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Flow and solute uptake in a twisting tube
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We investigate flow in a tube driven by axial and radial wall oscillations that are
periodic in time. Furthermore, the walls undergo periodic circumferential oscillations,
the amplitude of which increases with axial distance along the tube; this wall motion
results in a new mechanism for the generation of axial flows within the tube. The axial
steady-streaming flows that arise as a result of circumferential oscillations are opposed
to those due to the axial and radial pulsations, and are potentially as significant. We
then consider the uptake of a passive solute through the walls of such a tube into
an adjacent medium in which the solute diffuses and is consumed at a constant rate.
The tube ends are open to well-mixed fluid containing the solute. The effect of the
streaming flows on the solute flux into the tube is determined. The solute disperses
along the tube due to the interaction between advection and transverse diffusion, and
the time-mean solute distribution throughout the tube is determined for a wide range
of parameters.

1. Introduction
We consider the flow of a homogeneous incompressible Newtonian fluid within an

axisymmetric tube whose wall is subject to radial and axial oscillations. In addition,
the wall is subject to circumferential oscillations, the amplitude of which increases with
axial distance along the tube. We focus attention on the steady-streaming flow that is
induced by such wall motion. While the effect of radial and axial oscillations on the
fluid flow has been studied (Secomb 1978; Waters 2004), the role of circumferential
oscillations whose amplitude increases with axial distance along the tube, or twist,
has not been considered. The circumferential wall motion leads to the generation of
a circumferential fluid velocity which depends on the axial coordinate. To maintain
this motion a fluid pressure is generated which depends on the axial coordinate, and
the resulting axial pressure gradient thus drives flow along the vessel; this represents
a new mechanism for the generation of axial flows within the tube. We show that
the circumferential wall oscillations are potentially as significant as the radial and
axial pulsations for the internal tube flow. This problem belongs to a broader class
of steady-streaming problems, see for example Riley (1991), Riley & Wybrow (1995),
Riley (2001) and references therein.

One example of fluid flow within tubes whose walls are subject to radial, axial and
circumferential oscillations is coronary artery flow. The muscle fibres of the heart are
so arranged as to result in a wringing type of movement that efficiently squeezes blood
from the heart with each cardiac beat. The coronary arteries supply the heart muscle
with nutrients and oxygen and remove metabolites and waste products. Many of these
vessels penetrate the heart muscle itself and thus their overall geometry, represented
by the vessel diameter and length, changes over time with each beat. Furthermore,
they are themselves subject to a wringing motion with each cardiac beat. To date,
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the effect of this wringing motion on coronary artery blood flow and nutrient and
metabolite transport has not been considered. Motivated by this application, we will
also determine the influence of fluid flow on the delivery of a passive solute through
the walls of the tube into a surrounding medium in which the solute diffuses and is
consumed at a constant rate. We recognize that physiologically coronary artery flows
are more complex than the flows considered here; as well as breaking axisymmetry,
aspects such as the time-dependent driving axial pressure gradient and the time-
dependent curvature of the artery should also be considered (Lynch, Waters & Pedley
1996; Waters & Pedley 1999; van Meerveld & Waters 2001). However, for simplicity,
we restrict attention to the simplified model here to illustrate that circumferential wall
oscillations can generate axial flows along the tube, hence motivating the inclusion of
such effects in subsequent studies of arterial blood flow.

The fluid motion is driven entirely by the wall motion and is governed by the
Navier–Stokes and continuity equations together with the no-slip boundary condition
at the tube walls. The wall oscillations are sinusoidal in time, with dimensionless
frequency parameter, α, and amplitude, ε. The phases of the axial and circumferential
wall motions are assumed to differ from those of the radial motion by ψ and φ

respectively. We consider two flow regimes corresponding to asymptotically small
frequency (α � 1, ε = O(1)) and asymptotically small amplitude (ε � 1, α =O(1)). In
coronary arteries, α ≈ 1 (Waters & Pedley 1999) so we consider the solute transport
problem for the latter case. The solute transport is modelled by an advection–diffusion
equation in the tube and a diffusion–consumption equation in the surrounding
medium; these equations are coupled via the boundary conditions at the permeable
tube walls. By considering a parameter expansion in powers of ε for the dependent
variables we are able to determine the time-mean solute distribution. We consider
solutes for which the molecular diffusivity is small, so that longitudinal diffusion
is negligible and the dominant spreading mechanism for the solute in the tube is
the interaction between advection and transverse diffusion (shear dispersion). The
analysis will be restricted to the transport of solutes for which the Schmidt number,
the ratio of kinematic viscosity to molecular diffusivity, is large, e.g. the Schmidt
number for oxygen in blood is estimated to be O(103) (Waters 2001).

When a passive solute is injected into fluid flowing along a tube or channel,
it spreads out along the tube in the direction of the flow owing to longitudinal
molecular diffusion and shear dispersion. The dispersion of a bolus of diffusing solute
in a fluid flowing along a long rigid cylindrical impermeable tube was first studied
by Taylor (1953) and Aris (1956). Taylor showed that the longitudinal spreading of
the solute is enhanced by the non-uniformity of the velocity profile and limited by
lateral mixing. A wide variety of dispersion problems have subsequently been studied;
see, for example, Secomb (1978), Hydon & Pedley (1993), Waters (2001, 2004) and
references therein. Here we show that the flow induced by the circumferential wall
oscillations is potentially as significant as the radial and axial pulsations for solute
dispersion and solute delivery to the adjacent medium.

In § 2 the problem is formulated mathematically and the governing equations for
the fluid flow and solute concentration are given in § § 2.1 and 2.2 respectively. In
§ 3.1 we give the similarity solution for fluid flow along the tube and in § 3.2 we solve
the solute concentration equations subject to the appropriate boundary conditions.
Finally in § 4 the implications of these results are discussed.

2. Formulation
We consider an axisymmetric tube surrounded by a radially infinite homogeneous

medium; see figure 1. A cylindrical coordinate system (r∗, Φ, z∗) is chosen with
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2b*

a*

z*
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Figure 1. Definition sketch. We consider a long thin tube corresponding to a∗ � b∗.

corresponding coordinate directions (r̂ , Φ̂ , ẑ). Throughout this paper, asterisks denote
dimensional quantities. The fluid motion is driven entirely by the motion of the tube
wall. The tube length, 2b∗(t∗), varies with time, t∗, and the tube walls move in the
radial direction in a prescribed way, so that r∗ = a∗(t∗) at the tube–medium interface,
where a∗ is the tube radius. The variation of tube radius and length with time is
assumed to be oscillatory (Waters 2001, 2004) so that

a∗ = a∗
0a, b∗ =b∗

0b, where a(t∗)=1+εA sinω∗t∗, b(t∗)=1+εB sin(ω∗t∗ +ψ).

(2.1)

The time-mean radius and length are a∗
0 , b∗

0 respectively, the amplitudes of the radial
and axial oscillations are εa∗

0A and εb∗
0B respectively, ω∗ is the angular frequency of

oscillations and ψ is the phase difference between the two motions. The circumferential
wall motion is also assumed to be oscillatory and, in addition, linearly increasing with
the axial coordinate, z∗. Thus we impose that the circumferential tube wall velocity is
(εV ∗

wz∗/b∗) cos(ω∗t∗ + φ), where εV ∗
wz∗/b∗ is the amplitude of the motion and φ is the

difference in phase between the circumferential and radial oscillations.
The tube contains an incompressible homogeneous viscous Newtonian fluid of

kinematic viscosity, ν∗, and density, ρ∗, with velocity components, u∗ = (u∗, v∗, w∗),
and pressure, p∗. The open ends of the tube are exposed to a well-mixed fluid
containing a solute at concentration C∗

0 , and the solute concentrations in the tube and
the surrounding medium are C∗

0C and C∗
0θ respectively. The solute diffusivity, D∗,

is assumed to take the same constant value in both the fluid and the medium. The
medium consumes solute at a constant rate, Q∗. The interfacial wall is impermeable
to fluid but allows the passage of solute with a permeability coefficient Π∗.

2.1. Fluid flow

The fluid flow is governed by the continuity and Navier–Stokes equations. It is
convenient to choose a frame of reference in which the walls are fixed, and so
following Secomb (1978) we non-dimensionalize as follows:

r∗ = a∗r, z∗ = b∗z, t∗ = t/ω∗,

u∗ = ω∗a∗
0u, (v∗, w∗) = ω∗b∗

0(v, w), p∗ =
ν∗ρ∗ω∗b∗2

0

a∗2
0

p.

⎫⎬⎭ (2.2)
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Since we are considering a long thin tube with aspect ratio δ = a∗
0/b

∗
0 � 1, the governing

equations may be simplified by making the long-wavelength approximation. We there-
fore neglect terms of O(δ2) in the governing equations. Seeking axisymmetric solutions
u = u(r , z, t), p =p(r, z, t), the simplified dimensionless governing equations are:

continuity, radial momentum

1

r

∂

∂r
(ru) +

a

b

∂w

∂z
= 0,

v2

r
=

1

α2

∂p

∂r
, (2.3a)

circumferential momentum

∂v

∂t
+

(
u

a
− ȧ

a
r

)
∂v

∂r
+

(
w

b
− ḃ

b
z

)
∂v

∂z
+

uv

ar
=

1

a2α2

[
1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2

]
, (2.3b)

axial momentum

∂w

∂t
+

(
u

a
− ȧ

a
r

)
∂w

∂r
+

(
w

b
− ḃ

b
z

)
∂w

∂z
= − 1

α2b

∂p

∂z
+

1

α2a2r

∂

∂r

(
r
∂w

∂r

)
, (2.3c)

where dots denote derivatives with respect to dimensionless time. The corresponding
boundary conditions are

u = ȧ, v =
εβz

α2
cos(t + φ), w = zḃ at r = 1, (2.4a)

u = 0, v = 0, w = bounded at r = 0. (2.4b)

In addition to the dimensionless parameters ε, A, B, ψ and φ, the flow is parameter-
ized by two further dimensionless parameters: β = V ∗

wa∗2
0 /ν∗b∗

0, which characterizes
the amplitude of the circumferential oscillations, and the Womersley parameter (or
dimensionless frequency parameter), α = a∗

0(ω
∗/ν∗)1/2, where α2 is the ratio of the

timescale for viscous diffusion of momentum to the period of oscillation.

2.2. Solute concentration

The dimensionless equations for the solute concentrations in the tube, C, and in the
surrounding medium, θ , are respectively

∂C

∂t
+

(
u

a
− ȧ

a
r

)
∂C

∂r
+

(
w

b
− ḃ

b
z

)
∂C

∂z
=

1

σα2

1

a2r

∂

∂r

(
r
∂C

∂r

)
, (2.5)

∂θ

∂t
− ȧ

a
r
∂θ

∂r
− ḃ

b
z
∂θ

∂z
=

1

σα2

[
1

a2r

∂

∂r

(
r
∂θ

∂r

)
− λθ

]
, (2.6)

where σ = ν∗/D∗ is the Schmidt number, λ= a∗2
0 Q∗/D∗ is the ratio of the diffusion

and consumption timescales in the medium, and we again neglect terms of O(δ2) so
that the effects of longitudinal diffusion are neglected.

The boundary conditions are: (a) continuity of solute flux at the tube–medium
interface (which allows a discontinuity in the solute concentration); (b) zero flux at
the tube centreline; and (c) the solute concentration in the medium decays away from
the tube walls in the radial direction. These are expressed as

k

a

∂C

∂r
= −(C − θ) =

k

a

∂θ

∂r
at r = 1,

∂C

∂r
= 0 at r = 0, θ → 0 as r → ∞, (2.7)

where k =D∗/(a∗
0Π

∗) is the ratio of the timescales of uptake to diffusion. At z =1,
we assume that C = 1 and we assume the concentration in the medium adjusts
accordingly (see Waters (2001) for a full discussion of this boundary condition). At
z = 0 we assume that the concentration profile is symmetric so that ∂C/∂z = ∂θ/∂z = 0
there.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

11
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006001194


Flow and solute uptake in a twisting tube 177

r

0

 0.2

 0.4

 0.6

 0.8

1.0

–10 –5 0 5  10  15  20

1
5

10
15
20

Axial steady streaming

Figure 2. Axial steady streaming as a function of radius r for β̂ = 1, 5, . . . , 20. The arrow

indicates the direction of increasing β̂ . The tube wall is at r = 1 and the centreline at r = 0.
A = B = 1, φ =ψ =0.

3. Solution
3.1. Fluid flow

Motivated by the form of the boundary conditions (2.4) and inspection of the
governing equations (2.3), we seek a similarity solution of the form

(u, v, w, p) = (aU, zV, zbW, P0 + z2P ), (3.1)

where the functions U, V, W, P are independent of z and P0 is constant. Note that
this similarity solution will not be valid at a dimensionless distance of O(δ) from the
tube ends. We now consider two flow regimes corresponding to α � 1, ε = O(1) and
α = O(1), ε � 1 respectively.

3.1.1. Solution for small α

We start by considering the amplitude of the wall oscillations to be O(1) and the
Womersley parameter to be small. We expand the dependent variables in powers of
α as U = U0 + α2U1 + · · · , with similar expansions for V , W and P . In order that
the circumferential motions remain O(1) as α2 → 0 we assume that β =α2β̂ . We find
that

U = −a2P0

2b2

(
r3

4
− r

2

)
− ḃr

2b
+ O(α2), V = εβ̂r cos(t + φ) + O(α2), (3.2a)

W =
a2P0

2b2
(r2 − 1) +

ḃ

b
+ α2

[
a2

352

(
a2P0

b2

)2

(4r6 − 27r4 + 30r2 − 7)

+
1

48

(
a2ε2β̂2

b2
cos2(t + φ) +

a2

b

d

dt

(
a2P0

2b

)
+

a2P0ḃ

2b3

)
(3r2 − 1)(r2 − 1)

]
+ O(α4),

(3.2b)

where P0 is the leading-order pressure given by

P0 =
8b2

a2

(
ȧ

a
+

ḃ

2b

)
. (3.3)

The axial steady streaming is determined by integrating the O(α2) terms in equa-
tion (3.2b) over one period. In figure 2, the axial steady streaming is plotted as a
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function of r for several values of the twist parameter, β̂ . We remark that, for
simplicity, we have set the phase differences φ, ψ to zero. As β̂ increases, the flow
direction reverses, changing from having the properties of flow driven by radial and
axial oscillations only (i.e. flow in the direction of z =0 in the centre of the tube) to
flow driven by circumferential oscillations only (flow in the direction of increasing
z in the centre of the tube). The critical value of β̂ at which this change occurs is
between 10 and 15; however, we do not determine this value since we are interested
in demonstrating the qualitative behaviour of the flow only. We remark that the
point at which the the steady streaming passes through zero is r ≈ 1/

√
3. This may

be seen from inspection of the O(α2) terms in equation (3.2b) whose (relevant) roots
are r = 1/2(23/2 −

√
417/2)1/2 and 1/

√
3 respectively.

3.1.2. Solution for small wall displacements

The amplitude of the tube wall oscillations is assumed to be small (ε � 1) and we
consider a small-parameter expansion of the dependent variables of the form

U (r, t) = ε
[
U [11](r)eit + c.c.

]
+ ε2

[
(U [20](r) + c.c.) + (U [22](r)e2it + c.c.)

]
+ · · · , (3.4)

where c.c. denotes the complex conjugate. Similar expansions are used for the solutions
V , W , P . The functions U [ij ] represent the j th Fourier coefficient of the ith-order
term in the expansion of U . The time-independent terms of O(ε2) represent the steady
streaming resulting from the convective inertia terms. Since the steady-streaming
Reynolds number, Rs = ε2α2 is small, we carry out a uniform series expansion of
the governing equations (2.3) by considering successive orders of ε. To determine the
leading-order time-mean solute distribution, we require explicit expressions for the
leading-order solutions W [11], U [11], V [11], P [11] and the axial steady streaming, W [20],
which are found to be

W [11] =
1

4E

(
2A[I0(γ r) − I0(γ )] + B̃

[
I0(γ r) − 2

γ
I1(γ )

])
, (3.5a)

U [11] =
1

4E

(
A

[
I0(γ )r − 2

γ
I1(γ r)

]
+ B̃

[
1

γ
I1(γ )r − 1

γ
I1(γ r)

])
, (3.5b)

V [11] =
β̃I1(γ r)

2α2I1(γ )
, P [11] =

1

4E
[Aγ 2I0(γ ) + B̃γ I1(γ )], (3.5c)

W [20] =
1

16EE′

[
CC′I1(γ )(rI1(γ

′r)−I1(γ
′))−6iC′

(
AI0(γ )+

B̃
γ

I1(γ )

)
(I0(γ

′r) −I0(γ
′))

+

{
12iAC′I0(γ )I0(γ

′) −
(

24iB̃C′

γ γ ′ + 3CC′
)

I1(γ )I1(γ
′) + 4

∫ 1

0

rW(r) dr

+ (16CC′ + 24A(B̃′ − B̃))
I0(γ )I1(γ

′)

γ

}
(r2 − 1)

− iγ CC′
∫ r

1

I1(γ r)I0(γ
′r) dr + W(r)

]
, (3.5d)

where C = 2A + B̃, B̃ = Beiψ , β̃ =βeiφ , I0, I1 are modified Bessel functions of the
first kind of zeroth and first order respectively, γ =αeiπ/4, E = I0(γ )/2 − I1(γ )/γ and
primes denote complex conjugates of a variable or parameter. In equation (3.5d)

W(r) =
8EE′β2

α2I1(γ )I1(γ ′)

∫ r

1

1

τ

∫ τ

0

t

∫ t

0

I1(γ r)I1(γ
′r)

r
dr dt dτ. (3.6)
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(a) (b)
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Figure 3. Axial steady streaming W [20] + c.c. as a function of radius r for α = 1, 1.2, . . . , 2.
The arrow indicates the direction of increasing α. The tube wall is at r = 1 and the centreline
at r = 0. (a) No twist (β = 0, A = B = 1). (b) Twist only (β = 10, A = B = 0).

Note that we need not compute the steady-streaming radial and circumferential
velocities here as they are not required in the subsequent analysis.

In figure 3 the axial steady streaming W [20] + c.c. is plotted as a function of r for
several values of α. In these figures we set φ = ψ = 0. In figure 3(a), in which there
is no circumferential wall motion, the flow is in the direction of increasing z close
to the tube walls and is towards z = 0 in the centre of the tube. As α increases the
amplitude of the velocity profile increases. The opposite is true when the wall motion
only undergoes circumferential oscillations; see figure 3(b) where the flow is in the
direction of increasing z in the centre of the tube, towards z = 0 close to the tube
walls, and the amplitude of the velocity profile decreases as α increases. This is a
consequence of the boundary condition for v given in (2.4a) which indicates that as α

increases, the amplitude of the prescribed circumferential wall oscillations decreases.
When flow is driven by axial, radial and circumferential oscillations, we find that,
similarly to the α � 1 regime, a critical value of β exists at which the velocity profile
changes from having the properties of flow driven by radial and axial oscillations only
to flow driven by circumferential oscillations only; the flow profile is qualitatively
identical to that shown in figure 2.

We remark here that the steady streaming is unaffected by the presence of the cir-
cumferential phase difference, φ, since its influence is only felt through the combination
V [11]V [11]′

. The dependence of the axial steady streaming on ψ is such that as ψ

increases between 0 and π the axial flow arising as a result of radial and axial
pulsations retains the profile shape shown in figure 3(a), but the amplitude decreases.
Upon increasing ψ from π to 2π the amplitude then increases (results not shown).

3.1.3. Steady-streaming mechanism

In both parameter regimes, the mechanism for generating axial steady-streaming
flows is as follows. The amplitude of the circumferential wall oscillations is assumed
to be a linear function of the axial coordinate, z. This wall motion leads to the
generation of a circumferential fluid velocity that depends on z. To maintain this
fluid motion a fluid pressure is generated which also depends on z, and the resulting
axial pressure gradient then drives flow along the tube. We note that in both regimes
considered, the leading-order circumferential fluid velocity is an increasing function
of r (see (3.2a) and (3.5c)). Thus, the magnitude of the resulting steady axial pressure
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gradient will be largest near the tube wall. Furthermore, the pressure gradient will be
positive. Thus steady axial flow will be driven towards z = 0 near the tube walls, and
conservation of mass then demands that flow will be in the direction of increasing z

in the centre of the tube. For the case of flows driven by radial and axial oscillations,
we note that the resulting steady axial pressure gradient will be largest at the centre
of the tube (where, for example, the leading-order axial fluid velocity relative to the
axial wall velocity is largest) so that steady axial flows will be driven towards z = 0
in the centre of the tube, with conservation of mass demanding that flow will be in
the direction of increasing z near the tube walls.

3.2. Solute concentration

In the coronary arteries, α ≈ 1 (§ 1). Motivated by this, we determine the influence of
the fluid flow (ε � 1, α = O(1) regime) on the solute delivery. To determine the
leading-order time-mean governing equations for the solute concentrations in the
tube and the medium we expand C and θ as follows (see Waters (2004) for further
details):

C(r, z, t) = C(r, z) + ε
[
C[11](r, z)eit + c.c.

]
+ O(ε2), (3.7a)

θ(r, z, t) = Θ(r, z) + ε
[
θ [11](r, z)eit + c.c.

]
+ O(ε2). (3.7b)

Substitution of (3.7) into equations (2.5) and (2.6) yields the following equations for
the leading-order concentrations C, Θ:

Ũ
∂C
∂r

+ zW̃
∂C
∂z

=
1

P̃r

∂

∂r

(
r
∂C
∂r

)
, (3.8a)

1

r

∂

∂r

(
r
∂Θ

∂r

)
− λΘ = 0, (3.8b)

where P̃ = α2σε2, Ũ = U [20] − i(U [11]′

r − A/2)(U [11] − rA/2) + c.c., W̃ =W [20] −
iW [11]′

r (U [11] − rA/2) + c.c. and the r subscripts denote differentiation with respect to

r . We note here that the velocities Ũ and W̃ are functions of the steady-streaming
velocities U [20] and W [20], and combinations of the leading-order velocities U [11] and
W [11]. Since the leading-order velocities do not depend on the parameter, β , in the

case of flows driven only by circumferential oscillations of the tube wall, W̃ and Ũ
are identical to W [20] and U [20] respectively. Furthermore, the terms dependent on the
leading-order velocities are small in the parameter regimes that we consider, so that
in general W̃ and Ũ are qualitatively similar to W [20] and U [20] respectively, and we
do not present separate plots.

The radial diffusion term enters the governing equation (3.8a) at this order provided
that ε � P̃ � ε−1. Equation (3.8b) has solution Θ = A(z)K0(

√
λr), where K0 is the

modified Bessel function of the second kind of order zero. The function A(z) is
dependent upon C(1, z) and is determined from the boundary condition (2.7). Follow-
ing Waters (2004), we assume that ε � P̃ � 1 and decompose C into an averaged,
r-independent part and a small fluctuation so that C(r, z) = Ĉ(z) + P̃ C(1)(r, z), where
the averaging operator is defined f̂ = 2

∫ 1

0
f r dr and Ĉ(1) ≡ 0 by definition. We note

that the term P̃ C(1) includes terms of all orders � 1 in P̃ . Cross-sectional averaging
then yields the following governing equation for Ĉ:

z2 d2Ĉ
dz2

+ 2z
dĈ
dz

− κĈ = 0, (3.9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

11
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006001194


Flow and solute uptake in a twisting tube 181

(a) (b)

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

z

T
ub

e 
co

nc
en

tr
at

io
n

1.0
1.2
1.4
1.6
1.8
2.0

0.8 0.84 0.88 0.92 0.96 1.0
0

0.2

0.4

0.6

0.8

1.0

z

0
5
10
15
20

Figure 4. Solute concentration in the tube Ĉ as a function of axial position z. In all cases
σ = 103, ε = 10−2, ∆= 0.2, ψ = φ = 0. (a) No twist (β = 0, A = B = 1). Here α = 1, 1.2, . . . , 2,
and the arrow indicates the direction of increasing α. (b) With twist (α = A = B = 1 and
β = 0, 5, . . . , 20).

where

κ =
∆

P̃ 2

1∫ 1

0

F2r dr

, F =
1

r

∫ r

0

W̃ r dr and ∆ =

√
λK1(

√
λ)

K0(
√
λ) + k

√
λK1(

√
λ)

. (3.10)

Following Waters (2001) we consider the limit in which κ 
 1. We thus expect Ĉ ≡ 0
except at small distances from the tube entrance. To determine the solute distribution
in this region, we introduce a stretched coordinate, X̂, such that 1 − z = X̂κ−1/2.

Equation (3.9) then reduces, at leading order, to ĈX̂X̂ − Ĉ = 0, the solution of which,

satisfying Ĉ(1) = 1 and Ĉ(∞) = 0 is, in original variables

Ĉ = exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−∆

P̃

1√∫ 1

0

F2r dr

(1 − z)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (3.11)

In figure 4(a) the time-mean solute concentration in a tube whose walls undergo
radial and axial oscillations only is plotted as a function of z for several values
of the frequency parameter α. The concentration of solute at a given z increases,
corresponding to an increase in the solute flux into the tube as α increases.
Furthermore, the solute penetrates further into the tube, due to the increased effects of
shear dispersion; it is clear from figure 3(a) that the amplitude of the velocity profile
increases as α increases. When the fluid flow is driven by circumferential oscillations
of the tube wall only, we see that as α increases, both the amount of solute drawn
into the tube and the degree of solute dispersion decrease (results not shown). This
corresponds to the fact that as α increases, the amplitude of the velocity profile
decreases so that the effects of shear dispersion are reduced; see figure 3(b). Finally
we consider the case where the flow is driven by radial, axial and circumferential
oscillations and vary β . The time-mean tube solute concentration in this case is
plotted in figure 4(b). As β increases from zero we first see a decrease in solute flux
and penetration. This corresponds to the initial decrease in the amplitude of the
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velocity profile as β increases from zero; see figure 2. However, as β increases further,
and the amplitude of the corresponding velocity profile increases, the solute flux and
penetration again increase, as expected.

4. Discussion
In this paper we have considered flow in an axisymmetric tube surrounded by

a homogeneous medium. Flow in the tube is driven by a combination of radial,
axial and circumferential oscillations. We have shown that these oscillations generate
steady-streaming flows which enhance the flux of solute into the open ends of the
tube, and the dispersion of solute along the tube. The solute disperses along the tube
due to the interaction between longitudinal advection and transverse diffusion.

The consideration of circumferential wall oscillations has lead to the identification
of a new mechanism by which axial flows can be generated along the tube. The
amplitude of the circumferential wall oscillations is assumed to be a linear function
of the axial coordinate, z, leading to the generation of a circumferential fluid velocity
and pressure that depends on z. The resulting axial pressure gradient then drives
flow along the tube. We note that this new mechanism for the generation of mean
axial flows along a tube will hold for the amplitude of the wall oscillations being
any arbitrary function of z; for simplicity we focused on a linear function of z here.
The flows generated by circumferential oscillations of the tube wall are potentially as
significant as those generated due to time-dependent variations in the tube volume
(due to radial and axial wall oscillations) in determining the flow and subsequent
solute distribution within the tube.
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