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Aircraft with bio-inspired flapping wings that are operated in low-density atmospheric
environments encounter unique challenges associated with the low density. The low
density results in the requirement of high operating velocities of aircraft to generate
sufficient lift resulting in significant compressibility effects. Here, we perform numerical
simulations to investigate the compressibility effects on the lift generation of a bio-inspired
wing during hovering flight using an immersed boundary method. The aim of this study is
to develop a scaling law to understand how the lift is influenced by the Reynolds and Mach
numbers, and the associated flow physics. Our simulations have identified a critical
Mach number of approximately 0.6 defined by the average wing-tip velocity. When
the Mach number is lower than 0.6, compressibility does not have significant effects
on the lift or flow fields, while when the Mach number is greater than 0.6, the lift
coefficient decreases linearly with increasing Mach number, due to the drastic change
in the pressure on the wing surface caused by unsteady shock waves. Moreover, the
decay rate is dependent on the Reynolds number and the angle of attack. Based on
these observations, we propose a scaling law for the lift of a hovering flapping wing
by considering compressible and viscous effects, with the scaled lift showing excellent
collapse.

Key words: swimming/flying, supersonic flow

1. Introduction

Exploration and colonisation of the Martian environment have recently gained attention
from many countries with multiple road maps for potential manned flights to Mars
proposed (see e.g. Daniluk et al. 2015; Igritsky & Mayorova 2021; Palmer 2021).
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To achieve this goal, a sustainable and efficient means of exploration is required
to understand the landscape, terrain, climate and resources on Mars. Aerial vehicles
are preferred since they are not inhibited by the ground terrain, and can provide
broad perspective and sampling of the environment with a reasonable balance between
manoeuvrability, data resolution, price and manufacture challenges (Liu, Aono & Tanaka
2013).

Flight is challenging on Mars, primarily due to the low density, which is approximately
1 % of Earth’s density (Seiff & Kirk 1977; Barlow 2008; Munday et al. 2015), and
consequently low operational Reynolds numbers (e.g. O(102–104) for small-scale vehicles
(Shrestha et al. 2016; Bluman et al. 2018). As such, traditional rotor-wing and fixed-wing
aircraft are impractical or require substantial resources to stay airborne for a long duration
due to the low lift coefficient (Sullivan et al. 2000; Shrestha et al. 2016; Eldredge &
Jones 2019; Pohly et al. 2021). For example, the Mars helicopter ‘Ingenuity’ uses rotor
blades to achieve flight, but has a low flight duration of less than 3 minutes (Tzanetos
et al. 2022). Bio-inspired flapping wings, on the other hand, have been identified as a
potential solution, as insects and birds operate in the low Reynolds number regime on
Earth, generating efficient lift relative to their sizes with which fixed-wing or rotatory-wing
vehicles cannot compete (Pesavento & Wang 2009; Shyy et al. 2010; Eldredge & Jones
2019), and potentially resulting in a longer flight duration.

One of the important features of bio-inspired flapping wings is their ability to generate
high lift at low Reynolds numbers (Pesavento & Wang 2009; Shyy et al. 2010; Eldredge
& Jones 2019; Liu, Wang & Liu 2024). The high lift is achieved by a few unsteady
mechanisms, such as vortices around the wing (Dickinson, Lehmann & Sane 1999; Shyy
et al. 2010), added mass (Sane & Dickinson 2001; Chin & Lentink 2016), rapid pitching
rotational circulation (Dickinson et al. 1999; Shyy et al. 2010; Chin & Lentink 2016),
clap and fling (Weis-Fogh 1973; Shyy et al. 2010; Chin & Lentink 2016), passive/active
control through geometries and appendages (Carruthers et al. 2010; Tian et al. 2019; Duan
& Wissa 2021; Othman et al. 2023), and a variety of synchronisations (Bomphrey et al.
2017; Huang et al. 2023) and passive deformations (Nakata & Liu 2012; Kang & Shyy
2013; Tian et al. 2013; Shahzad et al. 2018a,b). The vortices include the leading-edge
vortex (LEV), the trailing edge vortex, the tip/root vortex and the incoming/wake vortex.
Among these vortices, the LEV is the most prominent flow structure. The LEV undergoes
delayed stall or even absence of stall so that it remains attached to the leading edge during
the middle stroke (Ellington et al. 1996; Liu et al. 1998; Chin & Lentink 2016, 2019;
Hawkes & Lentink 2016). The delayed stall and absence of stall are responsible for most
of the lift generation during the translational phase of the wing (Chin & Lentink 2016).
The tip vortex also contributes to the aerodynamic force as it creates a low-pressure area
near the wing tip. It can interact with the LEV and generate a wake structure by the
downward and radial movement of the tip vortex and the root vortex (Shyy et al. 2010).
Advanced wing rotation (pitching), with the wing flipping before stroke reversal, enhances
lift generation by generating circulation in the surrounding fluid and stabilising the LEV
with centripetal and Coriolis accelerations (Lentink & Dickinson 2009; Chin & Lentink
2016). The wake capture mechanism accounts for a large potion of the aerodynamic force
during pitch reversal (Lua et al. 2017; Wang et al. 2018). The clap and fling mechanism
produces lift through generating jet flows where the leading edges of the wings touch
before the wings rotate around the leading edge, closing the gap between the wings and
creating a downward jet; the wings then rotate around the trailing edge to achieve the fling
open, generating a downward jet to fill the gap (Weis-Fogh 1973; Chin & Lentink 2016).

1003 A10-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1216


A lift scaling law for a hovering wing in compressible flows

There are vortices associated with the flap and fling mechanisms, as detailed in Chin
& Lentink (2016). The flexibility enhances the lift generation through increasing the
effective pitching angle or adjusting the phase between pitching and stroke motions as
results of the interplay between the inertia, aerodynamic and elastic forces (Dai, Luo &
Doyle 2012; Tian et al. 2013; Huang et al. 2023). The flow control strategies improve
the flight performance by manipulating the vortex kinematics and dynamics around the
wing through leading/trailing edge serrations, wing shape, appendages, slotted wing tips,
surface structures, motions, etc. (e.g. Othman et al. 2023; Jin et al. 2024). More details of
the high lift generation and flow controls can be found in the aforementioned references.
To summarise, the aerodynamic force generation of a flapping wing is highly dependent
on a variety of factors, such as wing kinematics, geometries and structural parameters (see
e.g. Ansari, Knowles & Zbikowski 2008; Nagai & Isogai 2011; Taha, Hajj & Nayfeh 2012;
Shahzad et al. 2016).

The effects of compressibility have attracted the interest of researchers and engineers
due to space exploration applications, especially UAV development for Martian flight
due to the low density environment (see e.g. Liu et al. 2013; Igritsky & Mayorova
2021; Tzanetos et al. 2022). The lift force of a hovering wing, FL, can be written as
FL = mg = 0.5ρ∞U2ACL, where m is the mass, g is the gravitational constant, ρ∞ is
the density of air, A is the area of the wing, U is the reference operating velocity,
and CL is the lift coefficient. There are three important changes in the environment if
the same wing (on Earth) is operated on Mars: the gravitational constant, the density
of the atmosphere and the dynamic viscosity. Specifically, the gravitational constant,
the air density and the dynamic viscosity on Mars are approximately 33 %, 1 % and
73 % of those on Earth, respectively (Seiff & Kirk 1977; Almeida et al. 2008; Barlow
2008; Munday et al. 2015). In order to support the same mass, on Mars the wing is
required to operate at a velocity approximately six times greater than on Earth if CL is
to remain the same. Another important consideration is the Reynolds number, which is
defined as Re = ρ∞Uc̄/μ = 2mgc̄/(μAUCL) or c̄

√
2ρ∞mg/(μ

√
ACL), where c̄ is the

mean chord of the wing, and μ is the fluid viscosity. Therefore, scaling the force by
increasing the velocity to compensate for the aerodynamic decrease due to the low-density
environment ultimately decreases the Reynolds number. This is different from classical
cases where increasing the velocity to increase the payload results in an increase in
the Reynolds number. In addition, the flight endurance can be estimated by following
Hawkes & Lentink (2016) as Ten = Einη/(0.5ρ∞U3ACpow) = EinηCL/(mgUCpow) or
EinηC3/2

L
√

ρ∞A/[
√

2(mg)3/2Cpow], where Ein is the total energy supply, including battery
and other energies, η is the compound efficiency of actuators, electronics and mechanical
transmission mechanisms, and Cpow is the aerodynamic power coefficient. From the
perspective of aerodynamics, a lower-density environment means a lower endurance,
which could be compensated by improving the lift coefficient and/or reducing the power
coefficient. Therefore, the cumulative result of low density, high operating speed and
low sound speed on Mars results in the wing operating at a lower Reynolds number
where compressibility effects could be significant. Such operating conditions have been
demonstrated by the Ingenuity helicopter, where the Mach number based on the blade-tip
velocity reaches speeds up to Ma = 0.7 (Tzanetos et al. 2022).

Previous studies have indicated that bio-inspired flight is feasible for low-density
environments, such as Mars, due to proven success in low Reynolds number regimes
(Bluman et al. 2018; McCain et al. 2020; Wang, Tian & Liu 2022b). However, the
effects of highly compressible flows on lift as well as the flow physics associated with
compressibility have not been well understood. To gain a better understanding, it is
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necessary to analyse these effects using basic scaling laws, which have been used to
analyse force production (see e.g. Dewey et al. 2013; Quinn, Lauder & Smits 2014;
Lee, Choi & Kim 2015; Floryan et al. 2017; Ayancik et al. 2019) and sound (Wang &
Tian 2020) generated by flapping wings/foils. Recently, scaling laws have been extended
to bio-inspired flyers on Mars, with the assumption of incompressible continuous flows
while the low-density feature of Martian atmosphere is reflected in the dynamic pressure
estimation (see e.g. Bluman et al. 2018; Xiao & Liu 2020; Pohly et al. 2021; Veismann
et al. 2021). Based on previous studies, CL = F(St, α, r1, Π1−N), where St is the Strouhal
number, α is the angle of attack (AoA), r1 is the first moment of the wing area, and Π1−N
reflects the effects of the characteristic elastic force, flexibility, passive deformation, LEV
strength and leading/trailing edge velocity (Kang et al. 2011; Nakata & Liu 2012; Tian
et al. 2013; Lee et al. 2015; Floryan et al. 2017; Shahzad et al. 2018a,b; Addo-Akoto,
Han & Han 2022). Recently, it was found that the peak of the lift generated by a flexible
hovering wing drops approximately 20 % when the Mach number increases from 0.2
to 0.6 (Wang et al. 2022b), indicating that the compressibility has a significant effect
on the force generation by a flapping wing. Therefore, it is necessary to consider the
effect of compressibility on the scaling laws for the force generated by bio-inspired
flapping wings in the low-density environments by rewriting the lift coefficient as CL =
F̂(St, α, r1, Ma, Π1−N).

In previous studies using scaling laws, the viscous effect is normally ignored (see e.g.
Kang et al. 2011; Bluman et al. 2018). However, Senturk & Smits (2019) showed that
the force coefficients of a pitching foil depend on the Reynolds number according to

√
Re,

indicating that the contribution of the friction force to the lift and the drag can be estimated
by using the laminar boundary layer model. However, the application of this model needs
to be further explored in three-dimensional flapping wings undergoing stroke and pitching
motion.

Here, we aim to develop a scaling law for the lift of a bio-inspired wing hovering in
low-density compressible flows to understand how the lift is influenced by the Reynolds
and Mach numbers, as well as the associated flow physics. In order to achieve this aim,
we perform numerical modelling of a three-dimensional rigid wing undergoing hovering
kinematics (including stroke and pitching motion) using an immersed boundary method
solver (Wang et al. 2017, 2022b; Wang, Young & Tian 2024). We investigate the force
generations by varying the Reynolds number from 200 to 6000, and the average wing-tip
Mach number from 0.2 to 1.4. The AoA of the wing during the middle stroke is also
varied from 30◦ to 60◦. Apart from the aerodynamic forces, we also investigate pressure
distributions, vortex structures and shock waves. Most importantly, we propose a unique
scaling law for the lift of the wing based on the flow physics of flapping-wing dynamics.

2. Physical problem and numerical method

2.1. Physical problem and governing equations
To develop a scaling law for the lift of a bio-inspired wing hovering in low-density
compressible flows, two distinct wing planforms are considered, including a rectangular
wing and a bumblebee wing (see figure 1), to discuss the geometric impacts on the
scaling law analysis and to verify its effectiveness. As a generic geometry and the most
simple approach, rectangular wings have been used extensively to study the fundamental
aerodynamic principles associated with flapping wings (see e.g. Dai et al. 2012; Carr,
Chen & Ringuette 2013; Kruyt et al. 2015). The bumblebee wing geometry was defined
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by Dudley & Ellington (1990) and has been utilised extensively in previous studies (see
e.g. Sun & Xiong 2005; Tobing, Young & Lai 2013, 2017). These wings have span length
R, and average chord c̄. The aspect ratio (Λ) of the wing is Λ = R/c̄. Here, Λ = 2 is
considered for the rectangular wing cases, while Λ = 3.3 is utilised for the bumblebee
wing to maintain similarity to previous studies (Tobing et al. 2013, 2017). It is noted that
Λ of typical insect wings clusters around value 3.0 (Lentink & Dickinson 2009). Here,
a lower Λ is used for the rectangular wing due to the lower computational expense and
higher power economy compared to wings of larger Λ (Shahzad et al. 2016), while a
bumblebee wing of higher Λ is selected for testing the effectiveness of the scaling law
for other wings. While we acknowledge that Λ has significant effects on the LEV, as
detailed in previous studies (see e.g. Carr et al. 2013; Kruyt et al. 2015; Phillips, Knowles
& Bomphrey 2015), it would not significantly affect the scaling laws based on the LEV
estimation (see e.g. Lee et al. 2015). The wing undergoes hovering kinematics, including
both stroke motion in the horizontal plane about a pivot axis located 0.1c̄ away from its
root – referred as wing cutout (Schlueter et al. 2014) or petiolation (Phillips, Knowles &
Bomphrey 2017) – and pitching motion around its leading edge, according to Dai et al.
(2012):

φ = Aφ

2
sin

(
ωt + π

2

)
, θ = Aθ

2
sin(ωt), (2.1a,b)

where φ is the stroke angle, θ is the pitching angle, defined as the angle between the
vertical plane and the wing platform, ω = 2πf , with f being the flapping frequency, and
Aφ and Aθ are respectively the stroke and pitching peak-to-peak amplitudes. A wing cutoff
0.1c̄ is used following Dai et al. (2012) and Shahzad et al. (2016) because the lift is similar
for the wing cutoff up to 2.5c̄ (Schlueter et al. 2014), and a lower cutoff requires lower
computational power. More details of the effects of the wing cutoff on the lift and the LEV
can be found in previous studies (e.g. Carr et al. 2013; Schlueter et al. 2014; Phillips et al.
2017). To facilitate discussions, it is necessary to define the AoA during the middle stroke
as α = π/2 − Aθ /2, and the mean wing-tip (reference) velocity as U = 2Aφ(R + 0.1c̄)f .
To further verify the effectiveness of the scaling law, additional cases will be studied
utilising the kinematics defined by Shahzad et al. (2016). In this model, the stroke angle is
the same as that in (2.1a,b), while the pitching angle is defined as

θ = 90 − (89.11 + 16.04 cos(ωta) + 46.22 sin(ωta) − 0.05795 cos(2ωta)

− 0.0983 sin(2ωta) + 5.035 cos(3ωta) + 0.4004 sin(3ωta) − 0.1042 cos(4ωta)

− 0.1359 sin(4ωta) − 0.441 cos(5ωta) − 0.5349 sin(5ωta)), (2.2)

where ta = t − 0.5. The differences of the kinematic angle variations are shown in figure 1.
This study utilises stroke angle Aφ = 120◦ and will focus primarily on α = 45◦, as that is
the optimum for many flapping-wing configurations. However, cases either side of this
optimum (α = 30◦ and α = 60◦) will also be considered, to analyse the compressibility
effects at different AoA and to better inform the scaling law development. For convenience,
we refer to the above kinematics as the first kinematics and the second kinematics.

Here, we consider compressible flows, which are governed by the three-dimensional
compressible Navier–Stokes (NS) equations. In order to non-dimensionalise the NS
equations, the following reference quantities are used: mean wing chord width c̄, mean
wing-tip velocity U, far-field density ρ∞, far-field temperature T∞, and far-field pressure
P∞. In addition, the far-field viscosity is denoted as μ∞. Therefore, the non-dimensional
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Figure 1. Wing kinematics and planforms. (a) Definition of kinematic angles. (b) Variation of the pitch and
stroke angle over two flapping cycles. (c) The two wing planforms considered, including the basic rectangular
wing geometry (left) and the bumblebee wing planform (right). In (b), θ1 and θ2 are respectively for the first
and second kinematics.

NS equations can be written as (Anderson 2011),

∂Q
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

− 1
Re

(
∂Fu

∂x
+ ∂Gv

∂y
+ ∂Hw

∂z

)
= S,

Q = [ρ, ρu, ρv, ρw, E]T,

F = [ρu, ρu2 + P, ρuv, ρuw, (E + P)u]T,

G = [ρv, ρuv, ρv2 + P, ρvw, (E + P)v]T,

H = [ρw, ρuw, ρvw, ρw2 + P, (E + P)w]T,

Fu = [0, τxx, τxy, τxz, bx]T, Gv = [0, τxy, τyy, τyz, by]T, Hw = [0, τxz, τyz, τzz, bz]T,

bx = uτxx + vτxy + wτxz − qx,

by = uτxy + vτyy + wτyz − qy,

bz = uτxz + vτyz + wτzz − qz,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.3)

where ρ is the density, (u, v, w) is the velocity, P is the total pressure, E is the total energy,
S is the source term, Re = ρ∞Uc̄/μ∞ is the Reynolds number, (qx, qy, qz) is the heat flux,
and (τxx, τxy, τxz, τyy, τyz, τzz) is the stress tensor. The heat flux is determined by Fourier’s
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law according to

(qx, qy, qz) = − μ

Pr (γ − 1) Re Ma2

(
∂T
∂x

,
∂T
∂y

,
∂T
∂z

)
, (2.4)

where γ is the adiabatic coefficient, Pr is the Prandtl number (set as 0.71 in this study), T
is the temperature, and Ma is the Mach number, defined as Ma = U/as, with U being the
average wing-tip velocity, and as being the speed of sound given as

√
γ P∞/ρ∞. In this

work, T and E are given as

T = γ P
ρ(γ − 1)cp

, E = P
γ − 1

+ 1
2
ρ(u2 + v2 + w2), (2.5a,b)

where cp is the specific heat coefficient.

2.2. Numerical method
Equations (2.3)–(2.5a,b) are solved by using an immersed boundary method based on
the finite difference method. As this method has been documented in our previous works
(see e.g. Wang et al. 2017, 2024; Wang & Tian 2020; Wang, Tang & Zhang 2022a), only a
brief introduction is given here. A fifth-order weighted/targeted essentially non-oscillatory
scheme (Liu, Osher & Chan 1994; Fu, Hu & Adams 2016) is used for spatial discretisation
of the convective term, while a fourth-order central difference method is utilised to
discretise the spatial derivatives in the viscous terms. A third-order Runge–Kutta method
is implemented for the time discretisation. The boundary condition at the wing–fluid
interface is implemented through the feedback immersed boundary method (Huang &
Tian 2019) according to

F f = αib

∫ t

0
(U ib − U) dt + βib(U ib − U),

U ib(s, t) =
∫

Ω

u(x, t) δh(X (s, t) − x) dx,

f (x, t) =
∫

Γ

F f (s, t) δh(X (s, t) − x) dA,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

where U ib is the boundary velocity integrated from the flow around the boundary, U is the
structure velocity, αib and βib are feedback constants, u is the fluid velocity, X represents
the structural position, dA is the area element of the wing, x is the fluid node coordinates,
Ω and Γ represent the fluid domain and structural domain, respectively, f is the force
added as a source term to the NS equations, and δh is the Dirac delta function. Here, the
four-point δh proposed by Peskin (2002) is used. At the external boundaries, non-reflecting
boundary conditions are applied.

Due to the unsteady nature of flapping-wing problems, the onset of turbulence could
be much earlier than for fixed wings, e.g. Re ∼ O(103−105) (Lee, Kim & Kim 2006;
Viieru et al. 2006). Based on previous work (see e.g. Lee et al. 2006), turbulence does
not have a significant effect on the flapping foil in uniform flows. Here, the extension
of this conclusion to the hovering wing will be examined by large eddy simulations
(LES) implemented for moderate to high Reynolds numbers (e.g. ≥2000) as part of
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the parametric study. The Smagorinsky model is implemented to calculate the sub-grid
kinematic viscosity (Garnier, Adams & Sagaut 2009), according to

μsgs = (CsΔ)2
√

(2SijSij), (2.7)

where μsgs is the turbulent sub-grid kinematic viscosity, Cs is the Smagorinsky coefficient
(defined as 0.1 for this study), Δ is the filtering width of the LES filter, defined as
3
√

�x �y �z, and Sij is the component of the strain rate tensor. This μsgs is added to the
dynamic viscosity in the Reynolds number term in (2.3) when the LES are activated.

To account for effects of compressible turbulence and heat transfer, the methodology
defined by Vreman (1995) and Garnier et al. (2009) is implemented through an effective
thermal conductivity coefficient. In this method, the sub-grid thermal conductivity
coefficient is given as

ksgs = μsgscp

Prsgs
, (2.8)

where ksgs is the sub-grid thermal conductivity coefficient, added to the thermal
conductivity coefficient used to calculate the energy term in (2.3), and Prsgs is the sub-grid
Prandtl number, which is defined as 0.6 as detailed by Garnier et al. (2009).

As the solver used in this work has been validated extensively and used for modelling
flapping wings (see e.g. Wang et al. 2017, 2022a, 2024; Wang & Tian 2019, 2020),
validations for the majority of solver components are not included in this work. The
turbulence model introduced into the solver for this study has been validated, with
a validation study for turbulent flow over a rigid sphere presented in Appendix A.
In addition, validation of modelling transonic flows is provided in Appendix B.

For hovering flight, the most important quantity measuring the flight performance is the
lift coefficient CL:

CL = 2L
ρ∞U2A

, (2.9)

where L is the vertical (lift) force (also denoted as Fz), and A is the area of the wing.
The drag coefficient CD can be defined in a similar way by replacing the vertical lift force
with the drag force. The average lift and drag coefficients (CL and CD) are calculated
over the last two cycles of the simulations, when the cycle-to-cycle variation in the force
coefficients is negligible.

For the rectangular wing planform, the computational domain is 8.5c̄ × 10c̄ × 8.5c̄,
which is discretised by 189 × 265 × 189 Cartesian nodes. In order to provide higher
resolution near the wing, the grid is uniform in all three directions within an inner box 3c̄ ×
4.5c̄ × 3c̄, where the wing is hovering. This inner, refined domain is increased to 5.5c̄ ×
5.5c̄ × 3c̄ to house the higher-aspect-ratio bumblebee wing. The grid spacing in the inner
box is �x = �y = �z = 0.02c̄, and it is stretched gradually towards the outer boundaries
of the domain. A mesh convergence study was conducted for both a low Reynolds
number case (Re = 200, without turbulence models) and a high Reynolds number case
(Re = 2000, with turbulence models), to ensure that the results are independent of mesh
at reasonable computational costs. For both of these convergence studies, Ma = 0.8,
Aφ = 120◦ and α = 60◦. Mesh sizes �x = 0.08c̄, 0.04c̄ and 0.02c̄ are considered. The
error between the lift forces by �x = 0.04c̄ and �x = 0.02c̄ is approximately 3 % for the
low Reynolds number case, and negligible for the high Reynolds number case. In order to
achieve moderate resolution of compressible flow structures, and to maintain a high degree

1003 A10-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1216


A lift scaling law for a hovering wing in compressible flows

of accuracy, a mesh size �x = 0.02c̄ is used for this study. The mesh size of the structure
is half that of the uniform fluid region (i.e. 0.01c̄) to achieve the no-penetration condition.
More details can be found in Appendix C.

3. Numerical results

Simulations have been conducted at three distinct Reynolds numbers (200, 2000 and
6000), reflective of the likely order of magnitude (O(103)–O(104)) at which flapping-wing
vehicles would be operated in the low-density Martian environment. The average wing-tip
Mach number is varied from 0.2 to 1.4, and the AoA is varied from α = 30◦ to α = 60◦,
with a focus on the optimal AoA α = 45◦. The AoA variation is chosen to be in the range
of the majority of flapping-wing insects (see e.g. Ellington 1984; Dickinson et al. 1999;
Shyy et al. 2010). The ranges of these parameters allow a comprehensive analysis of a
wide variety of cases and the flow physics associated with flapping wings in compressible
flows. Due to the periodic stroke and pitching motion, the wing could experience subsonic
and supersonic flows during a flapping cycle for a given Mach number. Simulations are
conducted until the cycle-to-cycle variation in the force coefficients is negligible. In this
section, we first discuss the force generation, and then discuss the flow fields. Due to the
dominance of the LEV in lift generation of flapping wings, the flow field analysis will be
focused on vortex structures and their variation across the considered cases, as well as the
physical reasoning for the observed vortex structure variation.

3.1. Lift and drag
The average lift coefficients (CL) are shown in figure 2, from which there are a few
interesting observations. First, there is a critical Mach number, Macrit ≈ 0.6, separating
the cases into global subsonic and local supersonic regimes. In the global subsonic regime,
the local Mach number is less than 1 during the whole hovering period, and CL is not
significantly affected by the Mach number. In the local supersonic regime, the local Mach
number is beyond 1 near the wing tip during the middle stroke, and CL decreases with
the increase of the Mach number. Second, the Reynolds number affects the decreasing
rates of CL in the local supersonic regime. Specifically, a larger decay rate is observed
for lower Reynolds numbers compared to higher Reynolds numbers. Third, CL increases
when the Reynolds number increases, and the viscous effect is negligible for Re ≥ 2000.
This can be explained by the negative contribution of the viscous stress to lift generation.
Specifically, the flow travels from the leading edge to the trailing edge, leading to a viscous
stress aligned with the wing in the same direction as the flow. Because the leading edge
is always higher than the trailing edge, the viscous stress negatively contributes to lift,
which decreases when the Reynolds number increases. This observation is consistent with
the results reported by Shahzad et al. (2016). Finally, CL and its decay rate in the local
supersonic regime are affected by the AoA. The maximum CL occurs at α = 45◦, which
is consistent with previous studies (e.g. Sane & Dickinson 2001; Wang, Goosen & van
Keulen 2016; Huang et al. 2023). In addition, the greatest decay rates are observed for
α = 45◦, with lower decay rates observed for higher and lower AoA. Note that Macrit is
dependent on the kinematics (e.g. stroke time history), geometries (such as aspect ratio
and the first moment of area) and flexibility (e.g. the mass ratio and frequency ratio;
Tian et al. 2013), which affect the ratio of the maximum velocity of the flow and the
mean wing-tip (reference) velocity (Anderson 2011). For the two cases considered in this
study, Macrit does not vary significantly because the planform or the pitching motion
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Figure 2. Average lift coefficients calculated over two flapping periods as a function of the Mach number. The
vertical line represents the critical Mach number at which the flow near the wing tip exceeds the local speed of
sound. Rectangular and bumblebee wing planforms are represented by R and BB, respectively.

does not significantly affect the local maximum velocity. More details about the effects
of geometries and kinematics on the critical Mach number are given in Appendix D.

For the convenience of scaling analysis later, it is useful to consider the dimensional
lift force. As such, the dimensional lift forces as functions of the Mach number
are shown in figure 3. Here, L = (0.5ρ∞a2

s A) Ma2 CL. Gas properties of the Martian
environment and the estimated lift area based on the Ingenuity blades are used in the
aforementioned equation and subsequently in figure 3. Specifically, ρ∞ = 0.01680 kg m−3

(Seiff & Kirk 1977), as = 230 m s−1 (Shrestha et al. 2016), and A = 0.5 m2 (estimated
based on the Ingenuity blades; Tzanetos et al. 2022). As observed in figure 2, the
lift coefficient does not vary significantly with increasing Mach number in the global
subsonic regime. Consequently, the dimensional lift can be rewritten as L = X Ma2, where
X = 0.5ρ∞a2

s ACL. In the global subsonic regime, X is independent of Ma, because CL
is a function of only α and Re. In the local supersonic regime, it is dependent on Ma,
because CL is affected by Ma, as shown in figure 2. Following this, there is a parabolic
relationship for each case where the force is a function of the square of the Mach number.
Examples of these are shown in figure 3. Once Ma exceeds Macrit, the lift force starts
to deviate from this parabolic relationship for every case. As such, the current scaling
parameters for this problem are insufficient and will be reconsidered by modifying X to
X(as, A, ρ∞, CL(Ma, α, Re)), which will be discussed in § 4. Here, it is useful to show a
design case and compare it with the the Ingenuity. When Ma ranges from 0.2 to 0.7, L
varies between approximately 5–50 N, which corresponds to 1.3–13.4 kg, and is consistent
with the Ingenuity (1.8 kg).

The time histories of the lift coefficient over a stroke cycle are shown in figure 4. The
peak of the lift coefficient occurs during the translational stage. The peak is reduced by
approximately 40 % when the Mach number is increased from 0.4 to 1.4 for the case of
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y = X Ma2 (Re = 2000, α = 45°, R)
y = X Ma2 (Re = 200, α = 45°, BB)

X(as, A, ρ∞, CL(α, Re))

X(as, A, ρ∞, CL(α, Re, Ma2))

Re = 200, α = 45°, BB
Re = 2000, α = 45°, BB

Figure 3. Average lift forces over two periods as functions of Mach number. For Ma ≤ 0.6, a parabolic
relationship between force and Mach number is observed (L = X Ma2). When the Mach number is increased
beyond 0.6, this relationship fails, indicating that compressible flow structures impact the aerodynamic forces
in ways that the current scaling and conventional aerodynamic theory do not consider.

0T/8 4T/8

T
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8T/80T/8 4T/8
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1.5

2.0 Ma = 0.4, α = 45°, R
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Ma = 1.4, α = 45°, R

(b)(a)

Figure 4. Time histories of the lift coefficient over a flapping period for a rectangular wing at α = 45◦:
(a) Re = 200, and (b) Re = 2000. The peak CL can be seen to decay with increasing Mach number.

Re = 200, while for the higher Reynolds number case (Re = 2000), the decrease of the
peak lift is approximately 30 %. This is attributed to the secondary LEV structure observed
at high Reynolds numbers, which will be discussed in § 3.2.

The drag coefficient is another important quantity in aerodynamic design. Figures 5 and
6 show the average drag coefficient and its time histories, respectively. In general, it is
observed that an increase in average Mach number will slightly increase the average drag
coefficient following the introduction of shock structures (Ma > 0.6). The compressibility
is observed to have two-edged effects. During the translational stage, it decreases the drag,
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Figure 5. Average drag coefficients calculated over two flapping periods as a function of the Mach number
for different wing planforms and kinematics at α = 45◦.
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Figure 6. Time histories of the drag coefficient over a flapping period at α = 45◦: (a) Re = 200, and
(b) Re = 2000, for a rectangular wing planform.

similar to the lift. However, near the end of each stroke, a higher drag is observed for
higher Mach number (see figure 6). This is expected due to the high horizontal pressure
forces acting on the wing from the shock wave, with increasing shock strength resulting
in increased drag coefficients. The behaviours in the subsonic and transonic regions are
vastly different, depending on the wing kinematics and planform. The bumblebee wing
exhibits the lowest average drag, while compressibility effects result in a drag decrease
for the secondary kinematics until the wing becomes supersonic. This is an interesting
observation that will need to be studied in future as part of aerodynamic optimisation for
flapping-wing vehicles operating in compressible regimes.

3.2. Flow fields
In order to provide a further explanation for the force generation observed in § 3.1, flow
fields including vortical structures, shock waves and pressure distribution are presented
and discussed here.
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A lift scaling law for a hovering wing in compressible flows
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Figure 7. Top-down view of vortex structures at three typical instants contoured by the pressure coefficient for
Re = 200, Ma = 0.4 and α = 45◦: (a) t = T/8, (b) t = 2T/8 and (c) t = 3T/8. The wing stroke is symmetrical,
resulting in similar vortex structures in the back stroke. Here, T represents the wing stroke period.

3.2.1. Reynolds number 200
To provide a baseline for comparison, figure 7 shows the vortex structures at three typical
instants for α = 45◦ in the global subsonic regime (Ma = 0.4), and figure 8 shows the
vortex structures of the midstroke for different wing planforms, AoA and kinematics
considered. The vortex structures are visualised by the Q-criterion (Jeong & Hussain 1995;
Tian et al. 2014), contoured at value Q = 2.5, and coloured by the pressure coefficient
calculated by CP = (P − Pref )/(0.5ρ∞U2). First, a stable LEV attachment is observed,
with spanwise flow of the vortex occurring throughout the stroke, with the LEV merging
with the wing-tip vortex as it sheds into the wake (see figure 7). Within the LEV, there
is a low-pressure core, responsible for the pressure differential over the wing resulting in
a large force generation, as shown in figure 7. Second, the vortex structure detaches and
another is formed on the other side of the wing as it reverses in stroke, which is similar to
the observations presented in previous studies on flapping wings at medium/low Reynolds
numbers (see e.g. Birch, Dickson & Dickinson 2004; Harbig, Sheridan & Thompson
2013). Third, differences in the LEV size and formation in the midstroke are observed
for various α and wing planforms, as shown in figure 8. The variations between different
cases (including size and vortex stability) have a direct impact on the pressure distribution
along the wing. However, the magnitude of this pressure remains similar across all cases,
with the largest vertical pressure component occurring at α = 45◦. The vortex structures
are similar for the rectangular wing planform undergoing both sets of kinematics equations
(as shown in figure 8). The bumblebee wing planform, due to its higher aspect ratio, shows
that the LEV becomes unstable towards the wing tip, leading to the earlier detachment of
tip vortex.

For high Mach number cases (e.g. Ma = 1.4), the major flow feature is the shock wave
that is strongest in the midstroke. Figure 9 shows a top-down view of a rectangular wing at
Ma = 1.4 and α = 45◦, in which a prevalent shock structure is present. It is observed that
the spanwise flow of the LEV is heavily constrained as the spanwise flow inertia within the
LEV is not great enough to overcome the resultant pressure differential across the shock
wave generated near the wing tip. In addition, a large pressure gradient is observed along
the leading edge of the wing. This raises the average pressure across the LEV. Despite this,
a negative pressure coefficient is retained towards the end of the LEV in the chordwise
direction, albeit smaller in magnitude compared to the subsonic cases. The wing slows
down during pitch reversal, allowing the shock wave to propagate away from the wing
and dissipate. When this occurs, the spanwise flow and the low pressure of the LEV are
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Figure 8. Vortex structures for Re = 200 and Ma = 0.4 at 2T/4 (midstroke) for a variety of cases and
their associated wing pressure distributions: (a) α = 30◦, (b) α = 45◦, (c) α = 60◦, (d) α = 45◦ (second
kinematics), and (e) α = 45◦ (BB).
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Figure 9. Vortex structures for Re = 200, Ma = 1.4 and α = 45◦ through a wing stroke: (a) t = T/8,
(b) t = 2T/8 and (c) t = 3T/8. The shock wave is visible in the midstroke in (b), and propagates from the
wing in (c). The shock wave is visualised by the Laplacian of density (∇ · ∇ρ) and is contoured by pressure
coefficient. This shock wave stifles the spanwise flow of the LEV as observed in (b,c) when compared to the
subsonic case. There is also a noticeable pressure rise of the LEV due to the shock wave.

slightly recovered. Due to the higher pressure along the leading edge as a result of the
shock front, coupled with the constrained spanwise flow, a substantial lift decrease is
observed when compared to the lower Mach number cases. In addition to the degradation
of the LEV, the wing-tip vortex goes from being a prominent flow structure in the low
Mach number case (figure 7), to a substantially weaker flow structure in the high Mach
number case (figure 9), further contributing to the decreased lift coefficient.

Similar flow structures and vortex/shock interactions are observed when the AoA, wing
kinematics and wing planforms are varied (figure 10). However, the decay rate of the
coefficient of lift is a maximum for the rectangular wings at α = 45◦ (figure 2). Thus
it is clear that the shock wave generated near the wing tip has a more detrimental effect on
the aerodynamic force for cases experiencing larger lift. This is due to two distinct reasons.
The first reason is that the appearance of the shock wave increases the average pressure
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A lift scaling law for a hovering wing in compressible flows
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Figure 10. Vortex structures in the midstroke for Re = 200, Ma = 1.4 and α = 45◦ for different wing
planforms and kinematics: (a) rectangular wing undergoing the first kinematics; (b) rectangular wing
undergoing the second kinematics; and (c) bumblebee wing undergoing the first kinematics. For all cases,
the spanwise flow within LEV is constrained when compared to the subsonic cases. There is also a noticeable
pressure rise of the LEV due to the shock wave.
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Figure 11. Vortex structures for Re = 2000, Ma = 0.4 and α = 45◦ through the forward stroke: (a) t = T/8,
(b) t = 2T/8 and (c) t = 3T/8.

of the LEV, with the largest variation occurring at the wing tip where the shock structure
initially forms and is strongest. As such, the shock structure has a less detrimental effect for
the cases that have less reliance on the region of the LEV towards the wing tip, such as high
AoA cases, or cases of wings with a high aspect ratio (such as the bumblebee wing). Since
there is less pressure and aerodynamic force contribution from vortex structures around
the wing tip, and this is the region where the shock structure has the greatest impact, a
lower decay rate is observed. The second reason is that for low AoA cases, the increased
speed of the wing results in faster formation of the LEV. This allows for the LEV to form
quickly just after stroke reversal before the shock structure forms, resulting in an increase
in pressure difference across the wing earlier in the stroke.

The lack of spanwise flow of the LEV and the large pressure increase along the leading
edge of the wing results in a degradation of the lift coefficient. A reduction of up to 45 %
in the lift coefficient is observed between the low Mach number cases (Ma < 0.6) and
highest considered Mach number cases (Ma = 1.4).

3.2.2. Reynolds number 2000
As discussed in § 3.2.1, the shock wave limits the spanwise flow that could affect the
stability of the LEV. Such effects could be strengthened at higher Reynolds numbers (e.g.
Re = 2000). To discuss this effect, figure 11 shows the vortex structures at three typical
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Figure 12. Vortex structures for Re = 2000 and Ma = 0.4 at 2T/4 (midstroke) for a variety of cases and their
associated wing pressure distribution: (a) α = 30◦, (b) α = 45◦, (c) α = 60◦, (d) α = 45◦ (second kinematics),
and (e) α = 45◦ (BB).
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Figure 13. Vortex structures and shock waves at three typical instants for Re = 2000, Ma = 1.4 and α = 45◦:
(a) t = T/8, (b) t = 2T/8 and (c) t = 3T/8. The shock wave is visualised by the Laplacian of density (∇ · ∇ρ)
and is contoured by the density gradient magnitude. The shock structures are shown as the concave structures
around the wing tip. The shock generation in the midstroke, and its propagation and dissipation as the wing
translates throughout the stroke, are the same as for the low Reynolds number case.

instants for α = 45◦ at Re = 2000 and Ma = 0.4, and figure 12 shows the vortex structures
at 2T/4 for a variety of AoA, wing kinematics and wing planform cases. As shown in
figure 11, the spanwise flow within the LEV and its stable attachment throughout the
stroke for α = 45◦ are similar to those at Re = 200. The main difference between the two
Reynolds number regimes is that the slight breakdown of the LEV near the wing tip is
observed towards the end of the stroke for Re = 2000. This has previously been observed
for high Reynolds number flapping-wing cases (see e.g. Birch et al. 2004; Harbig et al.
2013). When comparing this to higher AoA cases (such as α = 60◦) at Re = 2000, the
LEV exhibits increased instability towards the wing tip (as shown in figure 12).

Figure 13 shows the vortex structures and shock wave at three typical instants for
Re = 2000, Ma = 1.4 and α = 45◦. Figure 14 shows a top-down view of different wing
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Figure 14. Each column corresponds to a different test case, each at Re = 2000 and Ma = 1.4: (a) rectangular
wing (α = 45◦), (b) bumblebee wing (α = 45◦), and (c) rectangular wing (α = 45◦, 2nd kinematics). From top
to bottom, for each case, the top-down views of vortex structures at four typical instants are considered (T/8,
2T/8, 3T/8 and 4T/8). The shock structures have been removed from this figure to clearly observe the LEV.
It can be seen that for each of these cases, the LEV splits into two distinct vortex structures at 2T/8. This split
occurs at approximately half the span length for the rectangular cases (a,c), and approximately one-quarter of
the span length for the bumblebee case (b). At 3T/8, partial recovery of the LEV is observed, while the LEV
is fully recovered as the wing slows to subsonic speeds at 4T/8.

planforms and wing kinematics without the shock wave to clearly visualise the LEV
behaviours. At high Mach numbers (e.g. Ma = 1.4), a significant difference in the flow
structures is observed for the high Reynolds number cases when compared to the low
Reynolds number cases. At approximately half the span length for the rectangular wing
cases, and approximately one-quarter of the span length for the bumblebee wing planform,
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the LEV separates into two distinct vortex structures when a shock structure is present
(figure 14). This is likely due to the higher spanwise velocity and inertia of the LEV when
compared to lower Reynolds number flows. The second LEV structure reattaches to the
wing tip or wing-tip vortex. The first LEV structure decays in a way similar to that of
the LEV in the low Reynolds number case. A large pressure is once again observed along
the leading edge, impacting the first LEV. This decreases the lift coefficient due to the
average increase in the pressure of the LEV, in a way similar to that of the low Reynolds
number case. The secondary vortex structure, however, retains a low pressure core, and its
presence over the wing projects a negative pressure onto the top of the wing, resulting in
some recovery of the decayed aerodynamic force, explaining why a smaller rate of decay
in the lift coefficient is observed for higher Reynolds numbers, as demonstrated in figure 2.

Similar flow structures are observed for all cases considered in this study at Re = 2000
and Ma = 1.4 (see figure 14), indicating the consistent flow physics, despite the variations
in AoA, wing planform and kinematics. Once again, a smaller decay rate of the lift
coefficient at higher AoA is observed as there is less contribution from the LEV near
the wing tip to the aerodynamic lift when compared to lower AoA.

4. Scaling analysis

Lee et al. (2015) proposed a scaling law for hovering insects in incompressible flows
through dimensional analysis based on real insect data. Based on the work by Lee
et al. (2015), a correction factor is developed to account for compressibility and viscous
effects to aid in engineering design and development for flapping-wing technology in
highly compressible environments, such as Mars or very high altitudes on Earth. First,
an approach similar to that of Lee et al. (2015) is used, with the LEV strength as a basis
for aerodynamic force generation. Lee et al. (2015) stated that the strength of the LEV is
scaled via circulation around the wing according to

τ ∼ Uc̄Λ sin(α)

Λ + 2
, (4.1)

where τ is the LEV strength, U is the average wing tip velocity, c̄ is the average chord
length, Λ is the aspect ratio, and α is the AoA of the wing. Following this, we can derive
the reaction force (F) exerting on the wing as the changing rate of the vortical impulse (I)
according to

F ∼ �I
T

∼ ρ∞τRc̄
T

, (4.2)

where ρ∞ is the fluid density, R is the span of the wing, and T is the flapping period.
In this study, the flapping period is defined as

T = 2Aφ(R + 0.1c̄)
U

. (4.3)

Substituting the flapping period (4.3) and the LEV strength (4.1) into the scaled force
equation (4.2) results in

F ∼ ρ∞Rc̄2U2Λ sin(α)

2Aφ(R + 0.1c)(Λ + 2)
. (4.4)

Recall that the force coefficient is defined as

CF = 2F
ρ∞U2A

. (4.5)
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A lift scaling law for a hovering wing in compressible flows

Since this is the total force coefficient, the vertical component (scaled coefficient of lift)
is obtained by multiplying (4.5) by cos(α). Finally, combining this result with (4.4) yields
the lift coefficient in terms of the flapping wing kinematics and geometric parameters:

CL ∼ c̄Λ sin(2α)

2Aφ(R + 0.1c̄)(Λ + 2)
. (4.6)

In the results presented in figure 2, little variance with Mach number is observed in the
global subsonic regime. However, there is a variation in CL between different Reynolds
numbers that is ignored in the previously derived equation. This variation of CL for
different Reynolds numbers can be attributed to viscous forces that are not considered in
the derived CL equation above. To account for this, the coefficient of lift can be separated
into two distinct terms:

CL = CLP + CLV , (4.7)

where CLP is the pressure contribution equivalent to CL in (4.6), and CLV is the viscous
contribution to the dimensionless lift. Since (4.6) considers only the LEV, which is the
pressure contribution of CL, an additional viscous correction term must be added. This
viscous correction term can be based on the work of Senturk & Smits (2019) in the scaling
law for the propulsive performance of a pitching aerofoil, where they observed a force
coefficient dependency on the Reynolds number (1/

√
Re). By multiplying this by the

normalised projected area of the wing ((Rc̄/c2) sin(α)) relative to the direction of motion,
an initial viscous correction factor (and coefficient of lift) can be defined as

CLV ∼ −Λ sin(α)√
Re

,

CL ∼ cΛ sin(2α)

2Aφ(R + 0.1c)(Λ + 2)
− Λ sin(α)√

Re
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.8)

This scaling law is valid when the wing is in the global subsonic regime. However, once
the wing tip exceeds the speed of sound, the lift coefficient reduces with the increase of
Mach number, and the reduction rate depends on both the Reynolds number and the AoA.
Therefore, an additional correction factor is required for when shock structures are present.
The decay of the lift coefficient with Mach number is approximately linear for all cases.
This is different from the lift of stationary aerofoils in supersonic flows as predicted by
the traditional theories (e.g. the linearised Ackeret and second-order Busemann theories;
Cook 2013). There are three potential reasons. First, supersonic flows occur only around
the middle stroke, and subsonic and low speed flows occur at other stages (see figures 9 and
13). Second, the supersonic effect is effective only near the wing-tip region, as discussed in
§ 3.2. Third, here we consider only a limited range of Mach numbers (e.g. up to 1.4), thus
the dependence of CL on the Mach number may be linearised. Therefore, the correction
factor takes the form

y = (mxδc + b), (4.9)

where y is the correction factor, m is the rate of decay, and δc takes the value 1 when
the wing is in the local supersonic regime, and 0 for the global subsonic regime. In this
equation, m is a function of Reynolds number and AoA, while x is some Mach number
value. The constant b takes value 1 to ensure convergence to the globally subsonic solution
for CL when δc = 0.
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The gradient of decay (m) is effectively a weighting of the Reynolds number and AoA
effect on the decay of CL. As observed by Chen et al. (2022), there is a limit in stable LEV
intensity on revolving wings. Noting this Reynolds number effect, the gradient of decay
can be mathematically defined as

m = −a/Re − b sin(cα). (4.10)

As the Reynolds number increases, the first term defining the decay rate trends to 0,
implying the previously identified LEV intensity limit. Based on observations from data,
the effects of the Reynolds number and AoA on decay rate at low Reynolds numbers
are similar, while the AoA becomes the dominant factor when the Reynolds number
increases to the LEV intensity limit. Since the greatest decay rate of the lift coefficient
with increasing Mach number occurs at α = 45◦, and reduces similarly for lower and
higher AoA, the coefficient c is defined as c = 2. The coefficients a and b are scaling
weights that will be added shortly, based on analysis of results. The x value of the linear
equation is a function of the Mach number, defined as the average Mach number of the
wing tip, minus the critical average Mach number (when the wing tip becomes supersonic
in the midstroke).

Based on these observations, the following scaling relationship is established:

CLP ∼ c̄Λ sin(2α)

2Aφ(R + 0.1c̄)(Λ + 2)

[(
1

Re
− sin(2α)

)
(Ma − Macrit)δc + 1

]
. (4.11)

Using this scaled definition, applying weighted values for the scaled terms, considering
the viscous force contribution and applying it to the vertical aerodynamic force, yields

LP = ρ∞AφRc̄2f 2(R + 0.1c̄)
Λ sin(2α)

Λ + 2

[(−40
Re

− 0.35 sin(2α)

)
(Ma − Macrit)δc + 1

]
.

(4.12)

Physically, this represents the lift force as a result of the LEV. The terms on the
right-hand side of (4.12) before the square bracketed term are the geometric and kinematic
parameter effects, while the square bracketed term represents the effects of compressibility
on the LEV and total pressure lift.

The linear relationship of the above equation is shown in figure 15, where the pressure
lift is taken as the total lift minus the viscous lift to facilitate the general aerodynamic
force analysis. All numerical results follow this linear relationship at gradient 11.4, which
is similar to the linear relationship identified by Lee et al. (2015), indicating that the
scaling law derived in this paper holds for existing flapping-wing data, and provides a
novel correction for flapping wings in highly compressible flows, providing a more general
use of this scaling law for highly compressible environments.

5. Conclusion

This paper presents a numerical study of the flow physics and aerodynamic performance
of a three-dimensional hovering wing, focusing on the effects of compressibility and
viscosity on the lift and subsequent scaling law. It is observed that the shock structures
near the wing tip result in the limiting of the leading-edge vortex (LEV) spanwise flow.
A degradation in the lift coefficient is observed due to this spanwise flow mitigation,
coupled with the increase in average pressure of the LEV due to the shock front. At low
Reynolds numbers, no lift coefficient recovery is observed for high Mach number cases,
resulting in a high rate of decay with increasing shock strength. For high Reynolds
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Figure 15. Scaled lift relationship with compressibility corrections.

numbers, a secondary LEV is identified that retains a low pressure core and is observed
to reattach to either the wing tip or the wing-tip vortex. This results in some recovery of
the lift coefficient. The rate of decay is observed to vary as a function of both Reynolds
number and angle of attack. To quantify this change, a novel scaling law correction for
the lift generation in highly compressible flows is proposed by considering the effects
of compressibility and viscosity. This scaling law results in a linear relationship being
observed between aerodynamic forces, LEV strength and its associated decay at high Mach
numbers. Little deviation between the lift coefficient for constant Reynolds numbers when
the wing is in the global subsonic flow regime is observed. Despite the decay in the lift
coefficient with increasing Mach number, the increase in wing velocity still results in
a higher lift achieved, indicating the ability of the flapping-wing flight mechanisms to
maintain positive lift in highly compressible conditions. This study provides a basis for
flapping wings in compressible flows inspired by the Martian atmospheric conditions.

This work is limited by the finite set of planforms, shapes and kinematics of wings.
Further work is currently being undertaken to investigate additional factors that would
impact the scaling law, such as wing shape, configuration, structural parameters and slip
boundary conditions. While this study makes every effort to consider a wide variety
of hovering flapping-wing cases, further studies are required to determine the optimal
design for flapping wings in low-density environments, which will be considered in our
future works.
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Appendix A. Validation of the solver – turbulence

In this appendix, the turbulence solver is validated by two cases for flow over a rigid sphere.
This is due to the fact that the flow solver has two distinct sub-grid models as defined in the
main paper. The first model is the Smagorinsky model to account for subgrid viscosity, and
the second model accounts for turbulence compressibility effects and heat transfer. These
models are validated independently to ensure that each model is accurate and cohesive.

The first case is a uniform flow over a sphere at Reynolds number 10 000 and Mach
number 0.1 to test the Smagorinsky model without obvious compressibility. Table 1 shows
the mean CD, the Strouhal number and the flow separation angle. It shows that the Strouhal
number and separation angle have negligible variation when compared with the data
obtained in the references. The coefficient of drag is within the range of presented by
Constantinescu & Squires (2004), and is within a deviation of 5 % compared with the
results in the references.

The second case is a uniform flow over a rigid sphere at Re = 3700 and Ma = 0.6,
which is a well-studied case at the turbulent transition threshold. The Smagorinsky model
is implemented alongside a thermal turbulence model defined in (2.8). The results of
previous studies alongside this validation case are presented in table 2. This validation
study provides excellent agreement with results published in the literature, with negligible
deviation from those results presented by Rodríguez et al. (2013).

Source CD St ϕs

Present study 0.42 0.2 84
Yun, Kim & Choi (2006) 0.393 0.17 90
Constantinescu & Squires (2004) 0.393 0.16 84
Achenbach (1972) 0.4 0.195 82–82.5
Rodríguez et al. (2013) 0.402 0.195 84.7

Table 1. Validation study for flow over a rigid sphere at Re = 10 000 and Ma = 0.1 using the Smagorinsky
model. In this table, CD is the drag coefficient, St is the Strouhal number, and ϕs is the flow separation angle
from the sphere. The results of this study show good agreement with those in the literature.

Source CD St ϕs

Present study 0.395 0.212 89
Kim & Durbin (1988) — 0.225 —
Sakamoto & Haniu (1990) — 0.204 —
Yun et al. (2006) 0.355 0.21 90
Rodríguez et al. (2013) 0.394 0.215 89.4

Table 2. Validation study for compressible flow over a rigid sphere at Re = 3700 and Ma = 0.6. In this table,
CD is the drag coefficient, St is the Strouhal number, and ϕs is the flow separation angle from the sphere. The
results of this study show good agreement with those in the literature.
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Figure 16. Calculated lift force for (a) Re = 2000 and (b) Re = 6000 with and without LES. Little force
variation is observed, indicating that the LES model did not have significant effects on the results.
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Figure 17. Vortex structures in the middle stroke for the case Re = 2000, Ma = 1.2: (a) without LES and
(b) with LES.

Finally, test cases for flapping wings (as considered in this study) are conducted with
and without the LES model to ensure its accuracy and relevance. Figure 16 shows the lift
coefficients for Re = 2000 and 6000. It is found that the difference in the forces predicted
by the methods with and without LES is negligible, even at the highest Reynolds numbers
considered. Based on the work by Lee et al. (2006), turbulence does not have a significant
effect on the flapping foil in the uniform flow. Here, we further confirm that this conclusion
applies to the flapping wing during hovering flight. This is because the flow considered is
dominated by large, unsteady vortex structures. Turbulence would become more important
for the cases involving acoustics or dynamics stall where the point of separation is sensitive
to the viscosity.

Figure 17 shows the vortical structures around the wing. It shows that the near-wing
vortex structures are not significantly affected by the inclusion of LES. There is a variation
in vortex structures further away from the wing as they break down, which is due to the
nature of turbulence, but this does not have a significant effect on the force of the wing.

1003 A10-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1216


N. Widdup, L. Wang, J. Young, V. Daria, H. Liu and F.-B. Tian

Source Ma CD

Present study 0.8 0.79
Present study 0.95 0.95
Nagata et al. (2020) 0.8 0.8
Nagata et al. (2020) 0.95 0.95

Table 3. Validation study for transonic flow over a rigid sphere at Re = 300: the mean drag coefficients.
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Figure 18. Validation study for a transonic flow over a sphere at Re = 300: the pressure coefficients around
the sphere.

Appendix B. Validation of solver – transonic study

In this appendix, we consider the transonic cases Ma = 0.8 and 0.95 for a uniform flow
over a rigid sphere at Re = 300, to ensure that the appropriate flow physics is captured
in the transonic regime as it is a relevant regime for this study and can potentially result
in numerical issues. This case is selected because it is numerically more challenging due
to the sensitivity of the separation to the numerical set-up. The mean drag coefficient is
shown in table 3, and the pressure coefficients around the sphere are shown in figure 18.
It is found that our results show excellent agreement with the results by Nagata et al.
(2020). These successful validations, together with the fact that this solver has been
used with success in previous studies involving transonic and supersonic flows, including
prediction of force distribution along an aerofoil in transonic flows (Wang et al. 2022b,
2024), provide confidence in its reliability in modelling the hovering wing considered in
this work.

Appendix C. Mesh convergence study

In this appendix, a mesh convergence study is conducted to ensure that the results
reported in this work are independent of mesh at reasonable computational costs. For
this mesh convergence study, two cases are considered. The first case is a hovering wing
at Re = 200, Ma = 0.8 (supersonic wing tip) and α = 60◦ without a turbulence model,
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Figure 19. Lift coefficient for (a) Re = 200 and (b) Re = 2000, at Ma = 0.8 and α = 60◦ at various mesh
resolutions.

and the second case is a hovering wing at Re = 2000, Ma = 0.8 and α = 60◦ with a
compressible turbulence model. In this study, a non-uniform mesh is used. The grid is
uniform in all three directions within an inner box 3c̄ × 4.5c̄ × 3c̄ where the wing motion
occurs. The grid then gradually becomes coarser towards the outer boundaries where high
flow structure resolution is not required for analysis of this problem, thereby reducing the
computational cost. The uniform mesh region around the wing provides the basis for this
mesh convergence study and is the location where the mesh size is varied. Mesh sizes
�x = 0.08c̄, 0.04c̄ and 0.02c̄ are tested.

Figure 19 shows the lift coefficients for cases Re = 200 and 2000. For Re = 200, mesh
size �x = 0.08c̄ results in a 10 % offset in average lift coefficient when compared to �x =
0.02c̄, while there is a 3 % variation in CL between mesh sizes �x = 0.04c̄ and 0.02c̄. For
Re = 2000, mesh size �x = 0.08c̄ provides an approximately 3 % error in average lift
coefficient when compared to �x = 0.02c̄, while there is negligible difference between
mesh sizes �x = 0.04c̄ and 0.02c̄. Due to the computational resources required, coupled
with the observation that there is minimal variation between �x = 0.04c̄ and 0.02c̄ for
Re = 2000 (and an acceptable variation of 3 % for Re = 200), it was deemed unnecessary
to reduce the mesh further.

Based on these observations, mesh size �x = 0.02c̄ is utilised for this study to ensure
accuracy and consistency across all cases. This higher resolution mesh ensures that the
shock interface is captured with a reasonable degree of clarity for flow field analysis.

Appendix D. Critical Mach number analysis

The effects of wing geometry and kinematic parameter on the critical Mach number are
discussed. The wing geometry is defined by a general beta distribution function (B( p, q))
as detailed by Ellington (1984), in which the general shape of the majority of insect wings
could be defined. According to this model, the wing shapes are defined by

r1 =
∫ 1

0
c̄ r̄ dr̄, r2 = 0.929 r1

0.732, (D1a,b)

p = r1

(
r1(1 − r1)

r2
2 − r1

2 − 1
)

, q = (1 − r1)

(
r1(1 − r1)

r2
2 − r1

2 − 1
)

, (D2a,b)
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Figure 20. Critical Mach number analysis of various wing geometries and aspect ratios: (a) effect of wing
geometry on Mach number; (b) critical Mach number as a function of θ .

B( p, q) =
∫ 1

0
r̄p−1(1 − r̄)q−1 dr̄, c̄ = r̄p−1(1 − r̄q−1

B( p, q)
, (D3a,b)

where c̄ and r̄ are respectively the chord length (normalised by the mean chord) and
distance from the wing root in the spanwise direction (normalised by the wingspan), and r1
and r2 are the non-dimensional radii of first and second moments of area. Here, the same
wing profiles as depicted by Shahzad et al. (2016) are used. The values of r1 range from
0.43 to 0.63, and the aspect ratio Λ ranges from 1.5 to 6. Finally, the midstroke pitching
angles (θ ) ranging from 30◦ to 60◦ are considered.

Figure 20 shows the critical Mach number for wings of varying geometries and aspect
ratios. While there is clearly an effect of wing geometry and motion on the critical Mach
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number, the wing profiles (excluding the extreme cases of high r1 and low aspect ratio)
investigated here are close to 0.6. The average critical Mach number of the rectangular
wing is Macrit = 0.62. It ranges from 0.5 to 0.7 for all wings considered.

Due to the large variable space of flapping-wing problems, and noting the limited
availability of computational resources required to run these simulations, not all these wing
geometries are considered here. However, based on the range of critical Mach numbers
identified, generic rectangular and bumblebee wings provide a sufficient approximation of
general flapping-wing aerodynamics for this study.
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