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We show that the expected time for a random walk on a (multi-)graph G to traverse all m

edges of G, and return to its starting point, is at most 2m2; if each edge must be traversed in

both directions, the bound is 3m2. Both bounds are tight and may be applied to graphs with

arbitrary edge lengths. This has interesting implications for Brownian motion on certain

metric spaces, including some fractals.
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1. Introduction

Overview

The expected time for a random walk on a graph G to hit all the vertices of G has been

extensively studied by probabilists, combinatorialists and computer scientists; applications

include the construction of universal traversal sequences [2, 7], testing graph connectivity

[2, 20], and protocol testing [23]. It has also been studied by physicists interested in the

fractal structure of the uncovered set of a finite grid; see [10] for references and the

relation to cover time for Brownian motion.

Here we consider the time to cover all edges of G, and moreover we take as the

fundamental parameter the number m of edges of G, rather than the number of vertices.

Indeed, if the edges are taken to be of various lengths, then the number of vertices is

no longer of interest and the total edge length (also denoted by m) becomes the natural

parameter by means of which to bound cover time.
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Earlier results

Let G = 〈V , E〉 be a connected, undirected graph (possibly with loops and multiple edges),

where |V | = n and |E| = m. Let r ∈ V be a distinguished ‘root’ vertex. A (simple) random

walk on G beginning at r is a Markov chain on V , defined as follows: if the walk is

currently at vertex x it chooses an edge incident to x uniformly at random, then follows

that edge to determine its next state.

The expected value of the least time such that all vertices in V have been hit by the

random walk will be denoted by CV
r (G) or simply CV

r , and we call this number the

(expected) vertex cover time of G from r. The vertex cover time CV (G) of G is defined to

be the maximum of CV
r (G) over all r ∈ V .

Upper bounds on CV (G) have been widely sought by the theoretical computer science

community, and many results have been obtained. The cover time of a simple graph (no

loops or multiple edges) was shown [2] to be at most cubic in n; more recently Feige [13]

refined the bound to 4
27
n3 plus lower-order terms, which is realized by the same ‘lollipop’

graph that maximizes expected hitting time [6], namely, a clique on 2
3
n vertices attached

to one end of a path on the remaining vertices.

In fact [2] shows that CV (G) is O(mn), thus trivially O(m2), even if the walk is required

to return to the root. The expected time to cover all vertices and return to the root is

called the (vertex) cover and return time, here denoted by CRV
r ; it is often easier to work

with than CV
r . Among simple graphs (no loops or multiple edges) with m edges, the path

Pm+1 on m edges – starting in the middle – provides the greatest vertex cover time, namely

m2 + �m/2��m/2	 ∼ 5
4
m2 [13]. The path starting at one end had previously been shown

[5] to have the strictly greatest vertex cover and return time among all trees with m edges.

The expected time for a random walk beginning at r to cover all the edges of G will

be denoted by CE
r (G); if the walk is required to cover all the arcs, that is, to traverse

every edge of G in both directions, the expected time is denoted by CA
r (G). If the walk

must return to r, we use CRE
r and CRA

r as above. Edge-cover is for some purposes more

natural than vertex-cover; for example, it makes more sense on a graph with loops and

multiple edges, where there is no bound on any kind of cover based only on the number

n of vertices, but there are natural, tight bounds (as we shall see) on CRE and CRA in

terms of the number of edges.

Bounds on expected edge-cover times have been obtained by Bussian [8] and Zuckerman

[31, 32]. Bussian noted that to cover the edges of a graph G, it suffices to hit each vertex

somewhat more often than its degree. Recently Ding, Lee and Peres [11] proved a

conjecture of Winkler and Zuckerman [30] saying roughly that the expected time to hit

every vertex often – that is, at least half the product of the stationary probability and

the number of steps taken – is no more than a (large) constant C times the vertex-cover

time, which for a regular graph is bounded by 6n2 [19]. Thus, after t � 6Cn2 steps, each

vertex has been hit at least t/2n times and the expected number of missed edges is at

most

m

(
d− 1

d

)t/2n

∼ me−t/2dn,
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where d = 2m/n is the degree. It follows easily with a renewal argument that the edge- (or

arc-) cover time for a regular graph is at most O(max(n2, m logm)). For general graphs,

Zuckerman [32] succeeded in showing CRA(G) � 22m2, using probabilistic methods.

Our results

The main result of this paper is that if G is a multigraph with m edges then the expected

time it takes for a simple random walk started at any vertex to traverse all the edges of

G (and return to its starting point) is at most 2m2; in fact, we can even fix an orientation

of each edge beforehand, and 2m2 steps will be enough on average to traverse each edge

in its pre-specified direction. If instead we insist that each edge be traversed both ways,

then we have to wait at most 3m2 steps on average.

As an intermediate step in our proof of the above bounds we obtain a refinement of a

well-known formula of Chandra, Raghavan, Ruzzo, Smolensky and Tiwari [9] concerning

the commute time of random walk.

These results apply more generally if the edges of G are assigned positive real lengths

and the transition probabilities of the random walk, as well as the time it takes to make a

step, are appropriately adapted. In that case the above bounds apply when m is the sum

of the lengths of the edges of G.

We call a graph with edge lengths a network, and interpret it as an electrical network

by equating edge length with resistance along an edge. The usual connections between

random walk and electrical networks (as in [12, 25] or see below) apply provided that

in the definition of random walk, the probability that an edge adjacent to the current

position is traversed is proportional to its conductance, that is, inversely proportional to

its resistance (length). Such a random walk has the same distribution as the sequence of

vertices visited by standard Brownian motion.

To effect the correct scaling, and to make our results work for standard Brownian

motion, we say that traversing an edge of length � takes time �2. In fact the expected time

for a standard Brownian particle to proceed from one vertex to a neighbouring vertex

is not generally the square of the length of the edge; that the ‘�2’ model for discrete

random walk permits us to extend our results to Brownian motion is a consequence of

an averaging argument to be elucidated in Section 5.1.

For example, the expected time for a random walk to proceed from one end to the other

of a path Pm+1 of length m (that is, a path consisting of m+1 vertices and m unit-length

edges) is exactly m2; this matches the time taken by standard Brownian motion to travel

from 0 to m on the non-negative X-axis, and the time for our generalized random walk

to travel from one end to the other of any linear network, regardless of the number and

placement of vertices on it. Thus it works in all senses to say that the expected edge-cover

time CE
a (Pm+1) of a path of length m from an endpoint a is m2.

Our bounds have interesting implications for Brownian motion on infinite networks as

well as certain metric spaces. Motivated by a large body of literature on diffusions on

fractals (see [21] or [17] and references therein), Georgakopoulos and Kolesko [18] have

constructed a Brownian motion on a large class of metric spaces called graph-like spaces,

which were introduced in [26] and can have a fractal structure [17]. Whenever such a

space has finite ‘length’, that is, one-dimensional Hausdorff measure, our results imply
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that this Brownian motion will cover the whole space in finite expected time bounded by

that length, thus almost surely in finite time. See Section 5.2 for an example and more

details.

2. Definitions

2.1. Random walk

We will denote by N = 〈G, �〉 a network with underlying multigraph G and edge lengths

� : E(G)→ R
+, also interpreted as resistances. An arc of N is an oriented edge; in our

context, a loop comprises two arcs. A random walk on N begins at some vertex r, and

when at vertex x, traverses the arc (x, y) to y with probability

1/�(x, y)∑
z∼x 1/�(x, z)

. (2.1)

Our random walks take place in continuous time. The time it takes our random walker

to perform a step, i.e., to move from a vertex x to one of its neighbours, depends on the

lengths of the edges incident with x. There are various ways to define this dependence;

in this paper we will consider two natural models for this. Our main results will apply to

both models with identical proofs, except that it takes a different argument to prove (3.1).

The Brownian model. Brownian motion on a line extends naturally to Brownian motion

on a network (see, e.g., [4, 3, 14, 27]); a short time after being at a vertex, a Brownian

particle is found with equal likelihood on any incident edge (with the understanding that

an incident loop counts for this purpose as two incident edges). The edges incident to a

vertex constitute a ‘Walsh spider’ (see, e.g., [29, 3]) with equiprobable legs, and it is easily

verified that in such a setting the probability of traversing a particular incident edge (or

oriented loop) first is proportional to the reciprocal of the length of that edge.

In our model, we care only about where the particle is after an edge-traversal, and how

long it took to get there. The latter should thus be the time taken by a Brownian particle

to traverse a given edge incident to its starting vertex, given that it traversed that edge

first; this time is a random variable whose distribution and expectation (the latter to be

computed later) depend not only on the length of the specified edge, but on the lengths

of the other incident edges as well.

In the case of simple random walk, i.e., when all edges have length 1, the expected time

for this random walk to take a step is 1.

The �2 model. In this model, the time it takes for the random walk to take a step is less

random: traversing an edge of length � always takes time �2. Thus time is governed by

(2.1) alone. The �2 model and the Brownian model differ only in timing; probabilities of

walks are identical, as in both cases the next edge to be traversed is chosen according to

the distribution in (2.1) for incident edges. If all edges of the network are of the same

length, then in expectation, timing is identical as well. Readers interested only in simple

random walk will lose nothing by assuming throughout that all edges are of length 1.

The expected time to cover all edges (respectively, arcs) of N by a random walk (in

either model) will be denoted by CE
r (N) (resp., CA

r (N)); to cover all edges or arcs and

https://doi.org/10.1017/S096354831400008X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831400008X


New Bounds for Edge-Cover by Random Walk 575

return, by CRE
r (N) or CRA

r (N). Maximizing over r gives CE(N), CA(N), CRE(N), and

CRA(N).

The effective resistance Rxy between vertices x and y is defined in electrical terms

as the reciprocal of the amount of current that flows from x to y in N when a unit

voltage difference is applied to them, assuming that each edge offers resistance equal to its

length. See [12] or [22] for the basic definitions concerning electrical networks. Effective

resistances sum in series: if all paths from x to y go through z, then Rxy = Rxz + Rzy .

The reciprocals of effective resistances, i.e., effective conductances, sum in parallel: if A

and B are otherwise disjoint networks containing x and y, then in the union of the two

networks,

1

Rxy
=

1

Rxy
A

+
1

Rxy
B

.

3. Commute times

The commute time Tx↔y from vertex x to y in N is the (random) time it takes for a

random walk to travel from x to y and back to x. The expected commute time ETx↔y

between two vertices x, y of a network has an elegant expression proved in [9], which is

well known in the case of unit edge lengths:

ETx↔y = 2mRxy, (3.1)

where m :=
∑

e∈E(G) �(e) is the total length of the network and Rxy the effective resistance

as defined above.

In fact a more general identity is proved in [9, Theorem 2.2]: suppose each traversal

of an arc �e comes with a cost f(�e), where f is a possibly asymmetric cost function, and

transition probabilities are still given by (2.1). Then the expected cost of an x–y commute

is FRxy , where F is the sum of f(�e)/�(e) over all arcs �e. Substituting �(e)2 for f(�e) gives

the familiar 2mRxy for commute time in the �2 model, with m now understood as the

total length of the network.

That the same formula applies to the Brownian model follows by approximating edge

lengths with rational numbers, then subdividing so that every edge has the same length;

this has no effect on commute time in the Brownian model but brings traversal times in

line with the �2 model without changing the formula.

In the rest of this section we refine (3.1) by differentiating between various commute

tours according to their behaviour with respect to subnetworks. We will need this

refinement in order to prove our main results in the next section.

Suppose that N is the union of two subnetworks A,B such that A ∩ B = {x, y} (as in

Figure 1).

For example, A could be an x–y edge and B could be the rest of N; this is in fact the

case that is needed later. We define the following events for random walks on N starting

at x:

(i) an A-commute from x to y is a closed walk starting at x and containing either an

x–y subwalk via A or a y–x subwalk via A,
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x

A

B

y

Figure 1. Networks A and B meeting only at vertices x and y.

(ii) an
−→
A -commute from x to y is a closed walk starting at x and containing an x–

y subwalk via A,

(iii) an
←−
A -commute from x to y is a closed walk starting at x and containing a y–x subwalk

via A,

(iv) an
←→
A -commute from x to y is a closed walk starting at x and containing both an

x–y subwalk via A and a y–x subwalk via A.

Define

T
xy
A , T

xy
A→, T

xy
A←, T

xy
A↔

to be the time for random walk on N starting at x to perform an A-commute, an
−→
A -commute, an

←−
A -commute, and an

←→
A -commute from x to y, respectively. Let

ET
xy
A , ET

xy
A→, ET

xy
A←, ET

xy
A↔

denote the corresponding expected times.

Lemma 3.1. For every network N = (G, �) and any two subnetworks A,B having precisely

two vertices x, y in common,

(i) ET
xy
A = 2mRA

RA + RB

2RA + RB

,

(ii) ET
xy
A→ = 2mRA

2RA + RB

2RA + RB

= 2mRA = ET
xy
A←,

(iii) ET
xy
A↔ = 2mRA

3RA + RB

2RA + RB

,

where

m :=
∑

e∈E(G)

�(e)
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is the total edge length, and RX is the effective resistance between x and y in the network

X.

Remark. Notice that the three expressions differ only in the coefficient of RA in the

numerator.

Proof. In all cases, let the particle start at x and walk on N ‘forever’, and consider

the times when the particle completes a commute from x to y. We are interested in the

expectation of the time T when the first A-commute,
−→
A -commute, or

←→
A -commute is

completed according which of the cases (i)–(iii) we are considering.

Note that any A-commute,
−→
A -commute, or

←→
A -commute from x to y can be decomposed

into a sequence of disjoint commutes. Thus we can define a random variable Y to be

the number of x–y commutes until the first A-commute,
−→
A -commute, or

←→
A -commute

from x to y is completed, according to which of the cases (i)–(iii) we are considering. Let

Xi, i = 1, 2, . . . be the duration of the ith x–y commute. Then our stopping time T satisfies

T =
∑

1�i�Y

Xi.

Note that the expectation of each Xi is ETx↔y = 2mRxy by (3.1). By Wald’s identity

[28] the expectation of T equals the expectation of Y times the expectation of Xi, and so

we have

ET = 2mRxy
EY . (3.2)

Thus it only remains to determine EY in each of the cases (i)–(iii).

In order to compute EY it is useful to first calculate the probability pA that the first

visit to y of a random walk starting at x will be via A. For this it is convenient to use

the electrical network technique. Disconnect A and B at their common vertex y to obtain

a network consisting of A,B connected ‘in series’ at x. Denote by yA the vertex of A

corresponding to y, and by CA = 1/RA the effective conductance between x and y in A;

similarly for B. From [12] we have the probability that a random walk started at x hits

yA before yB is CA/(CA + CB), and thus

pA =
CA

CA + CB
=

Rxy

RA

.

By the same argument, a random walk from y to x will go via A with the same

probability pA. We can now determine EY in each of the three cases. For case (ii), note

that a commute from x to y is an
−→
A -commute if the forward trip is via A, which occurs

with probability pA. Thus we have

EY =: EYii = 1/pA =
RA

Rxy
,

since the expected number of Bernoulli trials until the first success is the reciprocal of

the success probability of one trial. Plugging this into (3.2) yields ET = ET
xy
A→ = 2mRA

as claimed. By similar arguments this expression also equals ET
xy
A←.
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For case (i), note that a commute from x to y fails to be an A-commute if and only

if both trips fail to be via A. Since the two trips are independent, the probability that a

random x–y commute is an A-commute is 1− (1− pA)2 = pA(2− pA). By an argument

similar to that above, we obtain

EY =: EYi =
1

pA(2− pA)
,

and so

ET =: ET
xy
A = 2mRxy RA

Rxy

1

2− pA
= 2mRA

1

2− pA

= 2mRA

1

2− RB/(RA + RB)
= 2mRA

RA + RB

2RA + RB

.

Finally, to determine EY in case (iii) we argue as follows. To begin with, we have to

make an expected Yi tries until we go via A in at least one of the trips of some x–y

commute, i.e., until we achieve our first A-commute. Then, unless our first A-commute

was an
←→
A -commute, we will have to make another Yii tries in expectation to go via A in

the other direction. By elementary calculations, an A-commute fails to be an
←→
A -commute

with probability

q =
2(1− pA)

(2− pA)
= 2

RA

2RA + RB

.

Summing up, we have EY =: EYiii = EYi + qEYii. Using our earlier calculations and (3.2),

this yields

ET =: ET
xy
A↔ = 2mRA

(
RA + RB

2RA + RB

+ 2
RA

2RA + RB

)
= 2mRA

3RA + RB

2RA + RB

.

4. Main results

Recall that, for a random walk on a network N starting at a vertex x, the edge cover-

and-return time CRE
x is the expectation of the least time such that each edge of N has

been traversed and the particle is back at x. Similarly, if N is a digraph, we define CRA
x ,

called the arc cover-and-return time, to be the expectation of the least time when each arc

of N has been traversed and the particle is back at x. Here, the directions of the edges

do not affect the behaviour of the random walk; the particle is allowed to traverse arcs

backwards and its transition probabilities are always given by (2.1).

If N is undirected, we let CRA
x denote the expectation of the least time when each edge

of N (loops included) has been traversed in both directions and the particle is back at x.

Theorem 4.1. Let N = (G, �) be an undirected network and let

m :=
∑

e∈E(G)

�(e).

Then
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(i) CRE(N) � 2m2 and

(ii) CRA(N) � 3m2.

Moreover, if
−→
N is the result of orienting the edges of N in any way, then

(iii) CRA(
−→
N ) � 2m2.

Proof. Our proof follows the lines of the ‘spanning tree argument’ used in [1] for the

vertex cover time, the main difference being that we apply Lemma 3.1 instead of (3.1).

Let σ be a closed walk in G starting at an arbitrary fixed root r and traversing each

edge of G precisely once in each direction. Such a walk always exists: if G is a tree then

a depth-first search will do, and if not then one can consider a spanning tree T of G,

construct such a walk on T , and then extend it to capture the chords.

We are going to use σ in order to define epochs for the random walk in N starting at

x, and then apply Lemma 3.1 to bound the time time spent between pairs of such epochs.

These epochs will differ depending on which of the two cases we are considering.

(i), (iii) We prove the stronger result that

CRA
r (
−→
N ) � 2m2.

Let ei, i = 1, 2, . . . , 2|E(G)|, be the ith edge traversed by σ, with end-vertices xi, yi appearing

in σ in that order. For i = 1, 2, . . . , 2|E(G)| define the ith epoch τi as follows. If ei is directed

from xi to yi, then τi is the first time after τi−1 when the random walk is at yi and has

gone there from xi using the edge ei in that step, where we set τ0 = 0. If ei is directed the

other way, then we just let τi be the first time after τi−1 when the random walk is at yi.

Note that at time τ2|E(G)| our random walk is back to r and has performed an arc

cover-and-return tour. (In fact, it has even traversed all arcs in a prescribed order dictated

by σ.) Thus CRE
r (
−→
N ) is at most the expectation of τ2|E(G)|. Now the latter can be bounded

using Lemma 3.1(ii) as follows. For every edge e = xy of G, there are precisely two time

intervals bounded by the above epochs corresponding to e. If j, k are the two indices

for which ej = ek = e, then these are the time intervals I1
e := [τj−1, τj] and I2

e := [τk−1, τk].

Note that, by the definition of τi, the motion of the random walker in the union of these

two intervals is in fact an −→e -commute or an ←−e -commute (as defined in Section 3) from

x to y, according to whether e is directed from x to y or the other way round. Thus,

applying Lemma 3.1(ii) with A = {x, y; e} and B = G− {e} yields that the expected value

Ee of |I1
e |+ |I2

e | is 2m�(e). Since the time interval [0, τ2|E(G)|] is the union of all such pairs

of intervals, one pair for each e ∈ E(G), we have

Eτ2|E(G)| =
∑

e∈E(G)

Ee =
∑

e∈E(G)

2m�(e) = 2m2.

This yields CRA
r (
−→
N ) � 2m2, and thus also CRE

r (N) � 2m2, as claimed.

(ii) To bound CRA
r (N), we follow the same arguments as before, except that we define the

epochs slightly differently: the edges of G are not directed now, and we always let τi be

the first time after τi−1 when our random walk is at yi and has gone there from xi using

the edge ei in that step. We define the time intervals I1
e and I2

e as above, but this time
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we note that the motion of the random walker in the union of these two intervals is an
←→e -commute. Applying Lemma 3.1(iii) with A = {x, y; e} and B = G− {e}, we obtain

Ee � 2m�(e)
3�(e) + RB

2�(e) + RB

.

This expression attains its maximum value when RB = 0, and so we obtain

Ee � 2m�(e)
3�(e)

2�(e)
= 3m�(e).

Adding up all Ee, e ∈ E(G) as above we conclude that CRA
r (N) � 3m2, as claimed.

The bounds of Theorem 4.1 are tight in the following situations. For case (i) and thus

also (iii), we have already noted that a path of length m takes time 2m2 to cover all edges

and return. For case (ii), a network consisting of a single vertex and a loop (of any length

m) takes one step to cover that loop in one direction, then on average two more to catch

the other direction, so for this network CRA = 3m2.

5. Application to Brownian motion and infinite networks

5.1. Finite networks

We begin this section by showing directly that (expected) edge-cover-and-return time –

and indeed any kind of return time – is the same in the Brownian model of random walk

as it is in the �2 model as defined in Section 2. Fix a network N and suppose that vertex

x of N has incident edges e1, . . . , ek of lengths �1, . . . , �k respectively. (As usual loops must

be represented twice in this list, once in each direction.) The mean time taken by a walk

in the �2 model to traverse one of these edges, starting from x, is easily calculated using

(2.1):

k∑
i=1

1

�i

1

Cx

�2
i =

1

Cx

k∑
i=1

�i,

where

Cx :=

k∑
j=1

(1/�j).

The same is true in the Brownian model, because we may identify the endpoints of the

edges, calling the unified vertex y, and compute the commute time between x and y

using the formula from Section 3, which holds in both models. By symmetry, the desired

quantity is half the commute time.

Since the expected time taken by a cover-and-return tour in either model is the sum

over the vertices of N of the expected time spent exiting those vertices, this quantity is

the same for both models. Note, however, that this does not mean that the expected time

taken in the Brownian model for a particular cover-and-return tour is the sum of the

squares of the lengths of its edges, and indeed that is not generally the case.
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To compute the latter we need to know what the expected edge-traversal times are in

the Brownian model. This is not needed to apply our bounds, but the computation is easy

and as far as we know, has not appeared elsewhere. We make use of a couple of simple

(and known, but proved here as well) facts about Brownian motion.

Lemma 5.1. Consider standard Brownian motion on the positive real half-axis, and let tb
be the time of the first visit to � ∈ R

+, and ta the time of the last visit to 0 before tb. Then

the expected value T� of tb − ta is �2/3.

Proof. From scaling properties of Brownian motion (see, e.g., [24]) we know that T�

must be a multiple of �2, say α�2. Then T�/2 is α�2/4. Consider the first time tc that the

particle reaches the point �/2. From there, it takes expected time �2/4 to reach either 0

or � for the first time again, reaching each of them first with equal probability 1/2. Now

conditioning on the event that � was reached before 0 after tc, we expect tb − ta to be

T�/2 + �2/4, while if 0 was reached first then the experiment is effectively restarted, and

we expect tb − ta to be its overall expectation T�. Combining, we get

T� =
T�/2 + �2/4

2
+

T�

2
.

Plugging in the above formulas for T� and T�/2 we can now solve for α, and we get

α = 1/3.

Lemma 5.2. Suppose a Brownian particle begins at vertex x in a network N and proceeds

until it traverses one of the incident edges e1, . . . , ek , and let T be the (random) time spent

before the particle departs x for the last time. Then T is independent of the index of the

edge traversed.

Proof. Since the past is irrelevant to the particle, there is a fixed distribution σ on

{1, 2, . . . , k} for which the edge is traversed after the particle departs x for the last time

(namely, the distribution whose probabilities are proportional to the reciprocals of the

edge lengths). Thus, the index of the traversed edge is independent of T and, necessarily,

vice versa.

We are now ready to derive our formula. Lemma 5.2 implies that in particular T is

independent of which edge is traversed. Combining with Lemma 5.1, the expected time

taken by the particle to traverse an edge from x, given that it traversed edge ei first, is

ET + �2
i /3. It follows that the expected time to traverse some edge from x is

k∑
i=1

(
ET + �2

i /3
) 1

�iCx

,

which we know must be equal to

1

Cx

k∑
i=1

�i.
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Solving gives

ET =
2

3

1

Cx

k∑
i=1

�i,

and we have proved the following.

Theorem 5.3. Suppose a standard Brownian particle on a network N begins at vertex x

with incident edges e1, . . . , ek of lengths �1, . . . , �k respectively. Then the expected time taken

by the particle to traverse edge ei, given that it traversed ei first, is

1

3
�2
i +

2

3

1

Cx

k∑
j=1

�j .

A simple example of an edge-cover-and-return tour with different expected times for the

two models takes place on the network N consisting of two vertices x and y, connected

by an edge e of length 1 and an edge f of length 2. Then the cover tour from x consisting

of e then f has expected time 5/3 + 8/3 = 13/3 in the Brownian model, but constant time

12 + 22 = 5 in the �2 model. The expected time for an edge-cover-and-return tour on N

is 7.7 in either model, although when conditioned on (say) having started with edge e, the

results are quite different.

5.2. Infinite networks and metric spaces of finite total length

Our results are used in [18] to imply a finite cover time for Brownian motion on infinite

networks as well as more general metric spaces.

As an illustrative example, consider the infinite binary tree T , with edge lengths 4−k at

level k (the edges incident to the root counting as level 1). To this network of total length

1 it is natural to append a boundary ∂T : considered as a metric space, T has a metric

completion |T | and ∂T is the set of completion points. An equivalent way to define ∂T

is as the set of infinite paths starting at the root of T , which admits a natural bijection to

the set of infinite binary sequences. Note that ∂T is homeomorphic to the Cantor set.

It is possible to prove that starting at the root of T , Brownian motion or random walk

in the �2 model will almost surely reach ‘infinity’, i.e., ∂T , after finite time. Georgakopoulos

and Kolesko [18] show that it is possible to let the particle continue its random motion

afterwards: they construct a random process on |T | whose sample paths are continuous

with respect to the topology of |T | and behave like standard Brownian motion in the

neighbourhood of each vertex of T . This construction was motivated by the results of

[15] and an attempt to extend the theory of [12], relating electrical networks and random

processes, to the infinite case.

Applied in this context, our results have a somewhat surprising implication: Brownian

motion on |T | will cover all edges of T – and all of the continuum-many boundary points

∂T – in expected time at most 2, thus almost surely in finite time. (We have proved our

results here for finite networks only, and so they cannot be directly applied to infinite

ones. However, the Brownian motion of [18] is constructed as a limit of the Brownian
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motions on an increasing sequence of finite subgraphs of T , and as our results apply to

each member of this sequence, they can be extended to the limit. See [18] for details.)

In fact, the Brownian motion of [18] is defined not only for trees, but also for arbitrary

networks of finite total length. Even more generally, it is defined for a large class of metric

spaces called graph-like spaces, which were introduced in [26]. Whenever such a space

has finite ‘length’, that is, one-dimensional Hausdorff measure, our results can be used to

imply a (tight) bound on expected cover time.
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