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Formation of sediment patterns in channel flow:
minimal unstable systems and their

temporal evolution
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The phenomenon of sediment pattern formation in a channel flow is numerically
investigated by performing simulations which resolve all the relevant length and
time scales of the problem. The numerical approach employed and the flow
configuration considered is identical to our previous study (Kidanemariam & Uhlmann
J. Fluid Mech., vol. 750, 2014, R2), the only difference being the length of the
computational domain. The latter was systematically varied in order to investigate
its influence on the initiation and evolution aspects. By successively reducing the
streamwise length, the minimum box dimension which accommodates an unstable
sediment bed is revealed, thus determining the lower threshold of the unstable modes.
For the considered parameter point, the cutoff length for pattern formation lies in the
range 75–100 times the particle diameter (3–4 times the clear fluid height). We also
simulate the flow in a very long streamwise box with a size of 48 times the clear fluid
height (featuring well over one million particles), accommodating approximately 11
initial ripple units with a wavelength in the range of 100–110 particle diameters. The
evolution of the amplitude of the patterns exhibits two regimes of growth: an initial
exponential regime, with a growth rate independent of the chosen domain size, and a
subsequent nonlinear regime which is strongly constrained by the domain length. In
the small domain cases, after the initial exponential regime, the ripples evolve steadily,
maintaining their shape and migration velocity, at a mean wavelength equal to the
length of the domain. The asymmetric ripple shape is characterized by a spectrum
which exhibits a power-law decay over the first few dominant non-dispersive modes
propagating at the mean dune migration velocity. The rate of particle transport and the
mean interface shear stress exhibited an increase with increasing ripple dimensions.
Nevertheless, the relationship between the two was observed to be approximately
described by the empirical power-law formula for sediment transport by Wong &
Parker (J. Hydraul. Engng, vol. 132, 2006, pp. 1159–1168).
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Formation of sediment patterns in channel flow 717

1. Introduction
Sediment patterns, also commonly termed as dunes, ripples or simply bedforms, can

be abundantly observed in deserts, coastal areas, natural streams or man-made canals.
These sediment features, besides being simply fascinating, have important implications
in many fields of science and engineering. For instance, bedforms greatly influence
the rate of sediment transport as well as the stability of hydraulic structures in a
given river. Thus, fundamental understanding of the mechanisms which are behind
their formation as well as predicting their characteristics is crucial. However, this
task has been very challenging due to the complex interaction between the sediment
particles and the driving turbulent flow.

Sediment patterns in general can be broadly classified as ‘aeolian’ or ‘subaqueous’,
the former being driven by wind forces while the latter, which the present study
is focused on, form under water or due to the action of a similar fluid. The
sediment-to-fluid density ratio of subaqueous patterns is much smaller than that
of the aeolian ones. As a result, although the basic formation process is the same,
there are fundamental differences regarding the relevant controlling mechanisms of
their generation in both categories (cf. Bagnold 1941; Sauermann, Kroy & Herrmann
2001; Andreotti & Claudin 2013; Duran, Claudin & Andreotti 2014).

Concerning subaqueous sediment patterns, one can further distinguish between
those that form under the action of a steady flow, such as in rivers and canals,
and those that are worked by an unsteady oscillatory flow, for instance by the
action of a sea wave in coastal regions (cf. Sleath 1976; Blondeaux 1990; Vittori &
Blondeaux 1990; Blondeaux, Foti & Vittori 2015). Henceforth we will restrict our
attention to the study of patterns occurring in steady flows. Although subaqueous
bedforms are three-dimensional objects, under certain circumstances they tend to be
statistically invariant in the cross-stream direction (Yalin 1977). Indeed, a large part
of the previous theoretical modelling and experimental measurement has focused on
two-dimensional subaqueous bedforms (Best 2005), and this is the approach we take
in the present work.

Bedforms can be characterized with respect to their spatial dimensions and their
dynamics (Julien 1998). Classically, a distinction is made between ripples, dunes
and antidunes (Engelund & Fredsoe 1982; García 2008). Ripples and dunes exhibit
some similarities, such as an asymmetric triangular-like shape with a gentle slope
on the upstream side of their crest and a steeper slope on the downstream side. The
principal distinction between ripples and dunes is the separation of length scales; the
wavelength of observed ripples is commonly believed to scale with the grain size, and
that of larger scale dunes is supposedly controlled by the flow geometry, typically
the flow depth (Yalin 1977). Experiments show that at low flow rates small-scale
undulations appear out of an initially flat sediment bed, at first having no clear-cut
shape (Coleman & Melville 1994). When increasing the flow rate, these ripples
give way to the much larger dunes, which are characterized by flow separation and
recirculation in their downstream faces, and which propagate downstream. At even
higher flow rates antidunes appear, which tend to propagate upstream. In the case of
a flow with a free surface, both dunes and antidunes dynamically interact with surface
waves (see e.g. Best 2005). Nevertheless, bedforms are equally observed in closed
conduits which possess no free surface, and thus the existence of a free surface is not
necessary for their formation (Yalin 1977; Bridge & Best 1988; Langlois & Valance
2007; Ouriemi, Aussillous & Guazzelli 2009; Cardona Florez & Franklin 2016). The
problem of bedform and free surface wave interaction is not within the scope of the
present study.
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718 A. G. Kidanemariam and M. Uhlmann

In most previous theoretical work on pattern formation, the background turbulent
flow is typically represented by a Reynolds averaged Navier–Stokes equations (RANS)
model, while the sediment-bed evolution is described by the sediment continuity
equation, i.e. the Exner equation. The hydrodynamic and morphodynamic problems
are then coupled by an algebraic expression for the particle flux as a function of the
local bed shear stress. Hydro-morphodynamic linear (or weakly nonlinear) stability
analysis is then performed in order to determine the stability of the sediment bed,
the controlling parameter of the instability as well as the initial unstable pattern
wavelength (e.g. see reviews by Seminara 2010; Charru, Andreotti & Claudin 2013).
However, there is no clear consensus among the different predictions from these
approaches, and, when compared to experimental observations, the outcome of these
models is often unsatisfactory. For instance, the prediction for the initial pattern
wavelength can be off by an order of magnitude (Raudkivi 1997; Langlois & Valance
2007; Coleman & Nikora 2009a; Ouriemi et al. 2009). This inadequacy can be
linked to, among others, the insufficient predictive capability of the adopted algebraic
expressions for the particle flux.

The subsequent bedform evolution is an even more complicated issue which
includes aspects like coarsening (bedform wavelength and amplitude growth),
asymmetry, coalescence (fusion of bedforms), three-dimensional patterning (loss
of bedform translational invariance). Even in simplified and controlled experiments
where bedforms are essentially two-dimensional (see e.g. Betat et al. 2002), the
evolution process is a result of nonlinear interaction mechanisms which are far from
our understanding. Certainly, linear stability theories are not adequate in describing
the bedform transient processes such as the evolution of the amplitude or the evolution
of bedform morphology towards the asymmetric shape (which is even observed in the
absence of flow separation). Weakly nonlinear stability theories have been proposed
(see e.g. Colombini & Stocchino 2008), but this approach is still unable to reliably
predict the observed bedforms in reference experiments (e.g. Ouriemi et al. 2009).

There exists a very limited amount of experimental studies available reporting on
the initial formation and development stages of patterns (see e.g. Coleman & Melville
1994; Betat et al. 2002; Coleman, Fedele & Garca 2003; Langlois & Valance 2007;
Ouriemi et al. 2009; Cardona Florez & Franklin 2016). Even these studies, limited
by measurement difficulties, often fall short of providing details with respect to
the very first instants of the bed instability, such as the dispersion relation of the
unstable modes. Such quantities are crucial when it comes to assessing the validity
of the various proposed theoretical models. On the other hand, although there are
a number of numerical studies available on the problem of subaqueous sedimentary
patterns, most of these studies are based on the continuum description of the sediment
bed, which again rely on the use of (semi-)empirical relationships to couple the
hydro-morphodynamic problem (see e.g. Chou & Fringer 2010; Khosronejad &
Sotiropoulos 2014). In the granular flow community, a number of studies have been
performed with the aid of a Lagrangian description of the sediment bed (based on
discrete-element models), but without coupling to a resolved turbulent background
flow (Durań, Andreotti & Claudin 2012; Schmeeckle 2014; Maurin et al. 2015).

There has been a promising gain of momentum in recent years on the number
of direct numerical simulation (DNS) studies on the problem of sediment transport
in which the detail of the flow, even at the boundaries of each individual particles,
is faithfully resolved (see e.g. Kidanemariam & Uhlmann 2014a; Kidanemariam
& Uhlmann 2014b; Vowinckel, Kempe & Fröhlich 2014; Derksen 2015). We have
recently performed novel DNS of the flow over an erodible bed of spherical sediment
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Formation of sediment patterns in channel flow 719

particles in a statistically unidirectional channel flow configuration in both the laminar
and turbulent regimes (Kidanemariam & Uhlmann 2014a). These simulations are, to
the best of our knowledge, the first to successfully simulate the evolution of a bed of
mobile sediment particles (leading to pattern formation) by means of DNS (Colombini
2014). The results from these simulations have shown that the chosen streamwise
length of the computational domain (12Hf , where Hf is the channel fluid height) was
able to accommodate a few integer multiples of the initial pattern wavelength, which
allowed us to address some of the outstanding questions on sedimentary patterns
such as the initial dominant wavelength and pattern amplitude growth (Kidanemariam
& Uhlmann 2014a). Ideally, in order to accurately capture the natural selection
mechanism of the unstable wavelength and its subsequent evolution, it is necessary
to consider a computational domain size which is much greater than the anticipated
pattern wavelength. However, the domain sizes considered by Kidanemariam &
Uhlmann (2014a) might be marginal when compared to the observed dominant
wavelengths. It was noted that the discreteness of the numerical harmonics could
influence the initial wavelength as well as the time evolution processes. In light of
this aspect, assessing the influence of the domain size on the selection and evolution
process is crucial.

Moreover, various theoretical and experimental studies have shown that there is a
lower threshold of the unstable wavelengths (see for instance Charru 2006; Franklin
& Charru 2011). Determination of this value is important, since the lower bound of
unstable modes is believed to be linked to some relevant length scale which controls
erodible bed instability (Hersen, Douady & Andreotti 2002; Claudin & Andreotti 2006;
Andreotti et al. 2011).

In the present work, we have carried out a series of simulations of the same flow
configuration as in our previous study (Kidanemariam & Uhlmann 2014a). We have
kept all the physical and numerical parameters of the simulations identical, except for
the streamwise length of the computational box. The latter was varied between 3Hf

and 48Hf , in order to determine whether at the considered parameter point there exists
a cutoff length for pattern formation. To this end, we have successively reduced the
domain size until it is smaller than an unknown threshold and cannot accommodate
an unstable bed. Moreover, in order to assess the influence of the domain size on the
selection of the initial ripple wavelength and its subsequent evolution, we have chosen
a computational domain size which is four times larger than in our previous study.
It should be noted that a very large number of spherical particles (approximately 1.1
million in total) are considered to represent the mobile bed. This simulation is the first
of its kind to break the O(106) fully resolved particle milestone. Furthermore, based
on the analysis of the DNS data, we address the relationship between the evolving
patterns, their migration velocity and the particle flow rate at the present parameter
point.

2. Numerical method

In the present work we have used the same numerical procedure as Kidanemariam
& Uhlmann (2014a), Kidanemariam & Uhlmann (2014b). The numerical treatment
of the fluid–solid system is based upon the immersed boundary technique of
Uhlmann (2005), wherein the incompressible Navier–Stokes equations are solved
with a second-order finite-difference method throughout the entire computational
domain, adding a localized force term which serves to impose the no-slip condition
at the fluid–solid interface. The particle motion is obtained via integration of the
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720 A. G. Kidanemariam and M. Uhlmann

Newton–Euler equations for rigid body motion, driven by the hydrodynamic force
(and torque) as well as gravity and the force (torque) resulting from solid–solid
contact. The collision process between the immersed particles is described through a
discrete-element model (DEM) based on the soft-sphere approach. A pair of particles
is defined as ‘being in contact’ when the smallest distance between their surfaces,
∆, becomes smaller than a force range ∆c. The resulting contact force is then the
sum of an elastic normal component, a normal damping component and a tangential
frictional component. The elastic part of the normal force component is a linear
function of the penetration length δc ≡ ∆c − ∆, with a stiffness constant kn. The
normal damping force is a linear function of the normal component of the relative
velocity between the particles at the contact point with a constant coefficient cn. The
tangential frictional force (the magnitude of which is limited by the Coulomb friction
limit with a friction coefficient µc) is a linear function of the tangential relative
velocity at the contact point, again formulated with a constant coefficient denoted
as ct. A detailed description of the collision model and extensive validation can be
found in Kidanemariam & Uhlmann (2014b).

The four parameters which describe the collision process in the framework of this
model (kn, cn, ct, µc) as well as the force range ∆c need to be prescribed for each
simulation. Note that the normal stiffness coefficient kn and the normal damping
coefficient cn can be related by introducing the dry restitution coefficient εd, defined
as the absolute value of the ratio between the normal components of the relative
velocity post-collision and pre-collision.

In the present simulations, ∆c is set equal to one grid spacing 1x. The stiffness
parameter kn has a value equivalent to approximately 17 000 times the submerged
weight of the particles, divided by the particle diameter. The chosen value ensures
that the maximum overlap δc over all contacting particle pairs is within a few percent
of ∆c. The dry coefficient of restitution is set to εd = 0.3, which together with kn

fixes the value for cn. Finally, the tangential damping coefficient ct was set equal to
cn, and a value of µc = 0.4 was imposed for the Coulomb friction coefficient. This
set of parameter values for the contact model is the same as used by Kidanemariam
& Uhlmann (2014b).

Since the characteristic collision time is typically orders of magnitude smaller
than the time step of the flow solver, the numerical integration of the equations for
the particle motion is carried out adopting a sub-stepping technique, freezing the
hydrodynamic forces acting upon the particles between successive flow-field updates
(Kidanemariam 2015).

3. Flow configuration and parameter values

We have performed a total of ten independent simulations of the development of
bedforms over a subaqueous sediment in an open channel flow configuration. As
shown in figure 1 a Cartesian coordinate system is adopted such that x, y, and z
are the streamwise, wall-normal and spanwise directions, respectively. Mean flow
and gravity are directed in the positive x and the negative y directions respectively.
The computational domain is periodic in the streamwise and spanwise directions.
A free-slip condition is imposed at the top boundary while a no-slip condition is
imposed at the bottom wall. The simulations are labelled H3, H4, H6, H7, H12 and
H48, indicating the approximate streamwise box length in terms of the mean fluid
height Hf . The mean fluid height Hf and the corresponding mean sediment-bed
thickness Hb are computed by performing streamwise and time averaging of the
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x

y

g

z

FIGURE 1. (Colour online) Schematic diagram showing the configuration of the
simulations. The computational domain is periodic along the x- and z-directions. The
no-slip and free-slip boundary conditions are imposed at the bottom (y = 0) and top
(y= Ly) respectively.

spanwise-averaged instantaneous fluid height hf and sediment-bed height hb (note that
the definition of hf and hb will be made more precise in § 4.1). In order to perform
ensemble averaging, case H4 and H12 are performed three times, each adopting
different initial conditions. Each simulation is performed independently following the
simulation start-up procedure as detailed in Kidanemariam & Uhlmann (2014a).

In all cases, the channel is driven by a horizontal mean pressure gradient which
is adjusted at each time step in order to impose a constant flow rate qf . This results
in a shearing flow of fluid height Hf over a mobile bed of height Hb (cf. sketch in
figure 1). As is shown in table 1, the bulk Reynolds number of the flow, which is
defined based on the mean height of the fluid as

Reb = ubHf

ν
, (3.1)

where ub ≡ qf /Hf is the bulk velocity and ν is the kinematic viscosity, is set at a
value such that the flow is fully turbulent. The friction Reynolds number Reτ , which
is similarly defined based on the friction velocity uτ , is a posteriori determined by
evaluating the total shear stress at the wall-normal location of the mean fluid–bed
interface y=Hb (cf. § 5.4 for details of the determination of uτ ).

In order to fully describe the flow, at least three parameters in addition to Reb need
to be imposed: the particle-to-fluid density ratio ρp/ρf , a length-scale ratio Hf /D, and
a ratio between the gravity and viscous forces which is described by the Galileo
number viz.

Ga= ((ρp/ρf − 1)|g|D3)1/2

ν
= UgD

ν
, (3.2)

where g is the gravitational acceleration. Ga can be considered as a Reynolds number
defined based on the gravitational velocity scale Ug =

√
(ρp/ρf − 1)|g|D and the

particle diameter. Note that Ug is not the actual settling velocity (Jenny, Dušek &
Bouchet 2004). The density ratio is fixed at a value of ρp/ρf = 2.5, which corresponds
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Case Reb Reτ ρp/ρf Ga D+ Hf /D Hb/D θ

H3 3011 244.8 2.5 28.37 9.62 25.44 12.96 0.12
H41 3011 273.6 2.5 28.37 10.89 25.12 13.28 0.15
H42 3011 265.4 2.5 28.37 10.55 25.15 13.25 0.14
H43 3011 263.0 2.5 28.37 10.45 25.17 13.23 0.14
H6 3011 303.0 2.5 28.37 11.90 25.47 12.93 0.18
H7 3011 309.1 2.5 28.37 12.22 25.30 13.10 0.19
H121 3011 301.3 2.5 28.37 12.01 25.08 13.32 0.18
H122 3011 301.6 2.5 28.37 12.04 25.05 13.35 0.18
H123 3011 298.6 2.5 28.37 11.91 25.07 13.33 0.18
H48 3011 293.1 2.5 28.37 11.69 25.07 13.33 0.17

TABLE 1. Physical parameters of the simulations. In all cases, the values of the bulk
Reynolds number Reb, the particle-to-fluid density ratio ρp/ρf and the Galileo number
Ga are imposed. Derived physical parameters include the friction Reynolds number Reτ ,
the Shields number θ as well as the length-scale ratios Hf /D, Hb/D and D+. Note that
three independent simulations are performed for cases H4 and H12 each for the purpose
of ensemble averaging. The values of the relevant parameters are determined over a time
interval at the end of the respective simulations (cf. table 2).

Case [Lx × Ly × Lz]/D D/1x 1x+ Np Tobs/Tb T s
obs/Tb

H3 76.8× 38.4× 76.8 10 0.96 65 359 638 483
H41,2,3 102.4× 38.4× 76.8 10 1.06 86 645 401/400/853 88/84/542
H6 153.6× 38.4× 76.8 10 1.19 127 070 918 513
H7 179.2× 38.4× 76.8 10 1.22 150 521 977 566
H121,2,3 307.2× 38.4× 76.8 10 1.20 263 412 911/807/890 283/177/262
H48 1228.8× 38.4× 76.8 10 1.17 1053 648 462 28

TABLE 2. Numerical parameters of the simulations. Li is the domain length adopted in
the ith direction. In all the cases, the spherical particles have a diameter D = 10/256
and a uniform grid spacing 1x =1y =1z = 1/256 is adopted yielding the above listed
resolutions. Np is the number of spherical particles adopted. Tobs is the total simulation
time interval staring from the instant at which the mobile particles are released, while
T s

obs corresponds to the interval (at the end of the respective simulations) during which
statistical averaging is performed to determine the relevant parameters listed in table 1
(Reτ , D+, Hb/D, and θ ) and to compute steady-state ripple quantities which are discussed
in §§ 5.2, 5.3, 5.4 and 5.5. Tb ≡Hf /ub is the bulk time unit.

to the density ratio between glass beads and water. The thickness of the fluid height
and that of the erodible bed are chosen to be sufficiently large for the formation of
the anticipated bed patterns. This results in a very large number of spherical particles
due to the size the computational box (cf. table 2). Finally, the value of the Galileo
number is chosen by adjusting the value of acceleration due to gravity |g|, such that
the value of the Shields number

θ = u2
τ(

ρp/ρf − 1
) |g|D = u2

τ

U2
g

=
(

D+

Ga

)2

, (3.3)

is above the critical value θc for incipient sediment motion. In the turbulent flow
regime, θc is believed to approximately lie in the range 0.03 . . . 0.05, with a mild
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dependence upon the Galileo number (Soulsby & Whitehouse 1997; Wong & Parker
2006; Franklin & Charru 2011).

We remark that the present parameter point is located in the ‘vortex dune’ regime
in the classification of Ouriemi et al. (2009). These authors coined the term ‘vortex
dunes’ for patterns which are characterized by flow separation and recirculation at
their downstream face, in order to distinguish them from smaller-amplitude patterns
without flow separation which they observed in their pipe-flow experiments (the
latter were termed ‘small dunes’ therein). Note that this terminology should not be
confused with the distinction between ‘ripples’ and ‘dunes’ commonly made in the
river flow community; in particular, it does not imply that the length scales of the
present patterns exhibit a scaling with the water depth.

Incidentally, let us mention that the chosen parameters of our simulation can be
transformed into a physically realizable laboratory experiment. For instance, choosing
as working fluid a mixture of 94 % pure water and 6 % UCON oil 75H-90 000
(leading to kinematic viscosity of the mixture of 4.3 × 10−6 m2 s−1 and a mixture
density of 1002 kg m−3), and selecting D= 1 mm glass beads implies the following
dimensions of the experimental apparatus (under terrestrial conditions): channel height
3.9 cm, fluid height 2.5 cm, wavelength of obtained ripples in the range of 10–18 cm.
The bulk velocity in this hypothetical set-up would measure 0.52 m s−1.

4. Extraction of bedform dimensions
4.1. Definition of the fluid–bed interface

The details of the extraction of the fluid–bed interface, which have been given in our
previous work (Kidanemariam & Uhlmann 2014a; Kidanemariam 2015), are briefly
repeated here for completeness. The location of the interface between the fluid and
the sediment bed has been determined based on the threshold value of the solid
volume fraction in the following way. First, a solid phase indicator function φp(x, t)
is defined which has a value of one if x is located inside any particle and zero
elsewhere. Spanwise averaging then yields 〈φp〉z(x, y, t), which is a direct measure
of the instantaneous, two-dimensional solid volume fraction. The spanwise-averaged
fluid–bed interface location hb(x, t) is finally extracted by means of a threshold value,
chosen as 〈φp〉thresh

z = 0.1 (Kidanemariam & Uhlmann 2014b), viz.

hb(x, t)= y | 〈φp〉z(x, y, t)= 〈φp〉thresh
z . (4.1)

The corresponding spanwise-averaged fluid height is then simply given by

hf (x, t)= Ly − hb(x, t). (4.2)

In the present study, we infer the evolution of the dimensions of the patterns as well
as their two-dimensional shape and propagation velocity by scrutinizing the spatial and
temporal variation of the sediment-bed height hb or its fluctuation with respect to the
instantaneous average bed height,

h′b(x, t)= hb(x, t)− 〈hb〉x(t). (4.3)

4.2. Definition of pattern amplitude and wavelength
The most relevant parameters, among others, which describe the geometrical features
of statistically two-dimensional bedforms are their streamwise and wall-normal
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dimensions, namely the mean wavelength and mean amplitude of the patterns. As
reviewed by Coleman & Nikora (2011), various definitions have been used in order
to quantify these dimensions. For instance, the average wall-normal distance between
local maxima and adjacent local minima of hb is used as a measure of the amplitude
of the patterns in some studies (Ouriemi et al. 2009). Other studies infer the amplitude
of the patterns statistically from the r.m.s. fluctuation of the bed (Langlois & Valance
2007). Similarly, the wavelength of patterns is quantified either geometrically, for
instance based on the mean spacing between alternating troughs or ridges of the
sediment-bed height, or statistically, for instance based on the autocorrelation of
the bed-height fluctuation (Coleman & Nikora 2011). In the present study, we have
adopted a statistical definition.

The wall-normal dimension of the patterns is characterized by the r.m.s. fluctuation
of the sediment bed σh, defined as

σ 2
h (t)= 〈h′b(x, t) · h′b(x, t)〉x. (4.4)

In order to determine the average wavelength of the patterns, first we define the
instantaneous two-point correlation coefficient of the bed-height fluctuation as a
function of streamwise separation δx as

Rh(δx, t)= 〈h
′
b(x, t) · h′b(x+ δx, t)〉x

σ 2
h (t)

. (4.5)

At a given time instant t= t1, the correlation coefficient Rh(δx, t1) of a sediment bed
featuring bedforms, exhibits a distinct damped-oscillation curve featuring alternating
positive and negative values as a function of δx. Then, we define an average bedform
wavelength λh as twice the streamwise separation δx = xmin at which the global
minimum of Rh occurs viz.

λh(t)= 2xmin | ∀ δx ∈ [0, Lx/2] : Rh(δx, t)> Rh(xmin, t). (4.6)

5. Results
During the preparation of the present manuscript we have discovered a programming

error in the solid contact part of the simulation code. This bug was active during
the simulations of Kidanemariam & Uhlmann (2014a). After correcting the error, we
have rerun those simulations and compared the results. This comparison is discussed
in the Appendix. The conclusion from this assessment is that the results did not
change qualitatively. Concerning the quantitative comparison, it can be stated that the
difference between the result with and without bug is within the scatter due to the
three independent realizations simulated here.

5.1. The minimum and the most amplified unstable pattern wavelengths
Our strategy to find the minimal box length Lx which will accommodate the lower
bound of the unstable wavelengths λth (at a given parameter point) is to perform a
series of numerical experiments in which the streamwise domain length is successively
reduced. The concept is similar to the minimal flow unit of Jiménez & Moin (1991).
Below a threshold value of Lx=λth, pattern evolution will be hindered and a perturbed
bed should in principle be stable even though it is in a regime where instability is
expected. Note that determining the lower threshold of λth for bed instability does
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not necessarily mean determining the most amplified wavelength λc. The latter, if it
uniquely exists, exhibits the maximum growth rate of the bed instability.

Figure 2 shows instantaneous snapshots of the particle positions in the different
cases after approximately 200 bulk time units have elapsed. It can be seen that the
sediment bed of case H3 does not feature dune-like patterns. However, one can
observe that it exhibits distinct streamwise aligned alternating ridges and troughs,
although the sediment bed is essentially flat when the spanwise average of the
sediment-bed profile is observed. Such an organization of particles is linked to the
streamwise-aligned near-wall turbulent structures (streaks) which are responsible for
the non-homogeneous spatial distribution of particles. The highly regular ridge-trough
pattern in this case is a result of the very small box length which hinders spatial
de-correlation of the turbulent structures in the streamwise direction. On the other
hand, the sediment bed of the remaining cases with Lx > 4Hf is seen to be unstable,
allowing for the formation of spanwise-oriented patterns. The streamwise-aligned
patterns are also visible superimposed to the ripples (in the remainder of the present
text we will refer to the observed bedforms as ripples). This indicates that the value
of λth lies somewhere between the domain lengths of cases H3 and H4. Another
observation is that the initial wavelength of the emerging patterns seems to be
different depending on the chosen domain length. In particular, the case with the
largest domain size, which has a streamwise box length 12 times the smallest domain
length of the ripple-featuring cases, is observed to accommodate more than ten
initial ripple units. The dimension of the ripples in the large domain case seems to
have evolved less constrained by the box size when compared to those in the small
domain cases. Let us provide a more quantitative analysis of the above observation
by evaluating the r.m.s. sediment-bed-height fluctuation σh of each case and using it
as a criterion to determine whether a sediment bed in a given simulation is stable
or not. That is, if σh remains bounded within a certain threshold value, then the
bed is said to be stable. On the other hand, for an unstable bed, σh will initially
exhibit a continuous increase as a function of time. Note that even a stable flat
(mobile) sediment bed features a small but finite value of σh as a result of the
random uncorrelated bed undulations which stem from the discreteness of the bed at
the grain scale. For instance, Coleman & Nikora (2009a) report σh/D≈ 0.17 for their
macroscopically ‘flat’ bed.

Figure 3 shows the time evolution of σh for all the considered cases listed in table 1.
It is seen that, starting from time tub/Hf ≈ 20, the value of σh grows with time for
all the cases with domain length Lx > 102.4D (Lx > 4Hf ), indicating that the chosen
streamwise box dimension of these cases is larger than the lower threshold of unstable
wavelengths, such that the box can accommodate at least one of the unstable modes.
On the contrary, the evolution of σh in case H3 exhibits no growth with time except
for small fluctuations; σh in this case is effectively bounded by the threshold value
σh/D ≈ 0.17 as per Coleman & Nikora (2009a). This indicates that the streamwise
box length Lx= 76.8D (Lx= 3Hf ) is not sufficient to accommodate the lower threshold
of unstable modes. Thus, it can be concluded that a cutoff length scale for pattern
formation (for the considered parameter point) lies in the range 77D< λth < 102D, or
in terms of the mean fluid height, 3Hf < λth < 4Hf . Additional simulations with Lx in
the range 3Hf to 4Hf would be required in order to determine λth more accurately.

Furthermore, figure 3 highlights the fact that the evolution of the pattern amplitude
exhibits distinct regimes of growth. During the first approximately 150 to 180 bulk
time units (excluding the first of approximately 20 bulk time units during which
the sediment bed initially dilates after the start of the simulations), σh is observed
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FIGURE 2. (Colour online) Top view of the three-dimensional instantaneous particle
positions and the corresponding spanwise-averaged fluid–bed interface (shown below each
snapshot) at time t/Tb≈200 of cases (a) H3, (b) H4, (c) H6, (d) H7, (e) H12 and ( f ) H48.
The wall-normal particle location is indicated by a global colour code, as shown in (b).
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FIGURE 3. (Colour online) (a) Time evolution of the r.m.s. sediment-bed-height fluctuation
normalized by the particle diameter: — (purple), case H3; — (orange), case H4; —
(green), case H6; — (blue), case H7; — (brown), case H12; —, case H48. The
horizontal dashed line indicates the value σh/D≈ 0.17 which corresponds to the random
bed fluctuations of featureless flat bed (Coleman & Nikora 2009a). (b) Same as in
(a) but the data for cases H4 and H12 are ensemble averaged over the number of
simulations performed. The dashed-dot line corresponds to an exponential fit curve
σh/D= 0.0668 exp (0.0140t/Tb) obtained from an average amplitude growth in the initial
exponential interval. (c) Same as in (b) but plotted in log-linear scale to highlight the
exponential growth regime during the first instant of the bed instability.

to evolve exponentially for all the cases, with a growth rate which seems to be
independent of the chosen domain size. Note that the time evolution of σh for cases
H4 and H12 presented in figure 3(b,c) is an ensemble average over the three separate
simulations of the respective cases. An exponential curve of the form

σh/D= A exp (Bt/Tb), (5.1)

with A = 0.0668 and B = 0.0140, best fits the average growth over all cases in this
interval. In the subsequent growth regime, the trend of the amplitude evolution is
observed to be markedly different among the different cases, although all were carried
out at the same imposed parameter values. After the initial exponential growth (up
to t≈ 200Tb), and after a small transition interval of approximately 100Tb, cases H4,
H6 and H7 exhibit a plateau of the pattern amplitude, showing no further growth with
time. The attained final values are σh/D=0.93 , 2.08 and 2.36 for each of these cases,
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FIGURE 4. (Colour online) (a) Time evolution of the mean wavelength λh of the sediment-
bed height normalized by the particle diameter. Colour coding similar to figure 3. (b) The
same as in (a) but the data for cases H4 and H12 are ensemble averaged over the number
of simulations performed.

respectively. The evolution of σh for case H12 also attains a plateau regime with a
final value of σh comparable to that of case H6. However, it settles to this value not
immediately after the exponential regime, rather it gradually increases (approximately
linearly) in the interval between t = 200Tb and 600Tb. On the other hand, since the
observation interval of case H48 is shorter, it has covered only the exponential growth
regime by the end of the simulation.

The different trend of the amplitude growth observed is closely related to the
influence of the limited computational box size on the initially accommodated mean
wavelength and its subsequent evolution. In cases H4, H6, H7 and H12, even though
the streamwise length of the computational box is larger than the threshold for pattern
formation, due to the fact that Lx/λth = O(1), the discrete wavelengths from which
the system has to select are very sparse, and it is not guaranteed that the initially
selected wavelength will be the same as the one which an infinitely long system
would select. On the other hand, case H48 has a streamwise box length Lx which
is between 12–16 multiples of the minimum unstable wavelength. Thus the initial
wavelength selected in case H48 is expected to be sufficiently close to that of an
infinitely long system.

Figure 4 shows the time evolution of the mean pattern wavelength. In close
correlation with the evolution of the amplitude, one can see that the adopted
computational box size strongly influences the selected mean wavelength and its
subsequent evolution. In cases H4 and H6, λh jumps within the first 100–200 bulk
time units to the maximum possible wavelength, i.e. λh= Lx, and evolves constrained
to this value. This indicates that in these boxes, the system is forced to select the
most unstable wavelength from the available modes, which turns out to be λh≈ 102D
for case H4 and λh ≈ 154D for case H6. The value of the mean wavelength of
case H7 is observed to oscillate between the harmonics λ1 = Lx and λ2 = Lx/2 and
finally settles at λh= λ2≈ 179D at t/Tb≈ 180. On the other hand, from the ensemble
averaged evolution of wavelength for case H12, it can be seen that the system
initially selects a wavelength λh ≈ λ3 ≈ 102D, which is very close to the wavelength
selected by the large box size case H48. It then grows monotonically and settles
at a wavelength λh ≈ λ2 ≈ 154D at approximately t = 500Tb, subsequently evolving
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constrained close to this wavelength until the end of the simulation interval. Again,
the constraint of the evolution of the wavelength is an indication of the influence of
box size on the subsequent evolution processes, although the box could be considered
marginally sufficient to capture the initial wavelength. The nonlinear nature of the
evolution process is also highlighted by observing the difference in the evolution
of the wavelength for the three independent simulations of case H12 (which only
differ from one another by the respective initial condition) in the first interval up to
t≈ 500Tb. In case H48, the availability of relatively fine graded harmonics allows for
a more steady growth of the mean wavelength. In the initial time t ≈ 100Tb up to
t ≈ 200Tb, the selected wavelength grows from λh ≈ λ12 = Lx/12 to λh ≈ λ11 = Lx/11.
It exhibits a further growth and attains a value λh≈ 145D at the end of the simulation
interval.

The above-discussed evolution of the amplitude and mean wavelength are integral
representations of the individual modes which make up the resolved discrete spectrum.
On the other hand, from the stability analysis point of view, it might be more
interesting to analyse the time evolution of the individual modes, since for small
amplitudes these can be expected to grow independently. To this end, we have
computed the instantaneous single-sided amplitude spectrum Aj(t) (for non-negative
wavenumbers j > 0) which is defined as twice the absolute value of the coefficient
ĥbj, where ĥbj(t) is the jth harmonic of the Discrete Fourier Transform of the
bed-height perturbation h′b(x, t). For future reference let us denote with Shbhb(κj)

the power spectral-density corresponding to the jth Fourier mode. In order to provide
a dispersion relation, first we assume that, in the initial exponential growth regime
of the r.m.s. bed-height fluctuation (cf. figure 3), the individual modes exhibit an
exponential growth as well. Strictly speaking, this assumption is only true when
the bed fluctuations are so small that linear instability holds. Nevertheless, it can
be safely assumed that the nonlinear interaction among the modes is weak in the
first approximately 150–180 bulk time units (in the complementary hypothetical
experiment, this time duration amounts to 7–9 s). Following, we fit an exponential
curve of the form

Aj(t)= Aj0 exp (σjt) (5.2)

to the time evolution of the amplitude of each mode in the interval between t≈ 20Tb

up to t≈ 180Tb and infer the growth rate σj(κj), where κj≡ 2πj/Lx is the wavenumber
of the jth harmonic.

Figure 5 shows the growth rate as a function of the wavelength λj ≡ 2π/κj. As
is expected, none of the modes are seen to grow at any significant rate in case H3.
Moreover, consistent with the evolution of the mean wavelength, the fastest growing
mode in cases H4 and H6 is λ1 = Lx, with a growth rate which is comparable to
that of the r.m.s. bed height σh (coefficient B in (5.1)). The next few modes in these
two cases also exhibit a small but noticeable growth rate although their wavelength
is smaller than the threshold. This could be attributed to nonlinear effects. A similar
trend is observable for cases H7 and H12, except that in these cases, it is not only
one harmonic which is growing the fastest. In case H7 both λ1 = Lx and λ2 = Lx/2
grow at a comparable rate, indicating that both harmonics contribute substantially
to the growth of σh. On the other hand, in case H12, in addition to the expected
fastest growing modes λ3 = Lx/3 and λ2 = Lx/2, the first harmonic λ1 = Lx is also
seen to contribute to the overall growth. It is not guaranteed that the box length of
H48 is large enough to capture all the unstable modes (i.e. the upper threshold of
pattern formation). Nevertheless, the fact that σj exhibits a clear local maximum is
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FIGURE 5. (Colour online) Amplitude growth rate σj (as per definition (5.2)) as a
function of the wavelength in the first exponential growth regime: — (purple), case H3;
— (orange), case H4; — (green), case H6; — (blue), case H7; — (brown), case H12; —,
case H48. The vertical dashed line represents the value of the streamwise box length in
case H3 which does not feature patterns.

an indication that the box is sufficient to capture the most amplified mode(s), which
turn out to be in the range λ8 to λ12.

Finally, it is worth mentioning that the computational box sizes are chosen such
that a turbulent flow state is sustained. This is confirmed by monitoring the time
evolution of the box-averaged turbulent kinetic energy (plots not shown). Note that,
in smooth wall channel flows, the minimum spanwise and streamwise box dimensions
required in order for turbulence to be self-sustained are L+z ≈ 100 and L+x ≈ 350,
respectively (Jiménez & Moin 1991). The minimum box dimensions adopted in our
study (corresponding to case H3) are substantially larger, i.e. L+x = L+z ≈ 740.

5.2. Ripple morphology
An additional important advantage of adopting a relatively ‘small’ computational box
length in cases H4, H6 and H7 is that, once the maximum possible wavelength
is attained, further ripple dimension growth is effectively hindered. Thus, the
accommodated ripple subsequently evolves, steadily maintaining its dimensions and
propagation velocity. Similarly, in case H12, within the simulated interval, the ripples
evolve steadily, constrained approximately at a mean wavelength λh = Lx/2. Such a
numerical manipulation, which experimentally is not possible, allows us to address
steady-state bedform characteristics at a particular wavelength. In the following, we
analyse the two-dimensional shape and the propagation velocity of the ripples.

It is well know that bedforms of finite amplitude evolve towards an asymmetric
shape even in the absence of flow separation (Best 2005; Colombini & Stocchino
2008; Seminara 2010). For instance, spatio-temporal plots provided by Ouriemi et al.
(2009) show that the evolution of the bedforms towards their asymmetric shape is a
phenomenon of both the laminar ‘small dunes’ which exhibit no flow separation in
their leeside, as well as the turbulent ‘vortex dunes’ which are characterized by flow
separation downstream of their crests. The degree of asymmetry is generally larger
in the latter as a result of the flow recirculation. Moreover, the animations of particle
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FIGURE 6. (Colour online) (a) Mean two-dimensional profile of the patterns averaged
over the last steady ripple propagation interval, and over the number of ripples when
applicable, of each case. The location of the maximum of each profile is shown by the
filled symbols. Note that the profiles are plotted not to scale and thus the aspect ratio is
visually exaggerated. (b) The corresponding spectra of the sediment-bed-height fluctuation.
In both plots: — (orange), case H4; — (green), case H6; — (blue), case H7; — (brown),
case H12. Power laws with exponent −3.3 and −4.3 are shown by the red and blue
dashed lines respectively. The vertical dashed line represents the value of the average fluid
height Hf ≈ 25.27D (averaged over all cases).

motion available online at https://doi.org/10.1017/jfm.2014.284 and the space–time
plots depicted in figure 4 of Kidanemariam & Uhlmann (2014a) have qualitatively
shown the asymmetric evolution of sediment-bed shape in good agreement with what
is observed experimentally.

In order to quantitatively characterize the statistically two-dimensional shape of the
bedforms, in the steady ripple evolution interval of cases H4, H6, H7 and H12, we
have evaluated the phase-averaged fluid–bed interface which is defined as follows:

H̃b(x̃)= 〈hb(x̃, t)〉t, (5.3)

where x̃≡ x− uDt is the x-coordinate in a frame of reference which is moving at the
mean ripple propagation velocity uD (see § 5.3 for the definition of uD). Note that, in
cases H4, H6 and H7, H̃b corresponds to the mean profile of a single ripple, while in
case H12, H̃b is an average profile over the two available ripples.

As shown figure 6(a), it can be seen that in all cases, the ripple profile is clearly
asymmetric with an upstream face (upstream of the crest) approximately three times
longer in streamwise length and thus milder in bed slope than the downstream face.
To within the statistical uncertainty, the bed shape of cases H6, H7 and H12, once
scaled by the corresponding mean wavelength, seems to fairly collapse into a single
shape, exhibiting small differences. The attained value of the aspect ratio, which is
defined as the ratio between the height of the ripple HD=max (H̃b)−min (H̃b) (i.e. the
wall-normal distance between the trough and the crest) and the mean wavelength λh,
is approximately 0.037. Moreover, the degree of asymmetry, which can be defined as
the ratio between the streamwise distance from the crest to the downstream trough
and the mean wavelength, is approximately 0.28. On the other hand, the mean ripple
shape of case H4 is seen to exhibit a noticeable smaller value of the aspect ratio
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(approximately 0.026) and a larger value of the degree of asymmetry (approximately
0.35) than the other cases. This difference is an indication of the ripple shape
evolution process. Some experimental studies reported that, during the natural ripple
coarsening process, the aspect ratio of the ripple geometry evolves with time and
attains a value of approximately 1/15 (0.067) once the steady-state shape is attained
(Charru et al. 2013). On the other hand, Fourrière, Claudin & Andreotti (2010), based
on field measurements, report a steady-state aspect ratio of approximately 0.045. In
our configurations, since the final ‘natural’ steady-state regime is not yet reached, we
cannot confidently say that the attained values of the aspect ratios are representative
of those values which would naturally be attained. Nevertheless, the fact that the
shape of the ripple with mean wavelength λh≈ 150D and that with λh≈ 180D do not
exhibit substantial differences could be an indication that the ripple shape is not far
from its final invariant shape. This aspect requires further investigation.

It is generally believed that the nonlinear interaction between the evolving sediment
bed and the driving flow results in the above mentioned asymmetric ripple shape
(Charru et al. 2013). That is, although the ripples have one well-defined length
scale (the mean wavelength λh defined in (4.6)), a wide spectrum of modes interact
nonlinearly to maintain a shape-invariant ripple which propagates downstream. There
are several theoretical studies as well as field and experimental measurements
which report that the spectra of fully developed bedforms exhibit a −3 power-law
relationship with respect to the large wavenumbers, bounded by a threshold value
(Hino 1968; Jain & Kennedy 1974; Nikora, Sukhodolov & Rowinski 1997; Coleman
& Nikora 2011). To gain further insight, we present in figure 6(b) the spectra 〈Shbhb〉t
of the sediment-bed-height fluctuation averaged over the steady ripple evolution
interval of the above-mentioned cases. It can be seen that, for the dominant modes
(with λj & Hf ), 〈Shbhb〉t of all the cases (only for the even modes of case H12)
features a power-law variation as a function of κj. The value of the scaling exponent
in cases H6, H7 and for the even modes in H12 is observed to be approximately
−3.3 whereas that of case H4 is approximately −4.3. The fact that case H4 has a
larger value of the exponent than that of the other cases is again an indication of
the evolution process. That is, the influence on the mean ripple shape of the modes
with a smaller wavelength than the dominant one is relatively smaller compared to
the other cases. Moreover, the fact that we have not attained a naturally developed
mature ripple state could be a reason why the attained exponents are slightly larger
than the −3 value reported in the literature. The reason for the odd–even separation
of the spectra in case H12 could be explained by the fact that the domain length
accommodates two ripples and thus modes with wavelength Lx/(2i) mainly contribute
to the attained shape.

5.3. Ripple migration velocity
The migration velocity of bedforms is an important quantity of interest in the study of
morphodynamics. For instance, the rate at which bedforms propagate is closely related
to the rate of sediment transport (Coleman & Melville 1994; Nikora et al. 1997; Betat
et al. 2002; Coleman et al. 2003; Coleman & Nikora 2009b; Ouriemi et al. 2009;
Seminara 2010). From the sediment mass-conservation equation (Exner equation), it
can be easily shown that, for a statistically shape-invariant two-dimensional ripple with
height HD and which migrates downstream at a constant velocity uD,

〈qp〉 − 〈qp,min〉 ≈ βΦbuDHD, (5.4)
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where 〈qp〉 is the mean particle flow rate, which is assumed to be constant, while
〈qp,min〉 is the corresponding minimum value at the trough of the ripple, Φb is the mean
solid volume fraction of the sediment bed and β is a ripple shape parameter. From
the approximation (5.4), it is evident that the ripple migration velocity is inversely
proportional to the ripple height (and thus the ripple mean wavelength) whereas it
is directly proportional to the mean particle flow rate (Charru et al. 2013). In the
following, based on the DNS data, we evaluate the mean ripple migration velocity
and assess its relation to the mean particle flow rate.

In the aforementioned steady evolution interval, an average migration velocity of
the patterns uD can be determined from the shift of the maximum of space–time
correlation function of the fluid–bed interface fluctuation h′b (Nikora et al. 1997;
Coleman & Nikora 2011). First, the space–time correlation function is defined as
follows:

Rht(δx, δt)= 〈h′b(x, t1) · h′b(x+ δx, t1 + δt)〉x ∀δt ∈ [0, t2 − t1] , (5.5)

where t1 and t2 are the start and end times of the considered interval. The streamwise
location xmax of the maximum of Rht, which is given by

rm
x (δt)= xmax(δt) | ∀ δx ∈ [−Lx/2, Lx/2] : Rht(δx, δt)6 Rht(xmax, δt), (5.6)

varies approximately linearly with respect to δt, and thus the slope of the line which
is fitted to the data rm

x versus δt gives an accurate estimate of uD.
Figure 7(a) shows the migration velocity, normalized by uτ , as a function of the

mean wavelength for cases H4, H6, H7 and H12. The variation of uD exhibits an
inverse relationship with the ripple wavelength, varying from a value u+D ≈ 0.49 for
case H4 down to a value u+D ≈ 0.3 for case H7. It should be noted, however that,
as will be shown in § 5.5, as a consequence of an increase of the mean bottom
shear stress, the value of the mean particle flow rate increases with increasing mean
wavelength. Thus the observed trend of the ripple migration velocity is a net result
of an increase of particle flow rate as well as an increase of ripple dimensions. In
the following, we assess the mass-conservation-based relationship between the mean
particle flow rate and the ripple migration velocity, by reverse-computing the latter
from relation (5.4). To this end, a mean particle flow rate 〈qp〉 is computed over the
steady ripple migration interval (cf. § 5.5). The average minimum particle flow rate
at the ripple troughs 〈qp,min〉 was computed as well. It turns out that the value 〈qp,min〉
is negligibly small in cases H6, H7 and H12, whereas in case H4 it attains a value
of 〈qp,min〉 ≈ 0.2〈qp〉. Furthermore, the ripple shape parameter β is defined as the ratio
between the two-dimensional area of the ripple to that of a bounding rectangle of
dimensions HD and λh, defined as

β = 1
HDλh

∫ λh

0
(H̃b(x)−min (H̃b)) dx. (5.7)

In most of the engineering-purpose bedload transport rate estimators, the value of
β is typically taken to be 0.5, assuming that the shape of the ripple is triangular,
while some adopt values up to β = 0.6 based on field and experimental measurements
(see e.g. Gaeuman & Jacobson (2007) and references therein). For the mean ripple
geometries encountered in the present study, a value of β in the range between 0.5 and
0.52 is recovered after evaluating (5.7) for all the cases. Subsequently, the mean ripple
migration velocity is estimated based on relation (5.4) and the result is presented
in figure 7(a). It can be seen that the estimation yields values which are in good
agreement with the actual computed ripple migration velocity values.
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FIGURE 7. (Colour online) (a) Average propagation speed of the patterns, normalized in
wall units, as a function of the mean wavelength (computed in the final steady ripple
evolution interval as shown in table 2): q (orange), case H4; r (green), case H6; t
(blue), case H7;u (brown), case H12. The corresponding cross-marks (×) represent the
mean ripple migration velocity estimated by relation (5.4). The data points in the turbulent
channel flow experiment of Cardona Florez & Franklin (2016) for their particles with
diameter D= 550 µm are shown by the open symbolsE (initial phase of ripple evolution)
and @ (final phase of the evolution). (b) Mean propagation speed of individual Fourier
modes in the final steady ripple evolution interval: — (orange), case H4; — (green),
case H6; — (blue), case H7; — (brown), case H12. The corresponding mean ripple
migration velocity is plotted by the horizontal dashed lines. The vertical dashed line
represents the value of the average fluid height Hf ≈ 25.27D (averaged over all cases).
In both plots, ensemble averaging is performed for cases H4 and H12 over the available
number of runs.

Additionally, figure 7(a) shows recent experimental measurements of ripple
migration velocity in a closed-conduit set-up (Cardona Florez & Franklin 2016).
The experimental data shown correspond to particles with diameter D = 550 µm
(Reb ≈ 7600–8900, ρp/ρf = 2.5, Hf /D≈ 39, θ ≈ 0.056–0.075, D+ ≈ 12–14, Ga≈ 50)
which is not far from our parameter point. Although the experimental data exhibit
relatively large scatter, it can be seen that the trend of the DNS data falls within the
experimental data cloud.

Finally, let us turn to the celerity of the individual Fourier modes of the bedforms.
The phase angle spectrum ϕj of the sediment-bed-height fluctuation is defined as

ϕj(t)= atan2(Re(ĥbj(t)), Im(ĥbj(t))) ∀j= 0, . . . ,Nx/2, (5.8)

where ‘atan2’ is the four-quadrant inverse tangent. The instantaneous value of the
phase speed cj is derived from (5.8) as:

cj(t)=− 1
κj

dϕj

dt
(t). (5.9)

In the steady ripple propagation interval of cases H4, H6, H7 and H12, we have
evaluated an average mode-wise phase speed 〈cj〉 which is presented in figure 7(b)
as a function of the wavelength λj. In all the considered cases, the celerity data
feature two distinct types of modes: dispersive and non-dispersive. All harmonics
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with a wavenumber value smaller than a threshold are observed to be non-dispersive,
propagating at the corresponding mean ripple migration velocity. To within the
statistical uncertainty of the data, the threshold value is the same in all cases and
turns out to be λj ≈Hf . Note that the non-dispersive modes are those dominant ones
which exhibit a power-law relationship in figure 6. On the other hand, the remaining
harmonics with a wavelength smaller than the threshold are observed to be dispersive,
exhibiting approximately the same variation of the phase speed as a function of the
wavelength in all cases. The trend is seen to be well defined when scaled by the
friction velocity, increasing from its value at the threshold location and attaining
values of 〈cj〉+ ≈ 2 at wavelengths of approximately λj ≈ 10D. At first glance, the
observations of dispersive modes seems incompatible with the fact that the ripples
are migrating at a constant velocity maintaining their two-dimensional shape. Looking
at figure 6, however, the contribution of the fast-moving modes to the mean ripple
shape (and mean migration velocity) is orders of magnitude smaller than that of
the most dominant one, thus negligible. These modes are footprints of the particle
erosion/deposition cycle which takes place on the top of the ripples. Based on field
measurements, Nikora et al. (1997) similarly report that fully developed ripples are
composed of non-dispersive modes with wavelength λ � Hf , as well as dispersive
modes with λ�Hf , corroborating our findings.

5.4. Mean shear stress at the fluid–bed interface
For a given imposed flow rate, an increase of the mean interface shear stress with
increasing ripple dimensions is expected since the ripples are effectively roughness
elements of the sediment bed (cf. Jiménez 2004, for instance). This in turn is expected
to influence the mean rate of particle transport in a given channel, since it is directly
proportional to the mean shear stress. The inter-dependency among the evolving ripple,
the mean interface shear stress and the mean particle flow rate can be assessed by
evaluating these quantities on the steady interval of each case (cf. table 2).

Let us recall that the driving volume force exerted by the imposed mean pressure
gradient 〈dp/dx〉 in a particle-laden channel flow is balanced by the sum of resisting
force of the fluid shear stress and stress contribution from the fluid–particle interaction.
In the context of the immersed boundary method, the volume force, which imposes
the no-slip condition at the fluid–particle interface, corresponds to the stress imposed
on the system as a result of the fluid–solid interaction (see e.g. Uhlmann 2008;
Kidanemariam et al. 2013). When the momentum equation is averaged over the
entire domain comprising the fluid and particles, the streamwise momentum balance
reduces to

−
〈

dp
dx

〉
(Ly − y)= ρfν∂y〈u〉 − ρf 〈u′v′〉 +

∫ Ly

y
〈 fx〉 dy︸ ︷︷ ︸

〈τtot〉

, (5.10)

where the last term in the right-hand side represents the fluid–solid interaction, 〈u〉 is
the mean composite velocity, and 〈u′v′〉 is the covariance with respect to 〈u〉. When
(5.10) is applied to a statistically one-dimensional channel flow configuration (for
instance case H3), 〈u′v′〉 represents the momentum flux due to turbulent fluctuations.
On the other hand, the mean flow in those ripple-featuring cases is two-dimensional
and 〈u′v′〉 represents not only the turbulent fluctuations, but also contribution from
the deviation of the mean flow streamlines from the streamwise direction (see e.g.
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FIGURE 8. (Colour online) (a) Wall-normal profiles of the different contributions to the
total shear stress of case H7 (computed in the final steady ripple evolution interval as
shown in table 2): — (magenta), ρf ν∂y〈u〉; — (blue), −ρf 〈u′v′〉; — (red),

∫ Ly

y 〈 fx〉 dy;
—, 〈τtot〉. The horizontal dashed lines represent the wall-normal location of mean
fluid–bed interface as well as its all-time maximum and minimum extents over the
considered observation interval. (b) Friction velocity based Reynolds number as a function
of the mean wavelength λh in the corresponding steady ripple evolution interval: q
(orange), case H4; r (green), case H6; t (blue), case H7; u (brown), case H12. The
horizontal dashed line corresponds to the value of Reτ in the featureless case H3.

Yalin 1977; Nikora et al. 2007). A detailed analysis of the flow field over bedforms
is not part of the current study and will appear in a followup paper. Here, in order
to define a mean interface shear stress, evaluating (5.10) suffices. In the steady
ripple propagation interval of the current configuration (cf. table 2), 〈τtot〉 should
vary linearly as a function of wall-normal distance. This is confirmed in figure 8(a),
which shows the wall-normal variation of the different contributions to the total shear
stress for case H7. The remaining cases exhibit similar trends (plots not shown). The
figure highlights that, in the region above the highest crest of the ripples, the driving
force is dominantly balanced by the fluid stress term while in the domain below the
lowest trough of the ripples, the particle-related forcing entirely balances the pressure
gradient forcing. The mean interface shear stress (ρf u2

τ ) is thus defined as the value
of 〈τtot〉 at the location of the mean fluid–bed interface y0 = Hb. It should be noted
that, in the ripple-featuring cases, due to the roughness introduced as a result of the
evolving bedforms, a horizontal fluid–bed interface does not exist. Nevertheless, a
virtual wall could be defined to be located at a wall-normal location y0 =Hb.

Figure 8(b) shows the mean interface shear stress (expressed in terms of the friction
velocity based Reynolds number) as a function of the mean ripple wavelength for
the different cases (computed in the final steady ripple evolution interval as shown
in table 2). It can be seen that the value of the friction Reynolds number in the
featureless case H3 is Reτ ≈ 245. This value is larger than the value of Reτ in
a rough-wall channel flow at a comparable bulk Reynolds number and at roughly
the same particle Reynolds number (cf. Chan-Braun, García-Villalba & Uhlmann
2011). The main difference between the latter case and the present case H3 is
the particle arrangement and particle mobility, i.e. the erosion, entrainment and
re-deposition cycle. Furthermore, when comparing the friction Reynolds number of
cases H4, H6, H7 and H12, it can be observed that there is a monotonic increase
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with increasing wavelength, attaining values Reτ ≈ 265 for λh ≈ 102D, Reτ ≈ 300 for
λh ≈ 154D and Reτ ≈ 310 for λh ≈ 180D. Recalling the fact that the imposed fluid
flow rate and the mean fluid height are essentially the same in all cases, the increase
in the shear stress among the ripple-featuring cases is entirely a consequence of the
increase of the amplitude of the evolving sediment patterns (i.e. the macroscopic
roughness height).

5.5. Mean particle flow rate
The instantaneous volumetric flow rate of the particle phase (per unit span), qp, is
given by the sum (over all particles) of the streamwise particle velocity times the
particle volume, divided by the product of the streamwise and spanwise extent of the
domain (Kidanemariam & Uhlmann 2014b), viz

qp(t)= πD3

6LxLz

Np∑
l=1

u(l)p (t), (5.11)

where u(l)p (t) is the streamwise component of the instantaneous velocity of the lth
mobile particle at time t. Averaging qp over a given stationary interval results in the
mean particle flow rate 〈qp〉 in that interval. We remark that, for the parameter point
considered in the present study, particles are dominantly transported as ‘bedload’
material. Only a very small fraction of the mobile particles is suspended and
entrained by the mean flow. Thus, the particle flow rate defined in (5.11) represents
overwhelmingly the former mode of transport. In figure 9(a), as a consequence of the
increased mean bottom friction, the mean particle flow rate is observed to increase
with increasing ripple dimensions.

Of particular relevance to engineering applications is to express the particle flow rate
as a function of the Shields number and to pursue scaling laws which relate the two
quantities. In order to analyse the particle flow rate obtained in the present work in
light of such scaling laws, the non-dimensional particle flow rate (normalized by the
inertial scale qref =UgD) is shown as a function of the excess Shields number θ̃ = θ −
θc in figure 9(b), using the value θc = 0.034 according to the empirical law proposed
by Soulsby & Whitehouse (1997). Since all the ripple-featuring cases have started
from an initially flat sediment bed, the values of both the shear stress and the particle
flow rate in these cases increase with time from their initial values to their final
values at the end of the simulation interval. In order to capture this time evolution,
the entire observation interval of each case is decomposed into smaller intervals of
approximately 25 bulk time units. A mean particle flow rate and bottom shear stress is
then computed for each interval, substantially increasing the data samples in the figure.
The duration of the time intervals is chosen to be much smaller than the time scales
of the ripple evolution. Figure 9(b) also shows the empirical power law of Wong &
Parker (2006), which in turn is a modified version of the Meyer-Peter & Müller (1948)
formula for turbulent flows,

〈qp〉/qref = Aθ̃α, (5.12)
where A = 4.93 and α = 1.6. Note that Wong & Parker’s formula is valid for a
macroscopically flat sediment bed. As is observed in the figure, the DNS data points,
which represent both plane sediment beds as well as pattern-featuring beds, are in
very good agreement with the scaling law (5.12). Although the evolution of the ripples
does increase the net particle transport rate, the net bottom shear stress simultaneously
increases. As a net result, the formation of patterns does not strongly affect the particle
transport scaling as a function of the excess shear stress (in the considered observation
interval).
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FIGURE 9. (Colour online) (a) Volumetric particle flow rate 〈qp〉 as a function of the mean
wavelength λh (computed in the final steady ripple evolution interval as shown in table 2):
q (orange), case H4;r (green), case H6;t (blue), case H7;u (brown), case H12. The
horizontal dashed line corresponds to the value of 〈qp〉 in the featureless case H3. (b)
Particle flow rate 〈qp〉i as a function of the excess Shields number θ̃ = θ − θc. The entire
observation interval of each case is decomposed into smaller intervals of approximately 25
bulk time units:q (purple), case H3;q (orange), case H4;r (green), case H6;t (blue),
case H7;u (brown), case H12;p, case H48. A mean particle flow rate and bottom shear
stress is then computed for each interval (thus the notations 〈qp〉i and θi). Note that values
for every fifth interval are plotted for clarity. The value θc = 0.034 is used in order to
compute θ̃ for the current DNS data, according to the empirical law proposed by Soulsby
& Whitehouse (1997). The dashed line is the Wong & Parker (2006) version of the Meyer-
Peter & Müller (1948) formula for turbulent flow which reads: 〈qp〉/qref = 4.93 θ̃ 1.6.

6. Conclusion

We have performed several direct numerical simulations of the development of
bedforms over an erodible sediment bed in an open channel flow configuration.
All the simulations were carried out at a parameter point which is identical to our
previous study (Kidanemariam & Uhlmann 2014a). The simulations differ only in the
adopted streamwise length of the computational domain, which was systematically
varied in order to address important aspects of pattern formation. Ensemble averaging
was performed for two select cases in order to account for the statistical variability
during the transients. By reducing the domain size, we were able to find the lower
bound of the unstable pattern wavelength, below which pattern formation is effectively
hindered and the sediment bed remains stable. The strategy is similar to the minimal
flow unit of Jiménez & Moin (1991). For the considered parameter point, it turns
out that a computational box with a streamwise dimension Lx . 75D, where D is
the particle diameter, was not sufficient to accommodate any of the unstable modes,
and no sediment features were observed. On the contrary, a box with Lx & 100D
accommodated at least one unstable mode. This observation indicates that the cutoff
length lies in the range 75–100D (3–4 times the clear fluid height).

Furthermore, the influence of the computational domain size on the selection
and evolution of the initial wavelength was assessed by performing one large-scale
simulation with streamwise box length Lx≈ 1200D (48Hf ) and with approximately 1.1
million resolved particles representing the mobile bed. This allowed the determination
of the most amplified wavelength(s) to be determined with sufficient accuracy. It turns
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out that, during the initial bed instability, the box was able to accommodate a number
of ripple units with a mean wavelength λc ≈ 100–110D (values which correspond to
the wavelength of the eleventh and twelfth resolved harmonics in that case). Based
on the comparison of the selected mean wavelength among the different simulated
cases, it can be concluded that a computational domain length which is few integer
multiples of λc, due to the sparsity of the resolved discrete harmonics, severely
constrains the natural ripple initiation and evolution mechanisms. The domain length
adopted by Kidanemariam & Uhlmann (2014a), which accommodated approximately
three initial ripple units, was observed to be marginally sufficient in determining the
initial wavelength, while too small to capture the subsequent evolution.

Based on the analysis of the r.m.s. sediment-bed-height fluctuation, two regimes
of pattern evolution were identified. An initial short-lived exponential growth regime
(with a duration of approximately 200 bulk time units) and a subsequent nonlinear
regime. The evolution of the r.m.s. bed fluctuation is observed to be independent
of the chosen domain size in the initial exponential regime, while it exhibited a
strong influence of the domain size in its later stages. The exponential growth of the
sediment-bed fluctuation is further scrutinized by analysing the dispersion relation of
the unstable modes, i.e. the growth rate of the individual Fourier harmonics which
make up the resolved spectrum. The latter, which is difficult to access experimentally,
is an important quantity of interest when it comes to assessing the validity of
the various theoretical models (Charru et al. 2013). It turns out that, to within
the statistical uncertainty of our data, the modes which are initially growing at a
substantial rate are those with a wavelength approximately in the range λj= 100–200D
and are roughly bounded by an upper limit of λj = 300D.

Furthermore, the conditions of our simulations have allowed us to impose a steady
ripple evolution at a desired wavelength. That is, in the simulation cases in which
Lx/λc = O(1), after the initial exponential growth interval, the system chooses the
maximum possible mean wavelength λh = Lx relatively quickly. Subsequently, the
accommodated ripple evolves steadily, maintaining a statistically time-invariant shape
and migration velocity. This allows one to address aspects such as characterization
of the two-dimensional asymmetrical ripple shape, ripple migration velocity and the
relation of the latter to the mean particle flow rate. It was found that the spectrum
of the sediment-bed elevation follows a power-law decay over the first few dominant
modes, with an exponent which exhibited a slight dependence on the evolution of
the mean wavelength. The value of the exponent obtained from the DNS data is
not too far from the value of ‘−3’ for fully developed bedforms as proposed in the
literature (Hino 1968; Nikora et al. 1997). Additionally, the relation of the ripple
migration velocity to the mean particle flow rate was addressed by computing the
former from the shift of the space–time correlation function of the sediment-bed
height as well as from the sediment mass balance (integration the Exner equation).
Both approaches gave comparable results, highlighting the fact that bedforms migrate
as a result of erosion of sediment grains from their upstream face and deposition at
their downstream fronts.

The volumetric particle flow rate of all the simulated cases is found to be reasonably
well predicted by the empirical power law of Wong & Parker (2006). It should be
noted that the evolution of the patterns has indeed increased the net particle transport
rate, but at the same time, it has increased the net interface shear stress. Therefore,
it can be concluded that the scaling law proposed by these authors still holds in
the presence of ripples with an amplitude of the order of a few particle diameters.
Whether this statement continues to be true at larger pattern amplitudes needs to be
re-assessed by further studies.
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FIGURE 10. Time evolution of (a) the r.m.s. sediment-bed-height fluctuation and
(b) the mean wavelength λh. Solid lines correspond to the different realizations of case
H12 while the dashed line represents the data corresponding to case ‘T01’ in figure 6 of
Kidanemariam & Uhlmann (2014a).

Another aspect of the present problem which requires further attention is the
influence of the evolving sedimentary patterns upon the turbulent flow. One
particularly important question in this context concerns the shear stress distribution
at the fluid/sediment-bed interface. The present numerical data set is well-suited for
evaluating this quantity as well as other details of the flow field and the particle
motion (such as the local, instantaneous relation between the particle flux and the
shear stress). This aspect of the problem will be addressed in a future contribution.
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Appendix. A note on a programming error in the simulations of Kidanemariam
& Uhlmann (2014a)

During the preparation of the present manuscript, we have discovered a minor
programming error in a subroutine of our simulation code which computes the
inter-particle collision forces/torques. This bug was active during the simulations of
our previous contribution (Kidanemariam & Uhlmann 2014a). All the DNS data
in the present work are generated after correcting the aforementioned error. In the
following, we assess the influence of the bug by comparing the dune-related quantities
extracted from the current data with those reported in Kidanemariam & Uhlmann
(2014a).

Figure 10 shows the time evolution of the ripple amplitude and mean wavelength of
the three different simulations of case H12 (which differ from one another only in the
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slightly different initial conditions). Additionally, the figure shows the corresponding
data from our previous contribution (case ‘T01’ in figure 6 of Kidanemariam &
Uhlmann 2014a). It can be seen that the difference between the data with and
without the bug is within the scatter due to the three independent realizations of
case H12. We have further scrutinized the influence of the bug by comparing other
less-sensitive quantities such as the particle flow rate and the mean fluid and particle
velocities. The results of these quantities are practically not affected by the bug. Thus
it can be concluded that the impact of the programming error on the results and
conclusions made in Kidanemariam & Uhlmann (2014a) is insignificant.
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