released by a system, whenever

the confidential information is fixed. Indeed, the existence of a spurious counterexample

in the AMC (abstraction corresponding to the declassification policy) corresponds to the

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1295

existence of an insecure information flow in the concrete system. Suppose we interpret the

initial abstract domain of a system as a declassification policy (the distinction between

all the states mapped to different properties is declassified). Then whenever an AMC

algorithm finds a spurious counterexample it means that there is a breach in the security,

and hence some more secrets, that is, some more distinctions among states, are released.

For instance, in the example above, the given trace (from 〈0, h , p, q , 0〉) would be identified

as a spurious counterexample, and the refinement for erasing it is exactly the refinement

we describe. When no more spurious counterexamples exist, we have characterised, in the

resulting abstract domain, the secure declassification policy.

9. Discussion

In this paper we have exploited the completeness of abstract interpretation for modelling

non-interference for confidentiality policies based on declassification. Starting with Joshi

and Leino’s semantic formulation of NI (Joshi and Leino 2000), it is possible to

characterise NI as a problem of B-completeness for denotational semantics (Giacobazzi

and Mastroeni 2005). This paper provides an equivalent formulation of NI as F-

completeness for the wlp semantics, and extends the formulation to declassification.

Semantically, we represent a declassification policy as an abstraction of the H inputs

that induces a partition on them. A program that satisfies the policy is guaranteed not

to expose distinctions within a partition block. F-completeness formalises ‘not exposing

distinctions’. The advantage of our formalisation in comparison with other approaches

is that we can associate with each possible public observation the exact secret released.

Moreover, the strong connection between completeness and declassification, together

with the connection between completeness and the Paige–Tarjan algorithm, allows us to

characterise an algorithmic approach for checking and refining declassification policies.

This connection also leads to the possibility of using standard abstract model checking

techniques for implementing our approach. In particular, model checking can be applied

to generic finite state systems, and abstractions even allow us to consider infinite state

systems. As future work, we are studying the practical use of these techniques when

applied to more complex systems.

The relation between the abstract interpretation approach to NI (Giacobazzi and

Mastroeni 2004; Giacobazzi and Mastroeni 2005) and many existing approaches for

non-interference and declassification has been studied by means of examples (Hunt and

Mastroeni 2005; Mastroeni 2005). Sabelfeld and Sands note that most existing proposals

suffer from the lack of a compelling semantics for declassification. In earlier work they used

the PER model (Sabelfeld and Sands 2001) to define selective dependency (Cohen 1977)

by means of equivalence relations instead of abstract domains. They also show, through

an example, that the PER model can be used to show that nothing more is learnt by

an attacker than the policy itself releases (Sabelfeld and Sands 2007); in our model,

we derive this formally (Corollary 5.2), and also show how counterexamples can be

generated and the policy refined if a policy is not satisfied. Joshi and Leino (2000)

introduced abstract variables to obtain a more general notion of security. In this case they

substitute the secret variables with functions, that is, properties, of them. This corresponds

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1296

to abstract non-interference where we fix what we want to protect instead of what we

allow to flow (Giacobazzi and Mastroeni 2004; Mastroeni 2005), so it is not helpful

for computing what information is released. Darvas et al. (2005) used dynamic logic

to analyse the declassification property dynamically. The information flow property is

modelled as a dynamic logic formula. They then fix some declassifying preconditions and

execute the analysis. If the analysis succeeds, there is an upper bound on the information

disclosed; otherwise the precondition must be refined. Because of the connections between

completeness and PT, our approach can provide a more systematic method for designing

and refining these preconditions. Our approach differs from quantitative characterisations

(Clark et al. 2004; Di Pierro et al. 2002) of the information released since we provide a

qualitative analysis of the leaked secrets.

We were directly inspired by work on gradual release (Askarov and Sabelfeld 2007a).

In addition to reasoning about the where dimension of declassification (as in gradual

release), we can also reason about the what dimension of declassification. In recent work,

and building directly on gradual release, Banerjee et al. (2008) showed how to specify the

when, what and where policies: ‘when’ specifies conditions under which downgrading is

allowed. The specification itself is based on a logic for information flow due to Amtoft

et al. (2006). The end-to-end semantic property, like ours, is trace-based and is based

on a model that allows observations of low projections of intermediate states as well as

termination. Our work does not consider the when dimension of declassification. On the

other hand, Banerjee et al. (2008) does not show how to compute the information released

by a program or to check whether the information released is more than that specified by

the policy.

Unno et al. (2006) proposed a method for automatically finding counterexamples of

secure information flow, which combines security type-based analysis for standard NI and

model checking. Our context is more general, since standard NI is a particular case of

DNI. Nevertheless, we plan to investigate how their approach to NI can be combined

with ours for DNI.

Alur et al. (2006) considered the preservation of secrecy under refinement and presented

a simulation-based technique to show when one system is a refinement of another with

respect to secrecy. They contend that their approach is flexible because it can express

arbitrary secrecy requirements. In particular, if the specification does not maintain the

secrecy of a property, the implementation does not need to either. Our notion of refinement

is slightly different: if a program leaks more information than the policy, we consider how

the policy might have to be refined to admit the program. It is possible that there might

be strong connections to their work and we plan to explore these connections.

In other future work, we plan to investigate two other applications of our approach.

First, note that in this paper we have only discussed narrow non-interference, while in the

original work on the weakening of non-interference by abstract interpretation another no-

tion was introduced, namely, abstract non-interference (Giacobazzi and Mastroeni 2004).

This notion was introduced for two reasons:

(a) Narrow non-interference is based on the computation of the concrete semantics, which

can only be observed by an attacker.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1297

(b) Narrow non-interference generates false alarms due to the abstract observation, so

secure situations may be rejected as insecure.

In order to avoid false alarms and to allow an analysis of the program’s semantics, abstract

non-interference considers attackers that can compute the abstract semantics of programs,

in other words, attackers that can statically analyse a program’s code. The connection

with completeness is also very strong for this notion (Giacobazzi and Mastroeni 2005),

and we would like to investigate how we can generalise this connection to deal with

different semantic and protection policies, exactly as we have done in this work for

narrow non-interference.

The second direction we would like to pursue is to understand what happens when we

deal with active attackers. An attacker is active when it can both observe and modify the

executions of programs. Our idea is to model active attackers as semantic transformers,

and if we know the program points where the attacker can carry out its activity (Myers

et al. 2004), we think that Wlp is a good semantic model for characterising both the

observational and active power of attackers.

Finally, we plan to automate our approach. This would involve the development of

backwards analysis techniques for the particular abstract domains of interest. A hint

of this development can be seen in Example 7.8. In the example we need a backwards

analysis for the interval abstract domain. In general, however, it is not clear how we can

compute computable backwards analyses for arbitrary abstract domains, so we might

need to restrict the kinds of properties that can be observed – this is an area of interest

for future work.

Acknowledgements

This is a revised version of Banerjee et al. (2007), which appeared in the Proceedings of

the Twenty-Third Conference on Mathematical Foundations of Programming Semantics

(MFPS), 2007. It is a pleasure to acknowledge several stimulating discussions with Roberto

Giacobazzi who was a co-author of the MFPS paper. We also thank the anonymous

referees for their careful reading of the manuscript and for their suggestions for improving

the presentation.

References

Alur, R., Cerny, P. and Zdancewic, S. (2006) Preserving secrecy under refinement. In: Proceedings

of the International Colloquium on Automata, Languages and Programming (ICALP ’06).

Springer-Verlag Lecture Notes in Computer Science 4052 107–118.

Amtoft, T., Bandhakavi, S. and Banerjee, A. (2006) A Logic for Information Flow in Object-Oriented

Programs. In: Proceedings of the 33rd Annual ACM Symposium on Principles of Programming

Languages, ACM Press 91–102.

Askarov, A. and Sabelfeld, A. (2007a) Gradual release: Unifying declassification, encryption and

key release policies. In: Proceedings IEEE Symposium on Security and Privacy, IEEE Computer

Society Press.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

I. Mastroeni and A. Banerjee 1298

Askarov, A. and Sabelfeld, A. (2007b) Localized delimited release: Combining the what and the

where dimensions of information release. In: PLAS ’07: Proceedings of the 2007 workshop on

Programming languages and analysis for security, ACM Press 53–60.

Banerjee, A., Giacobazzi, R. and Mastroeni, I. (2007) What you lose is what you leak: Information

leakage in declassification policies. In: Proceedings of the 23th International Symposium

on Mathematical Foundations of Programming Semantics (MFPS ’07). Electronic Notes in

Theoretical Computer Science 1514.

Banerjee, A., Naumann, D.A. and Rosenberg, S. (2008) Expressive declassification policies and

modular static enforcement. In: Proceedings IEEE Symposium on Security and Privacy, IEEE

Computer Society Press.

Bell, D. E. and LaPadula, L. J. (1973) Secure computer systems: Mathematical foundations and

model. Technical Report M74-244, MITRE Corporation, Bedford, MA.

Clark, D., Hunt, S. and Malacaria, P. (2004) Quantified interference: Information theory and

information flow (extended abstract).

Cohen, E. S. (1977) Information transmission in computational systems. ACM SIGOPS Operating

System Review 11 (5) 133–139.

Cousot, P. (2002) Constructive design of a hierarchy of semantics of a transition system by abstract

interpretation. Theoretical Computer Science 277 (1-2) 47–103.

Cousot, P. and Cousot, R. (1977) Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM

SIGACT–SIGPLAN symposium on Principles of programming languages (POPL ’77), ACM Press

238–252.

Cousot, P. and Cousot, R. (1979) Systematic design of program analysis frameworks. In:

Proceedings of the 6th ACM SIGACT–SIGPLAN symposium on Principles of programming

languages (POPL ’79), ACM Press 269–282.

Darvas, A., Hähnle, R. and Sands, D. (2005) A theorem proving approach to analysis of secure

information flow. In: Hutter, D. and Ullmann, M. (eds.) Security in Pervasive Computing: Second

International Conference (SPC 2005). Springer-Verlag Lecture Notes in Computer Science 3450

193–209.

Di Pierro, A., Hankin, C. and Wiklicky, H. (2002) Approximate non-interference. In: Proceedings of

the IEEE Computer Security Foundations Workshop, IEEE Computer Society Press 1–17.

Dijkstra, E.W. (1975) Guarded commands, nondeterminism and formal derivation of programs.

Communications of The ACM 18 (8) 453–457.

Giacobazzi, R. and Mastroeni, I. (2004) Abstract non-interference: Parameterizing non-interference

by abstract interpretation. In: Proceedings of the 31st Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’04), ACM Press 186–197.

Giacobazzi, R. and Mastroeni, I. (2005) Adjoining declassification and attack models by abstract

interpretation. In: Sagiv, S. (ed.) Proceedings of the European Symposium on Programming

(ESOP ’05). Springer-Verlag Lecture Notes in Computer Science 3444 295–310.

Giacobazzi, R. and Quintarelli, E. (2001) Incompleteness, counterexamples and refinements in

abstract model-checking. In: Cousot, P. (ed.) Proceedings of the 8th International Static Analysis

Symposium (SAS’01). Springer-Verlag Lecture Notes in Computer Science 2126 356–373.

Giacobazzi, R., Ranzato, F. and Scozzari, F. (2000) Making abstract interpretations complete.

Journal of the ACM. 47 (2) 361–416.

Goguen, J. A. and Meseguer, J. (1984) Unwinding and inference control. In Proceedings IEEE

Symposium on Security and Privacy, IEEE Computer Society Press 75–86.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

Modelling declassification policies using abstract domain completeness 1299

Gorelick, G. (1975) A complete axiomatic system for proving assertions about recursive and

non-recursive programs. Technical Report 75, Department of Computer Science, University of

Toronto.

Hunt, S. and Mastroeni, I. (2005) The PER model of abstract non-interference. In: Hankin, C. and

Siveroni, I. (eds.) Proceedings of The 12th International Static Analysis Symposium (SAS ’05).

Springer-Verlag Lecture Notes in Computer Science 3672 171–185.

Joshi, R. and Leino, K.R.M. (2000) A semantic approach to secure information flow. Science of

Computer Programming 37 113–138.

Kahn, G. (1987) Natural semantics. In: Proceedings of Symposium on Theoretical Aspects of

Computer Science. Springer-Verlag Lecture Notes in Computer Science 247 22–39.

Li, P. and Zdancewic, S. (2005) Downgrading policies and relaxed noninterference. In: Proceedings of

the 32nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’05), ACM Press 158–170.

Mastroeni, I. (2005) On the role of abstract non-interference in language-based security. In: Yi, K.

(ed.) Third Asian Symposium on Programming Languages and Systems (APLAS ’05). Springer-

Verlag Lecture Notes in Computer Science 3780 418–433.

Mastroeni, I. (2008) Deriving bisimulations by simplifying partitions. In: Proceedings of the

9th International Conference on Verification, Model Checking and Abstract Interpretation

(VMCAI’08). Springer-Verlag Lecture Notes in Computer Science 4905 147–171.

Miné, A. (2006) The octagon abstract domain. Higher-Order and Symbolic Computation 19 31–100.

Myers, A. C., Chong, S., Nystrom, N., Zheng, L. and Zdancewic, S. (2001) Jif: Java information

flow. Software release.

Myers, A. C., Sabelfeld, A. and Zdancewic, S. (2004) Enforcing robust declassification. In:

Proceedings IEEE Symposium on Security and Privacy, IEEE Computer Society Press 21–34.

Paige, R. and Tarjan, R. E. (1987) Three partition refinement algorithms. SIAM Journal on Computing

16 (6) 977–982.

Ranzato, F. and Tapparo, F. (2005) An abstract interpretation-based refinement algorithm for strong

preservation. In: Halbwachs, N. and Zuck, L. (eds.) Proceedings of TACAS: Tools and Algorithms

for the Construction and Analysis of Systems. Springer-Verlag Lecture Notes in Computer Science

3440 140–156.

Sabelfeld, A. and Myers, A. C. (2004) A model for delimited information release. In: Yonezaki, N.,

Futatsugi, K. and Mizoguchi, F. (eds.) Proceedings of the International Symposium on Software

Security (ISSS’03). Springer-Verlag Lecture Notes in Computer Science 3233 174–191.

Sabelfeld, A. and Myers, A. C. (2003) Language-based information-flow security. IEEE J. on selected

ares in communications 21 (1) 5–19.

Sabelfeld, A. and Sands, D. (2001) A PER model of secure information flow in sequential programs.

Higher-Order and Symbolic Computation 14 (1) 59–91.

Sabelfeld, A. and Sands, D. (2007) Declassification: Dimensions and principles. Journal of Computer

Security.

Schmidt, D.A. (2006) Comparing completeness properties of static analyses and their logics. In:

Kobayashi, N. (ed.) Proceedings 2006 Asian Programming Languages and Systems Symposium

(APLAS’06). Springer-Verlag Lecture Notes in Computer Science 4279 183–199.

Unno, H., Kobayashi, N. and Yonezawa, A. (2006) Combining type-based analysis and model

checking for finding counterexamples against non-interference. In: Proceedings of the Workshop

on Programming languages and analysis for security (PLAS ’06), ACM Press 17–26.

Winskel, G. (1993) The formal semantics of programming languages: an introduction, MIT press.

Zdancewic, S. and Myers, A. C. (2001) Robust declassification. In Proceedings of the IEEE Computer

Security Foundations Workshop, IEEE Computer Society Press 15–23.

https://doi.org/10.1017/S096012951100020X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951100020X

