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SUMMARY

A formula is developed for calculating the expected gain when a first-order autoregressive repeated
measures model for the plot errors is assumed. Using examples from our earlier papers, the similarities
of the conclusions about the best selection programme from using simulation of an unstructured model
and from using the autoregressive formula for expected gain are presented. The autoregressive formula
is then used to derive optimal programmes when the number of plots or plot years is fixed for a range of
values for the variance of the interactions of clone effects with years relative to the variance of the clone
effects and for the variances and covariances between years of the plot residuals. In general, there are
advantages in studying many clones at low replication rather than fewer clones at high replication.

I N T RO D U C T I O N

In varietal and clonal selection programmes, there has to be a balance between the
number of entries that can be tested and the amount of replication of each entry. For
a given number of plots available for the trial, we can either test a large number of
entries with low replication and therefore low accuracy or fewer entries with more
replication and therefore greater accuracy. Choice of the number of replicates by
arguments based on the probability of achieving statistically significant differences
is inappropriate because it takes no account of the need to test as many entries as
possible and, hence, increases the available choice of new entries and the selection
intensity.

The more relevant measure of the success of a selection programme is the expected
performance of the entries selected at the end of the programme. These issues have
been discussed by Finney (1958a, 1958b), Curnow (1961) and Gauch and Zobel
(1996) for crops grown on plots harvested in a single year. They considered sequential
series of selections in which the varieties were reduced in number each year. The
number of initial entries, the number of replicates at each stage and the optimal
rate of reduction of the number of entries in the successive years were chosen to
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maximise the expected value of the varieties chosen at the end of the programme.
There were assumed to be no varieties × years interactions.

In this paper, we discuss the planning of single stage clonal selection trials of
perennial crops and therefore with harvests from the same plots in successive years.
Account is taken of clones × years interactions and a first-order autoregressive model
was used to allow for the correlation between the yields from the same plot in different
years. The model assumes that the correlations between the results in different
years on the same plot are generated entirely by the correlations between results in
successive years and that the variances of the plot errors are the same in different
years. With the autoregressive model simulation is not needed because a formula can
be derived for the expected selection gain in terms of the number of clones tested, the
number of replicates of each clone and the number of years of harvest. A comparison
of the results from simulation and from the autoregressive model for three cocoa
(Theobroma cacao) clonal trials (Owusu-Ansah et al., 2013, 2017) is discussed; a program
in R made available for general use, and some general results presented about the
optimal number of entries, replicates and years of harvest in relation to likely values
of the relevant components of variation.

M AT E R I A L S A N D M E T H O D S

In the paper by Owusu-Ansah et al. (2013), repeated measures analyses were used
to estimate the variance components and between years covariances from four years
of data on cocoa yields from three clonal selection trials (labelled M2, N4 and D8) in
Ghana. The experiments were randomised complete block designs. The unstructured
model used in the repeated measures analyses allowed the variances of the plot errors
to vary between years and the covariances to be different for all possible pairs of years
(MacCulloch et al., 2008; Maxwell and Delaney, 1990; Richter and Kroschewski,
2006). Using the estimated variances and covariances, simulation of each of the three
trials provided information about the best future choices for the number of clones to
be tested, given the number of plots used and the effects of differing numbers of years
of harvest. The number of clones to be selected at the end of the trial was assumed to
be n = 3. Unfortunately, a programming error in the simulations affected the results
presented in Figures 1–3 and Table 4 of Owusu-Ansah et al. (2013), and Owusu-Ansah
et al. (2017) gave the correct results.

Herein, a formula is developed for calculating the expected gain in the mean
performance of selected clones over years when a more restricted first-order
autoregressive model for the dependencies between the plot errors in different years
is assumed. The data from one of the three clonal trials is analysed using the first-
order model and the results are compared with those obtained from simulation using
the unstructured model. The selection gains predicted by the two models when the
best three clones are chosen at the end of the trial are then compared for varying
numbers of clones, blocks and years of harvest. Using the first-order model, optimal
values are derived for the number of clones to test, the number of replications and the
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number of years of testing for a range of values of the relevant variance and covariance
components.

R E S U LT S

Calculating the selection gain

We shall assume that the design used is a randomised complete block design. The
yield y of clone i on plot j in block k and year l will be written as

yi jkl = ci + (cb)ik + (cy)il + ei jkl , (1)

where ci is the clone effect; (cb)ik is the clone × block effect; (cy)il is the clone × year effect;
and eijkl is the plot error for clone i, block j and year l. The general mean and the
main effects of blocks, years and the interactions of blocks and years can be ignored in
calculating the expected gains from the selection programme since each variety occurs
in each block and year, and selection is based on comparisons of the performances
of the clones. The effects ci, (cb)ik and (cy)il are assumed to be independently normally
distributed with zero means and variances σ 2

c , σ 2
cb and σ 2

cy , respectively. For tabulation
purposes, we can standardise the scale of the yields so that σ 2

c = 1 and so the values
of the other variance components are relative to the clone variance. The error eijkl

will be assumed to be normally distributed with variance σ 2
e and subject to first-order

autoregressive correlations (MacCulloch et al., 2008; Richter and Kroschewski, 2006)
so that the correlation between errors on a plot d years apart is ρd . The selection will
be based on the total yields of the clones over the years of harvest.

Because of the first-order autoregressive model for the plot errors in different years,
the variance of the total of the errors for a single plot, yijk, over t successive years is

� = σ 2
e

(
2

∑t

x=0
(t − x) ρx − t

)
, (2)

which simplifies to

� = σ 2
e

t
(
1 − ρ2

) + 2
(
ρt+1 − ρ

)
(1 − ρ )2

. (3)

In the extreme case of complete correlation of the plot errors in different years,
ρ = 1 and � = σ 2

e t2. With no correlation between plot errors in different years, ρ =
0 and � = σ 2

e t . Other patterns of correlations between plot errors in different years
can be investigated by calculation of the variance of the total of the errors, �, as the
sum of all the elements in the variance-covariance matrix of the yields of a plot in the
different years of harvest. The expected average yields of the best n of the N clones
tested will be

√
Var(yi... )k (n; N ) =

√
σ 2

c + σ 2
cb

b
+ σ 2

cy

t
+ �

bt2
k (n; N ) , (4)
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Table 1. Expected value of the average of the three highest values k(3;N) in a sample of size N

from a standard normal distribution.

N k(3;N) N k(3;N)

8 0.916 36 1.761
12 1.179 48 1.893
16 1.347 54 1.945
18 1.412 64 2.018
24 1.563 96 2.184
27 1.623 108 2.229
32 1.706 192 2.414

where yi... is the average yield of a clone, b and t are the number of blocks and years,
respectively, and k(n;N) is the average of the expected values of the highest n values in
a sample of size N drawn from a standard normal distribution (Pearson and Hartley,
1972). Table 1 shows the values of k(3;N) that will be used later in this paper.

By a regression argument, the expected gain in the average value of ci for the best
n of N clones selected on the basis of the yields over t successive years, yi..., will be

E (Gain) =
[

Cov
(
ci, yi...

)
Var

(
yi...

)
]

.

√
Var

(
yi...

)
k (n; N ) . (5)

Hence,

E (Gain) = σ 2
c√

σ 2
c + σ 2

cb

b
+ σ 2

cy

t
+ �

bt2

k (n; N ) , (6)

where σck(n; N ) provides the upper bound to the selection gains when the variance
components, i.e. σ 2

cb, σ 2
cy and �, are all zero.

The available R program requires input of the variance components σ 2
c , σ 2

cb, σ 2
cy,

σ 2
e ; the plot correlation coefficient ρ; the total number of plots Nb (≤192), the value

of n and the number of clones to be selected. The output gives the values of the
standardised upper bounds, k(n;N), and the values of E(Gain) for specified values
of the number of blocks, b, and the number of years harvested, t. The output shows
the dependence of the expected gains on the values of b and N and, hence, provides
the values of b and N that maximise the expected gain. The effects of increasing the
number of years harvested, t, can also be studied.

Variance and covariance parameter estimates for the unstructured and first-order autoregressive models

applied to trial M2

Yield was defined as the total number of pods and, to more nearly satisfy the
assumptions of the analyses, is measured on a square root scale. The estimate from
the unstructured repeated measures analysis of the clones × years variance component
relative to a unit variance for the clone variation was 0.28. The average plot error
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Table 2. Estimates of the gains in clonal standard deviation units for square root yields in trial M2, Nb = 108 for
varying numbers of clones tested N including the actual design (N = 18, b = 6) derived by using simulations of the

unstructured repeated measures model and from the first-order autoregressive model – equation (6).

Number of Unstructured model Autoregressive model (3)

Clones (N=) 108 54 36 27 18 108 54 36 27 18
Years Blocks (b=) 1 2 3 4 6 1 2 3 4 6

1 1.65 1.56 1.46 1.36 1.21 1.54 1.50 1.41 1.33 1.19
2 1.78 1.66 1.55 1.44 1.29 1.68 1.61 1.52 1.42 1.26
3 1.76 1.67 1.56 1.46 1.30 1.75 1.67 1.56 1.47 1.30
4 1.77 1.68 1.58 1.47 1.32 1.81 1.71 1.60 1.49 1.32

variance plus the blocks × clones variation between successive years was 0.87 and
the average correlation of the plot errors plus the clones × blocks variation between
successive years was 0.55. An analysis based on the first-order autoregressive model
provided estimates of the variances and correlation, again relative to a unit variance
for the clonal variation, of 0.28 for clones × years; 0 for clones × blocks; 0.82 for plot
errors and a correlation of plot errors between successive years of 0.54. These are
close to the average values from the unstructured analysis.

Estimates of the expected selection gains for the unstructured and the first-order autoregressive models

Expected gains on the square root scale for the two models using 10,000 simulations
for each case of the unstructured model and equation (6) for the first-order model are
shown in Table 2. We assumed that the best three clones are selected at the end of
the trial and we choose n = 3 rather than n = 1 because more than one clone is very
likely to be forwarded to the next stage of observation and selection. The expected
gains are shown for the actual number of clones tested in the trial, 18, and for all
possible numbers of more clones with fewer replicates and for up to four years of
harvest. The expected gains are generally slightly higher for the unstructured model.
As expected the gains generally increase with the number of years of harvest. The
very marginal exception is that because the error variances – assumed constant in
the autoregressive model – increase over the four years in the unstructured model,
the highest expected gains when all the clones are tested with the unstructured model
occur with just two years of harvest. As shown in Table 2, the highest expected gains
are always achieved with both models when all the clones are tested with a single
replicate. However, the gains are such that the need for replication to estimate the
variance components and the possibility of missing values making the testing of all
the clones impossible would suggest that testing half the clones with two replicates
each would be advisable. The two methods of analysis provided similar conclusions
concerning the optimal programmes for the other trials, N4 and D8. Hence, in these
cases, the equation based on the first-order model can safely be used to derive optimal
programmes.
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Table 3. Optimal values of the number (N) of clones to be tested when the best n = 3 clones are selected based on
four years of harvest; the corresponding selection gains and upper limits of gains both in clonal standard deviation

units; and the increase (%) of gains from four years compared to one year of harvest.

Optimal Gain

σ 2
cy σ 2

cb σ 2
e ρ N b Selection Upper limit

Increase (%)
Year 4 over year 1

0 0 1 0 96 1 1.95 2.18 26
0.5 96 1 1.77 2.18 15
1 48 2 1.55 1.89 0

10 0 48 2 1.26 1.89 63
0.5 32 3 1.03 1.71 26
1 24 4 0.84 1.56 0

0 0.5 1 0 96 1 1.65 2.18 20
0.5 48 2 1.54 1.89 8
1 48 2 1.43 1.89 0

10 0 32 3 1.21 1.71 50
0.5 24 4 1.01 1.56 23
1 24 4 0.82 1.56 0

0.5 0 1 0 96 1 1.86 2.18 35
0.5 96 1 1.71 2.18 23
1 96 1 1.50 2.18 8

10 0 48 2 1.23 1.89 65
0.5 32 3 1.01 1.71 30
1 24 4 0.82 1.56 5

0.5 0.5 1 0 96 1 1.60 2.18 26
0.5 96 1 1.49 2.18 18
1 48 2 1.38 1.89 10

10 0 32 3 1.17 1.71 53
0.5 32 3 0.98 1.71 29
1 24 4 0.81 1.56 5

Number of plots Nb = 96 and σ 2
c = 1.

Relation of optimal values of N and b to the values of the variance components and the between year

plot correlations with Nb fixed at 96

As an example, the equation for the first-order model is now used to derive optimal
designs for a fixed number of plots (Nb = 96 plots) and for some chosen values for the
components of variation (σ 2

c = 1, σ 2
cb, σ 2

cy, σ 2
e , ρ). Table 3 shows the optimal values of

N and b and the expected average gains of the three best performing clones, n = 3, if
the selection is based on the average performance over four years. The optimal values
of N and b are unlikely to be much affected by the choice of the number of clones
selected, n. All possible values for the number of blocks were studied. The expected
gains will always increase with the number of years of harvest in the trial except in
the unlikely situation that there are no clones × years interactions and there is perfect
correlation, ρ = 1, of the plot errors in successive years. The three values chosen
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Table 4. Expected gains when Nbt = 192 for varying numbers of blocks, b, and years, t.

1 2 3 4
Years, t

Blocks, b E(Gain) N E(Gain) N E(Gain) N E(Gain) N

1 0.70 192 0.72 96 0.72 64 0.73 48
2 0.84 96 0.83 48 0.81 32 0.77 24
3 0.90 64 0.86 32 * – 0.78 16
4 0.93 48 0.87 24 0.8 16 0.74 12
6 0.95 32 0.84 16 * – 0.64 8
8 0.93 24 0.79 12 0.65 8 0.32 6

σ 2
c = 1, σ 2

cb = 0.5, σ 2
cy = 0.5, σ 2

e = 10, ρ = 0.5. *Non-integral N.

for each of the variance components for clones × years, clones × blocks, plot errors and
the correlation of plot errors were chosen to span a wide range and should allow
reasonably accurate interpolation for likely intermediate values.

In addition to the optimal values of N and b and the corresponding selection gains,
the upper limit of selection gains corresponding to no errors in assessment and the
percentage increase in selection gain from four years of harvest compared with one
year are shown in Table 3. The optimal values of N for four years of harvest generally
decrease as ρ increases because the additional information from the plots in the
different years reduces as ρ increases. The optimal values of N decrease as σ 2

e or
σ 2

cb increases because more blocks are needed to achieve the same level of accuracy in
estimating the clone yields. The optimal values of N are little affected by the existence
of the clones × years variance component of 0.5.

The increases in the gains from having four years of harvest using the appropriate
optimal number of clones, N, compared to a single year decrease with increasing ρ or
increasing σ 2

e ; decrease with increasing σ 2
cb; and increase slightly with increasing σ 2

cy.
For obvious reasons, there is no advantage from the extra years if there are no clones

× years interactions and the plot errors in successive years are perfectly correlated.
When there are no clones × years interactions and the plot errors in successive years
are uncorrelated, the extra years are equivalent to extra blocks.

An example of expected selection gains for varying values of N, b and t with Nbt fixed at 192

The constraints on resources may be more closely related to the number of plots
times the number of years, Nbt, rather than Nb. These will be particularly true if
parallel trials are being run with each year having one trial in each of the possible
t years. As an example of the results that can be obtained, the expected gains for
combinations of numbers of years and numbers of blocks with Nbt = 192 and σ 2

c = 1,
σ 2

cb = 0.5, σ 2
cy = 0.5, σ 2

e = 10, ρ = 0.5 are shown in Table 4. For these relatively high
plot residual and clones × years variances, the optimal choice is N = 32, b = 6 and
t = 1. However, more than one year of harvest may be advisable to estimate and study
the stability of the clonal differences over years and as the clones grow. The speed
of further testing and consequent introduction into commercial practice of the new
clones will be another factor in choosing the number of years that the trial should last.
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D I S C U S S I O N

Two assumptions have been made in the calculation of the expected gains. The first
assumption is that increasing the number of clones to be tested does not reduce the
quality of the clones. Second, that there is insufficient information to choose the clones
for testing from those available on the basis of their likely superior performance. In the
early screening stages of clonal selection, these assumptions are likely to be reasonable
approximations. If the optimal number of clones that should be tested exceeds
the number available, then the cost of producing more clones for testing needs to
be considered. The third assumption is that increasing the number of clones tested
does not increase the plot error variances despite the larger block sizes. In practice,
the designs are likely to be incomplete block or lattice designs (Mead et al., 2012) and
adjustments based on models for the spatial variation are used to reduce the effects of
larger blocks (Gilmour et al., 1997; Stroup et al., 1994). The expected gains near the
optimal will often not be strongly related to the number of clones tested and, hence,
there is flexibility in choosing the number of clones to help in the choice of the best
design.

The value of the clones × blocks interaction variance component will depend greatly
on whether the clones are being tested at one site to evaluate their likely performance
at only that site or at dispersed sites so that the selection can be in terms of average
performance across dispersed sites. The optimal planning of future trials clearly
depends on having available appropriate estimates of the likely variance components,
increasing the importance of thorough analysis of all trials that may be relevant. Trials
in which the optimal number of blocks is b = 1 should perhaps be avoided and two
blocks run so that the data can be analysed and variance components estimated. Trials
with just one year of harvest should perhaps be avoided for the same reason and also
to provide some evidence about the stability of the relative performance of the clones
over years, addressing aging.

The number of clones to be selected at the end of the trial will often, and certainly
in the later stages of the breeding programme, be based on comparisons with the
performance of standard clones included in the trial. The effects of the selection
on correlated characteristics of the clones and the use of selection indices can be
studied by simulating with the unstructured model (Owusu-Ansah et al., 2013) and by
modifying the regression equations with the first-order model.

Despite the assumptions that have had to be made and the need to have available
estimates of the likely sizes of the various variance components, we believe that the
use of the predicted selection gains can lead to more efficient selection programmes
in terms of number of clones tested, number of replicates and number of years of
harvest.
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