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SUMMARY
This paper deals with the kinematic analysis and enumeration of singularities of the six degree-
of-freedom 3-RPS-3-SPR series–parallel manipulator (S–PM). The characteristic tetrahedron of the
S–PM is established, whose degeneracy is bijectively mapped to the serial singularities of the S–PM.
Study parametrization is used to determine six independent parameters that characterize the S–PM
and the direct kinematics problem is solved by mapping the transformation matrix between the base
and the end-effector to a point in P 7. The inverse kinematics problem of the 3-RPS-3-SPR S–PM
amounts to find the location of three points on three lines. This problem leads to a minimal octic
univariate polynomial with four quadratic factors.

KEYWORDS: Series–parallel Manipualtors; S–PM; Singularities; Characteristic tetrahedron; Inverse
kinematics; Direct kinematics.

1. Introduction
Serial and parallel manipulators (SM and PM) have received a lot of interest for the last few decades due
to the high stiffness properties of parallel manipulators1 and large workspace of serial manipulators.2

Hence, a marriage between SM and PM with a hope to reap the merits of both, has led to hybrid
manipulators.3–9 A hybrid manipulator is a serial linkage mounted on a parallel manipulator and
vice-versa or a serial arrangement of two or more parallel manipulators, known as a series–parallel
manipulator (S–PM). As much as it is regarded for its merits, an S–PM also bears the demerits of its
constituent manipulators in the sense that its kinematic modeling and singularity analysis are more
complicated. Various approaches have been proposed in the literature to analyze S–PMs: Shahinpoor5

solved the direct and inverse kinematics of modular three-axis parallel manipulators mounted in series
as an n-axis S–PM. Romdhane8 performed the forward displacement analysis of a Stewart-like S–PM.
Tanev3 studied a novel six degrees-of-freedom (dof) S–PM and derived the closed-form solutions to its
forward and inverse kinematics. Moreover, Zheng et al.9 obtained closed-form kinematic solutions for
the design of a six-dof S–PM composed of a three-UPU translational PM and a three-UPU rotational
PM mounted in series. In most of these S–PMs, the constituent modules possess the dof that are pure
rotations or translations. Hence, each module can be replaced by a set of equivalent lower kinematic
pairs that can simplify the understanding of the S–PM behaviour.

There exist other S–PMs in which the PMs that constitute them have their dof coupled and hence give
rise to parasitic motions. Hu, Lu and Alvarado10–12,14,15 have contributed considerably to the design
and analysis of this kind of S–PM. Lu and Hu11 pursued the kinematic analysis of a 2(SP+SPR+SPU)
S–PM and plotted its workspace. They also performed the static analysis10 of S–PMs with k-PMs in
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Fig. 1. A 3-RPS-3-SPR series–parallel manipulator.

series. In addition, Hu14 formulated the Jacobian matrix for S–PMs as a function of Jacobians of the
individual parallel modules. Alvarado12 used screw theory and the principle of virtual work to carry
out the kinematic and dynamic analysis of a 2-(3-RPS) S–PM. The 3-RPS-3-SPR S–PM is another
example of an S–PM composed of two parallel modules with coupled dof. The proximal module is
the three-RPS parallel mechanism which performs a translation and two non-pure rotations about
non-fixed axes, which induce two translational parasitic motions,16 while the distal module is the
three-SPR PM that has the same type of dof.24 Hu et al.13 analyzed the workspace of this manipulator.
Alvarado et al.15 erroneously claimed that this S–PM has five dof. The reader is referred to as Nayak
et al.17 for a better understanding of the mobility of this S–PM. Nayak et al.17 proved that the full-cycle
mobility of this manipulator is equal to six. Nonetheless, there is very little research on the singularities
of S–PMs. It is known that if any of the parallel modules are in a singular configuration, the S–PM is
also singular3 but the singularities that arise due to the serial arrangement of the PMs are generally left
out. This paper focuses on the enumeration of those serial singularities in the 3-RPS-3-SPR S–PM. It
is shown that six independent parameters can be used to describe the kinematics of this manipulator.
Furthermore, direct and inverse kinematics problems for the 3-RPS-3-SPR S–PM are solved using
study parametrization.

The paper is organized as follows: The manipulator under study is described in Section 2. Six
independent parameters that characterize the S–PM are determined in Section 3. Section 4 presents
the singularities of the S–PM, while pointing out its serial singular configurations. Sections 5 and 6
deal with the direct and inverse kinematics problems of the 3-RPS-3-SPR S–PM.

2. Architecture of the 3-RPS-3-SPR Series–Parallel Manipulator
The architecture of the 3-RPS-3-SPR S–PM under study is shown in Fig. 1. It consists of a proximal
three-RPS PM module and a distal three-SPR PM module. The three-RPS PM is composed of three
legs each containing a revolute, a prismatic and a spherical joint mounted in series, while the legs
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of the three-SPR PM have these lower pairs in reverse order. Thus, the three equilateral triangular
shaped platforms are the fixed base, the coupler and the end effector, coloured brown, green and
grey, respectively. The vertices of these platforms are named Ai, Bi and Ci, i = 1, 2, 3, respectively.
Hereafter, the subscript 0 corresponds to the fixed base, 1 to the coupler platform and 2 to the
end-effector. A coordinate frame Fi is attached to each platform such that its origin Oi lies at its
circumcentre. The coordinate axes, xi points towards the vertex P1, P = A, B,C yi is parallel to the
opposite side P3P2 and by the right-hand rule, zi is normal to platform plane. Besides, the circum-radius
of the ith platform is denoted as hi. pi and qi, i = 1, . . . , 6 are unit vectors along the prismatic joints,
while ui and vi, i = 1, . . . , 6 are unit vectors along the revolute joint axes. αi is the plane passing
through Ai with its normal along ui. Similarly, βi is the plane passing through Ci with its normal along
vi. The spherical joint centre Bi is constrained to lie in planes αi and βi simultaneously.

3. Parametric Representation of the 3-RPS-3-SPR Series–Parallel Manipulator
This section describes the parametrization of the 3-RPS-3-SPR S–PM shown in Fig. 1. It will be
shown that six independent parameters are sufficient to describe the position and orientation of the
moving platform. These parameters are obtained by individually parameterizing the proximal and the
distal modules.

Study’s kinematic mapping18 maps each spatial Euclidean displacement γ of SE(3) onto a point in
seven-dimensional projective space, p ∈ P 7. In this parametrization, a point [x, y, z] is transformed
to [x′, y′, z′] according to

[1, x′, y′, z′]T = M[1, x, y, z]T (1)

where the matrix M ∈ SE (3) is represented as

M =
[

x0
2 + x1

2 + x2
2 + x3

2 0T
3×1

MT MR

]

(2)

MT =
⎡

⎣
−2x0y1 + 2x1y0 − 2x2y3 + 2x3y2

−2x0y2 + 2x1y3 + 2x2y0 − 2x3y1

−2x0y3 − 2x1y2 + 2x2y1 + 2x3y0

⎤

⎦ (3)

MR =
⎡

⎣
x0

2 + x1
2 − x2

2 − x3
2 −2 x0x3 + 2 x1x2 2 x0x2 + 2 x1x3

2 x0x3 + 2 x1x2 x0
2 − x1

2 + x2
2 − x3

2 −2 x0x1 + 2 x3x2

−2 x0x2 + 2 x1x3 2 x0x1 + 2 x3x2 x0
2 − x1

2 − x2
2 + x3

2

⎤

⎦ (4)

where MT and MR represent the translational and rotational parts of the transformation matrix M,
respectively. The parameters xi, yi, i ∈ {0, . . . , 3} present in the transformation matrix M are called
the Study parameters. An Euclidean transformation can be represented by a point p ∈ P 7 if and only
if the following equation and inequality are satisfied:

x0y0 + x1y1 + x2y2 + x3y3 = 0 (5)

x0
2 + x1

2 + x2
2 + x3

2 �= 0 (6)

All the points that satisfy the Eq. (5) belong to the six-dimensional study quadric, S2
6. To avoid the

inequality (6), usually a normalization condition xi = 1, i = 0, 1, 2 or 3 or x2
0 + x2

1 + x2
2 + x2

3 = 1 is
used.

A geometric constraint for each leg of the three-RPS parallel manipulator is that the spherical
joint centre is restricted to move in the plane whose normal is directed along the revolute joint axis.
Let f0, f1, f2, f3, g0, g1, g2, g3 be the study parameters. Using study’s kinematic mapping,18,19 three
plane constraint equations Ei = 0, i = 1, 2, 3 can be written as a function of study parameters fi, gi,
i = 0, 1, 2, 3. Along with the study’s quadric E4, there are four constraint equations irrespective of
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the actuation scheme:

E1 := f0 f3 = 0 (7)

E2 := f1
2h1 − h1 f2

2 + 2 f0g1 − 2 f1g0 − 2 f3g2 + 2 g3 f2 = 0 (8)

E3 := −2 f0 f3h1 + f1 f2h1 − f0g2 + f1g3 + f2g0 − f3g1 = 0 (9)

E4 := f0g0 + f1g1 + f2g2 + f3g3 = 0 (10)

where h1 is the circum-radius of the coupler platform. A different set of study parameters,
[c0, c1, c2, c3, d0, d1, d2, d3] are considered to parameterize the distal module to distinguish the two
modules. The constraint equations for the three-SPR PM can be obtained by considering the conjugate
of the dual quaternion of the three-RPS PM.20 In other words, assigning

f0 = c0, f1 = −c1, f2 = −c2, f3 = −c3, g0 = d0, g1 = −d1, g2 = −d2, g3 = −d3 (11)

in Eqs. (7) to (10) yields the necessary equations.
Each module is a three dof parallel manipulator and to express these mobilities in terms of three

parameters, the mechanism should be considered in one of its operation modes (OM). For example,
for the three-RPS module, f3 = 0 represents one of its two OM.21 In this OM, f0 can never be
zero. This fact can be exploited to avoid any point [ f0, f1, f2, f3, g0, g1, g2, g3] of P 7 to lie on the
exceptional generator f0 = f1 = f2 = f3 = 0. This is done by using the normalizing condition, f0 =
1. By substituting f3 = 0 and f0 = 1 in Eqs. (8) to (10), g0, g2 and g3 can be linearly solved as follows:

g0 = 1/2
f1h1

(
f1

2 − 3 f2
2
)

f1
2 + f2

2 + 1
(12)

g2 = −1/2
f1

(
2 f1

2g1 + f1
2h1 + 2 f2

2g1 − 3 f2
2h1 + 2 g1

)

f2
(

f1
2 + f2

2 + 1
) (13)

g3 = −1/2
3 f1

2 f2
2h1 − f2

4h1 + 2 f1
2g1 + f1

2h1 + 2 f2
2g1 − f2

2h1 + 2 g1

f2
(

f1
2 + f2

2 + 1
) (14)

Thus, the Euclidean transformation matrix for the proximal module in its OM f3 = 0 can be written
as a function of only three parameters f1, f2 and g1:

T1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

h1
(

f1
2 − f2

2
)

f1
2 + f2

2 + 1

f1
2 − f2

2 + 1

f1
2 + f2

2 + 1

2 f1 f2

f1
2 + f2

2 + 1

2 f2

f1
2 + f2

2 + 1

− 2h1 f2 f1

f1
2 + f2

2 + 1

2 f1 f2

f1
2 + f2

2 + 1
− f1

2 − f2
2 − 1

f1
2 + f2

2 + 1
− 2 f1

f1
2 + f2

2 + 1

2 f1
2g1 + f1

2h1 + 2 f2
2g1 − f2

2h1 + 2 g1

f2
(

f1
2 + f2

2 + 1
) − 2 f2

f1
2 + f2

2 + 1

2 f1

f1
2 + f2

2 + 1
− f1

2 + f2
2 − 1

f1
2 + f2

2 + 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)

Similarly, for the distal three-SPR module in its OM corresponding to c3 = 0, normal-
izing c0 = 1 and eliminating d0, d2 and d3, the transformation matrix can be derived
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as follows:

T2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

−
c1

4h1 − 6 c1
2c2

2h1 + c2
4h1 + 4 c1

2d1
− c1

2h1 + 4 c2
2d1 + c2

2h1 + 4 d1
(
c1

2 + c2
2 + 1

)2

c1
2 − c2

2 + 1

c1
2 + c2

2 + 1

2c1c2

c1
2 + c2

2 + 1

2c2

c1
2 + c2

2 + 1

−
2c1(2 c1

2c2
2h1 − 2 c2

4h1 − 2 c1
2d1

+ c1
2h1 − 2 c2

2d1 − 2 c2
2h1 − 2 d1)

(
c1

2 + c2
2 + 1

)2
c2

2c1c2

c1
2 + c2

2 + 1
−c1

2 − c2
2 − 1

c1
2 + c2

2 + 1
− 2c1

c1
2 + c2

2 + 1

2 c1
4d1 − c1

4h1 + 4 c1
2c2

2d1 + 6 c1
2c2

2h1
+ 2 c2

4d1 − c2
4h1 + c1

2h1 − c2
2h1 − 2 d1

(
c1

2 + c2
2 + 1

)2
c2

− 2c2

c1
2 + c2

2 + 1

2c1

c1
2 + c2

2 + 1
−c1

2 + c2
2 − 1

c1
2 + c2

2 + 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)

Therefore, a transformation matrix between the base frame F0 and the moving frame F2 can be
expressed as T = T1.T2 and is a function of six independent parameters. For instance, when both
the modules are in the OM represented by f3 = 0 and c3 = 0, T is a function of f1, f2, g1, c1, c2 and
d1 and as a result, indicates that it is indeed a six dof mechanism. All possible configurations of the
S–PM with its individual modules in different OM, include the following cases:

Case a. c3 = f3 = 0

Case b. c0 = f0 = 0

Case c. c0 = f3 = 0

Case d. c3 = f0 = 0 (17)

It will be shown in the subsequent sections how simple it is to adapt the results of Case a. to the
remaining three cases.

Consequently, matrices T1, T2 and T can be used to express the co-ordinates of all the vectors in
one frame, preferably the fixed co-ordinate frame F0 as follows:

0rA1 = [1, h0, 0, 0]T ; 0rA2 = [1, −h0

2
,

√
3h0

2
, 0]T ; 0rA3 = [1, −h0

2
, −

√
3h0

2
, 0]T

1rB1 = [1, h1, 0, 0]T ; 1rB2 = [1, −h1

2
,

√
3h1

2
, 0]T ; 1rB3 = [1, −h1

2
, −

√
3h1

2
, 0]T

2rC1 = [1, h2, 0, 0]T ; 2rC2 = [1, −h2

2
,

√
3h2

2
, 0]T ; 2rC3 = [1, −h2

2
, −

√
3h2

2
, 0]T

0u1 = = [0, 0, 1, 0]T ; 0u2 = [1, −
√

3

2
, −1

2
, 0]T ; 0u3 = [1,

√
3

2
, −1

2
, 0]T

2v1 = = [0, 0, 1, 0]T ; 2v2 = [1, −
√

3

2
, −1

2
, 0]T ; 2v3 = [1,

√
3

2
, −1

2
, 0]T

0rBi = T1
1rBi; 0rCi = T 2rCi; 0vi = T 2vi, i = 1, 2, 3. (18)

4. Singularities of the 3-RPS-3-SPR S–PM
It is noticed that the 3-RPS-3-SPR S–PM can reach two kinds of singularities: A parallel singularity
in which at least one of its modules is in a parallel singularity or a serial singularity(1) which occurs

(1)A serial singularity is defined here as a configuration in which the S–PM experiences a loss of degree(s) of
freedom or, equivalently, a drop in the order of the twist system.

Kinematic analysis of the 3-RPS-3-SPR S–PM1244

https://doi.org/10.1017/S0263574718000826 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000826


due to the serial arrangement of the two modules. This section briefs the derivation of the forward
and inverse kinematic Jacobian matrices with a hope to find out if a given configuration is singular, at
least numerically. It also explains a geometrical approach to determine the singularities in which the
characteristic tetrahedron22 of the S–PM under study can be expressed algebraically. The bijective
mapping between the degeneracy of the tetrahedron and serial singularities can then be exploited to
enlist all the serial singularities.

4.1. Forward and inverse kinematic Jacobian matrices
If the proximal (P) and distal (D) modules are considered individually, the twist i.e., angular velocity
vector of a body and linear velocity vector of a point on the body, of their respective moving
platform with respect to their fixed base can be expressed as a function of the actuated joint rates23 as
follows:

AP
0tP

1/0 = BP ṗ13 =⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(0rO1A1 ×0 p1)T 0pT
1

(0rO1B1 ×0 p2)T 0pT
2

(0rO1C1 ×0 p3)T 0pT
3

(0rO1A1 ×0 u1)T 0uT
1

(0rO1B1 ×0 u2)T 0uT
2

(0rO1C1 ×0 u3)T 0uT
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
0ωP

1/0
0vP

O1/0

]

=
[

I3×3

03×3

]
⎡

⎢
⎣

ṗ1

ṗ2

ṗ3

⎤

⎥
⎦ (19)

AD
1tD

2/1 = BDq̇13 =⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1rO2A1 ×1 q1)T 1qT
1

(1rO2B1 ×1 q2)T 1qT
2

(1rO2C1 ×1 q3)T 1qT
3

(1rO2A1 ×1 v1)T 1vT
1

(1rO2B1 ×1 v2)T 1vT
2

(1rO2C1 ×1 v3)T 1vT
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
1ωD

2/1
1vD

O2/1

]

=
[

I3×3

03×3

]
⎡

⎢
⎣

q̇1

q̇2

q̇3

⎤

⎥
⎦ (20)

where 0tP
1/0 is the twist of the coupler with respect to the base expressed in F0 and 1tD

2/1 is the twist of
the end effector with respect to the coupler expressed in F1. AP and AD are called forward Jacobian
matrices and they incorporate the actuation and constraint wrenches of the three-RPS and three-SPR
PMs, respectively.23 BP and BD are called inverse Jacobian matrices and they are the result of the
reciprocal product between wrenches of the mechanism and twists of the joints for the three-RPS and
three-SPR PMs, respectively. ṗ13 = [ṗ1, ṗ2, ṗ3]T and q̇13 = [q̇1, q̇2, q̇3]T are the prismatic joint rates
of the proximal and distal modules, respectively. krPQ denotes the vector pointing from a point P to
point Q expressed in frame Fk .

It is noteworthy that if matrix AP (resp. AD) is singular, then the proximal (resp. distal) module
will be in a parallel singular configuration. The entries of matrices AP and AD represent the
Plücker coordinates of six independent lines in P 3. When any two or more of these lines are
dependent, the configuration corresponds to a parallel singularity. Many scientific papers deal with this
singularity type of both modules.21,24–30 It is noteworthy that the 3-RPS-3-SPR S–PM is in a parallel
singularity if and only if any of its modules is in a parallel singularity as proved in the following
subsection.

On the other hand, due to the serial stacking of the three-RPS and three-SPR PMs, the S–PM
can also have some serial singular configurations even if the individual modules are non-singular(2).
Hence, a kinematic Jacobian matrix of the S–PM is necessary to explore the serial singularities. If
both AP and AD are non-singular, the so-called serial Jacobian matrix of the S–PM can be expressed

(2)The three-RPS and the three-SPR PMs do not have any serial singularities as long as the prismatic link lengths
pi and qi, i = 1, 2, 3 do not vanish.
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Fig. 2. n parallel mechanisms (named modules) arranged in series.

as follows:17

JS–PM = [
2Ad1 A−1

P BP
0R1 A−1

D BD

]
(21)

with 2Ad1 =
[

I3×3 03×3

−0r̂O1O2 I3×3

]

, 0r̂O1O2 =

⎡

⎢
⎣

0 −0zO1O2
0yO1O2

0zO1O2 0 −0xO1O2

−0yO1O2
0xO1O2 0

⎤

⎥
⎦

and 0R1 =
[

0R1 I3×3

I3×3
0R1

]

where 2Ad1 is called the adjoint matrix. 0r̂O1O2 is the cross product matrix of vector 0rO1O2 =
[0xO1O2,

0 yO1O2,
0 zO1O2 ], pointing from point O1 to point O2 expressed in frame F0. 0R1 is called

the augmented rotation matrix between frames F0 and F1 and it contains the rotation matrix 0R1

from frame F0 to frame F1. JS–PM fits into the kinematic model of the S–PM in the following
way:

0t2/0 = JS–PM

[
ṗ

q̇

]

(22)

where 0t2/0 is the twist of the moving platform with respect to the fixed base expressed in F0 and
ṗ = [ṗ1, ṗ2, ṗ3]T and q̇ = [q̇1, q̇2, q̇3]T are the joint rates of the proximal and the distal modules,
respectively. The rank of this matrix provides the local mobility of the S–PM.17 Moreover, when
JS–PM is singular, the S–PM at hand is in a serial singularity. When a manipulator configuration is
given, it is straightforward to calculate numerically the serial kinematic Jacobian matrix from Eq. (21)
and to deduce if it is a serial singular configuration. However, it is tedious to derive a symbolic or an
implicit equation that could be used to enlist all serial singularities. Therefore, a geometric approach
is adopted.

Equations (21) and (22) can be extended to an S–PM with n number of modules in series as shown
in Fig. 2. Thus, the moving platform twist with respect to the fixed base expressed in coordinate frame
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F0 is as follows:

0tn/0 =
n∑

i=1

0R(i−1)
nAdi

(i−1)tMi
i/(i−1) = J6×3n

⎡

⎢
⎢
⎣

ρ̇M1

ρ̇M2

...
ρ̇Mn

⎤

⎥
⎥
⎦

with 0Ri =
[

0Ri I3×3

I3×3
0Ri

]

, nAdi =
[

I3×3 03×3

−(i−1)r̂OiOn I3×3

]

and

J6×3n =
[

nAd1 A−1
M0

BM0
0R1

nAd2A−1
M1

BM1 ... 0Rn A−1
Mn

BMn

]

(23)

where J6×3n is the 6 × 3n kinematic Jacobian matrix of the n-module S–PM manipulator. Mi stands
for the ith module, AMi and BMi are the forward and inverse Jacobian matrices of Mi, respectively.
ρ̇Mi is the vector of the actuated prismatic joint rates for the ith module.

4.2. Twist and wrench systems of the 3-RPS-3-SPR PM
Each leg of the three-RPS and three-SPR parallel manipulators is composed of three joints, but the
order of the limb twist system is equal to five and hence there exist five twists associated to each leg.
Thus, the constraint wrench system of the ith leg of the three-RPS and three-SPR parallel modules is
spanned by a pure force W i

P and W i
D shown as the black and red vectors, respectively, in Fig. 4. These

forces are reciprocal to all the joint twists in each leg, in the respective modules. The three forces in
each module span its wrench system WP or WD which is the third special three-system of screws:16

0WP =
3⊕

i=1

0W i
P = span

{ [
0u1

0rO2B1 ×0 u1

]

,

[
0u2

0rO2B2 ×0 u2

]

,

[
0u3

0rO2B3 ×0 u3

]}

0WD =
3⊕

i=1

0W i
D = span

{ [
0v1

0rO2B1 ×0 v1

]

,

[
0v2

0rO2B2 ×0 v2

]

,

[
0v3

0rO2B3 ×0 v3

]}

0WS−PM = 0WP ∩ 0WD

dim(0WP ) = dim(0WD) = 3

(24)

Alternatively, the twist system of the 3-RPS-3-SPR S–PM is the union of the twist systems of two
modules. The twist systems of each module are the orthogonal vector subspaces of the respective
wrench systems and are also the third special three-system of screws:16

0TP = 0W⊥
P

0TD = 0W⊥
D

0TS−PM = 0TP ∪ 0TD

dim(0TP ) = dim(0TD) = 3

(25)

The mobility of the 3-RPS-3-SPR S–PM is equal to the dimension of the overall twist system,
dim( 0TS−PM ). For a general configuration, when the twist systems of each module are independent,
i.e., dim(0TP ∩ 0TD) = 0, the mobility was established to be six in ref. [17]:

dim( 0TS−PM ) = dim(0TP ∪ 0TD) = dim(0TP ) + dim(0TD) − dim(0TP ∩ 0TD)

= dim(0TP ) + dim(0TD)

= 3 + 3 = 6

(26)

As a conclusion, the following theorem is stated.
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THEOREM 1. A parallel singularity of an S–PM arises if and only if at least one of its modules
reaches a parallel singularity.

Proof: When the actuators are blocked, the twist system of any module in a parallel singularity is
of order more than zero or, equivalently, the wrench system is of order less than six. The sufficient
condition is that if at least one module is in a parallel singularity, then the S–PM is in a parallel
singularity. In this case, from Eq. (26), if the order of the twist system is more than zero for any
module, it is reflected in the order of the twist system of the whole S–PM. The necessary condition
can be proved as follows. If none of the modules is in a parallel singularity, the wrench system of each
module is of order six when the actuated joints are blocked. Thus, the order of the wrench system of
the full S–PM is also of order six and thus the S–PM is not in a parallel singularity.

4.3. Enumeration of serial singularities
A serial singularity is encountered

• when there exists a wrench common to both the modules of the S–PM or, equivalently, if the
dimension of the intersection of the two wrench systems is more than zero:

dim(0WP ∩ 0WD) > 0 (27)

• if the union of the two wrench systems is of dimension lower than six. Indeed,

dim(0WP ∪ 0WD) = dim(0WP ) + dim(0WD) − dim(0WP ∩ 0WD)

= 3 + 3 − dim(0WP ∩ 0WD) (28)

From Eqs. (27) and (28), dim(0WP ∪ 0WD) < 6.

A straightforward sufficient condition for Eq. (27) or (28) to hold is that at least one revolute joint
axis in the base is parallel to the corresponding revolute joint axis in the moving platform. In other
words, 0ui || 0vi for any i = 1, 2, 3. For the ith leg, by equating the coordinates of vectors 0ui and 0vi,
three systems of equations are obtained from Eq. (18) in parameters c1, c2, f1 and f2. Solving the
system of equations for three of the four parameters, say, c1, f1 and c2 leads to the following algebraic
expressions corresponding to the serial singular configurations:

0u1 || 0v1 =⇒ c1 = 0, f1 = 0

0u2 || 0v2 =⇒ c1 = −
√

3c2, f1 = −
√

3 f2

0u3 || 0v3 =⇒ c1 =
√

3c2, f1 =
√

3 f2

0ui || 0vi ∀i = 1, 2, 3 =⇒ c1 = − f1, c2 = − f2 (29)

When all the base revolute joint axes are parallel to their corresponding platform revolute joint axes,
the fixed base and the moving platform are parallel to each other. In this case, the transformation
matrix T is the identity matrix resulting in T1 = T−1

2 . Figure 3 shows the four cases for arbitrary
design parameters. In the first three cases, the constraint wrench τ0 prevents the moving platform
from rotating about its axis. Thus, the manipulator has only five dof. When the base is parallel to
the moving platform, the constraint wrench system of the whole manipulator is spanned by three
forces τ01, τ02 and τ03 leading to an instantaneous three dof S–PM. The dofs include a pure vertical
translation and two non-pure horizontal rotations. In this case, the last condition shown in (29) can
be substituted in the expression for T to find the coordinates of the platform circumcentre O2 to be

[0, 0,
2(d1 + g1)

f2
], where only a z-translation is allowed. There can be other similar configurations

in which the base and the platform are parallel with translations along all three coordinate axes. It is
noteworthy that the algebraic relations governing the serial singular configurations described so far
are independent of the parameters h0, h1, h2, g1 and d1.
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B1 u1
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u3

τ03
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(d)

Fig. 3. Serial singular configurations with parallel revolute joint axes. (a) 0u1 || 0v1. (b) 0u2 || 0v2. (c) 0u3 || 0v3.
(d) 0ui || 0vi ∀i = 1, 2, 3.

There exist other serial singular configurations in which the constraint wrenches at each spherical
joint are not coincident and hence form the first special two system of screws.16 The following section
describes a methodology to determine these singularities.

4.4. Characteristic tetrahedron of serial singularities
At each spherical joint, if the constraint forces are not coincident, they form a force pencil. A
characteristic tetrahedron is defined combining the planes of the three pencils along with the coupler
platform plane passing through the spherical joints as shown in Fig. 4.

A theorem proposed by Uphoff et al. in ref. [22] is used to identify the remaining serial singularities.

THEOREM 2 (ref. [22]). A platform manipulator is in a wrench singularity if and only if the
characteristic tetrahedron is singular.

In this context, the wrench singularities correspond to the serial singularities of the S–PM. The
method was initially designed to determine the parallel singularities of a parallel manipulator and
the novelty of this paper lies in using the same method to enumerate serial singularities of an S–PM.
The homogeneous co-ordinates of the planes (the normal vector to the plane, wi and a point on the
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u2
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u3

v2

v1

v3

B1

B2

B3

∏1

∏3

∏2

∏4

Fig. 4. The characteristic tetrahedron of the 3-RPS-3-SPR S–PM.

plane are known) representing the faces of the tetrahedron are expressed as follows:

�1 : a = [w01, w1] = [−rT
B1

(u1 × v1), (u1 × v1)T ]

�2 : b = [w02, w2] = [−rT
B2

(u2 × v2), (u2 × v2)T ]

�3 : c = [w03, w3] = [−rT
B3

(u3 × v3), (u3 × v3)T ]

�4 : d = [w04, w4]

= [−rT
B1

((rB1 − rB2 ) × (rB1 − rB3 )), ((rB1 − rB2 ) × (rB1 − rB3 ))T ] (30)

All the vectors are expressed in frame F0. Hence, a serial singularity occurs when the determinant
of the matrix of plane coordinates [a b c d] vanishes. A similar approach using Grassman–Cayley
algebra was used to find singularities of a six-dof manipulator, Three-PPPS in ref. [31]. From Eqs. (18)
and (30),

|a b c d| = − 27 (c1 f1 + c2 f2 − 1) h1
3

2
(
c1

2 + c2
2 + 1

)3 (
f1

2 + f2
2 + 1

)3 (4 c1
4 f1 f2

2 − 8 c1
3c2 f1

2 f2 − 8 c1
3c2 f2

3

+ 4 c1
3 f1

2 f2
2 − 4 c1

3 f2
4 + 4 c1

2c2
2 f1

3 + 12 c1
2c2

2 f1 f2
2 − 8 c1

2c2 f1
3 f2

+ 4 c1c2
2 f1

4 + 12 c1c2
2 f1

2 f2
2 − 4 c2

4 f1
3 − 8 c2

3 f1
3 f2 + c1

4 f1 − 8 c1
3c2 f2

+ 3 c1
3 f1

2 − 3 c1
3 f2

2 + 6 c1
2c2

2 f1 − 6 c1
2c2 f1 f2 + 3 c1

2 f1
3 + 3 c1

2 f1 f2
2
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+ 3 c1c2
2 f1

2 − 3 c1c2
2 f2

2 − 6 c1c2 f1
2 f2 − 6 c1c2 f2

3 + c1 f1
4 + 6 c1 f1

2 f2
2

− 3 c1 f2
4 − 3 c2

4 f1 − 6 c2
3 f1 f2 − 3 c2

2 f1
3 − 3 c2

2 f1 f2
2 − 8 c2 f1

3 f2 + c1
3

+ 3 c1
2 f1 − 3 c1c2

2 − 6 c1c2 f2 + 3 c1 f1
2 − 3 c1 f2

2 − 3 c2
2 f1 − 6 c2 f1 f2

+ f1
3 − 3 f1 f2

2) (31)

Thus, the points on the surface |a b c d| = 0 correspond to serial singular configurations for the
3-RPS-3-SPR S–PM. From Eq. (31), the manipulator is in a serial singular configuration when
either c1 f1 + c2 f2 − 1 = 0 or the second factor, a 7◦ polynomial, p7(c1, f1, c2, f2) = 0(3). In order to
enumerate different serial singularities, the conditions for rank deficiency of the matrix [a b c d] listed
in Table 1 of ref. [22] are studied.

Case 1: Four faces meet in a point: Two subcases must be considered depending on whether the point
of intersection is real or lies at infinity. In both cases, the variety spanned by the six constraint wrench
lines is a general linear complex32 and the 3-RPS-3-SPR S–PM instantaneously behaves as a five dof
mechanism.

a. A real point: Considering the second factor of Eq. (31) p7(c1, c2, f1, f2), substituting arbitrary
values for any three of the four parameters and finding the fourth one shows that the faces of the
characteristic tetrahedron intersect in a point. One such configuration is shown in Fig. 5a. Point P is
the intersection point of the four planes � j , j = 1, 2, 3, 4.

b. A point at infinity: This happens when the intersection lines of the planes are parallel. In other
words, it is sufficient to check if the ideal point (nothing but the point at infinity of a line) of one of
these lines lies in the other three planes. Let the ideal point of line of intersection, L12, of planes �1

and �2 be P∞
12 . It is sufficient to check if this point lies on the line of intersection, L34, of planes �3

and �4. However, this approach is computationally expensive and yields no results. Therefore, it is
first checked whether point P∞

12 lies on the line of intersection, L13, of planes �1 and �3 as follows:

rP∞
12

: (0, l12) = (0, w1 × w2) (32)

L13 : (l13, l13) = (w1 × w3, w01w3 − w03w1) (33)

r∞
P∞

12
∧ L12 = 0 : w3 · l12 = 0, −w03l12 + w3 × l12 = 0 (34)

Solving Eq. (34) for c1, f1, c2 and f2 yields the relationship c1 f1 + c2 f2 − 1 = 0 or c1 f2 − c2 f1 = 0.
The former relationship corresponds to the intersection of the planes in a real line. It will be discussed
in the following paragraph. The latter corresponds to the configuration where the planes �1, �2 and
�3 share the same ideal point. It can also mean that they have a common line of intersection at
infinity, which will be dealt with in the next paragraph. In other words, their lines of intersection are
parallel. Formulating another equation such that the point P∞

12 lies in the plane �4 and solving the
two equations results in the following relationships:

c1 f2 − c2 f1 = 0
rP∞

12
· ([w04, w4]) = 0

}

=⇒

f1 = − c1

c2
1 + c2

2

, f2 = − c2

c2
1 + c2

2

OR

c1 = − f1

f 2
1 + f 2

2

, c2 = − f2

f 2
1 + f 2

2

(35)

If the parameters c1, c2, f1 and f2 satisfy the foregoing conditions, the S–PM is in a serial singularity
with the planes of its characteristic tetrahedron intersecting in a point at infinity. One such configuration
is depicted in Fig. 5b.

(3)A 3D animation of the singular surface by varying c1, c2, f1 and f2 from −3 to 3 is uploaded
in https://www.dropbox.com/s/dzif65bhx59nxd6/sing1.mp4?dl=0 for the first factor of Eq. (31) and in
https://www.dropbox.com/s/koezrl6xom3pmmr/singp7.mp4?dl=0 for the second factor of Eq. (31).
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Fig. 5. Serial singularity when all faces of the characteristic tetrahedron meet in a point. (a) A real point P.
(b) A point at infinity.

Case 2: Three sides meet in a line: : The first factor of Eq. (31), c1 f1 + c2 f2 − 1 = 0 corresponds
to the serial singularity in which the variety spanned by the six constraint wrench lines is a special
linear complex32 and the mechanism has five dof. To prove that c1 f1 + c2 f2 = 1 corresponds to
the singularity when three sides of the characteristic tetrahedron meet in a line, two subcases are
considered when the line of intersection of the three sides is
a. a real line: The condition c1 f1 + c2 f2 − 1 = 0 is derived using line geometry. For a line intersection
of the three planes, it is sufficient to prove the incidence of the intersection line of first two sides with the
third one. The Plücker coordinates of the line of intersection, L12 of planes �1 and �2 are calculated.
The line L12 and the plane �3 are incident if and only if the following conditions are satisfied:33

L12 : (l12, l12) = (w1 × w2, w01w2 − w02w1) (36)

�3 ∧ L12 = 0 : w3 · l12 = 0, −w03l12 + w3 × l12 = 0 (37)

The four equations in Eq. (37) are solved for parameters c1, c2, f1 and f2 to obtain the solution

f2 = −c1 f1 − 1

c2
with arbitrary values for c1, c2 and f1. It means that if the choice of these parameters

are bound by the relation c1 f1 + c2 f2 − 1 = 0, the three sides intersect in a line and is consistent with
the first factor of Eq. (31). Figure 6a shows one of the serial singular configurations in which the three
sides meet in a line L. It implies that six constraint forces intersect the line L and hence belong to a
singular linear line complex.

b. a line at infinity: In this case, the side planes are all parallel to each other which is possible
only when the fixed base and the moving platform planes are parallel to each other. Since the 3-
RPS-3-SPR PM has six dof, the only possibilities for the platform and the base to remain parallel is
when the moving platform has pure translational motions or has a rotation about the z0-axis along
with translational motions. The former case is studied in Section 4.3, where corresponding revolute
joint axes are parallel to each other leading to a three dof freedom mechanism. The latter case is
investigated by considering the transformation matrix T, and forcing the rotation matrix to be of pure
rotation about z0-axis. This is done by equating T(2, 4) and T(3, 4) to zero and solving for two of the
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Fig. 6. Serial singular configurations when three sides of the characteristic tetrahedron meet in a line. (a) A real
line L. (b) A line at infinity.

four parameters c1, c2, f1 and f2:

T(2, 4) = −T(4, 2) = 0
T(3, 4) = −T(4, 3) = 0

}

=⇒

f1 = c1

c2
1 + c2

2

, f2 = c2

c2
1 + c2

2

OR

c1 = f1

f 2
1 + f 2

2

, c2 = f2

f 2
1 + f 2

2

(38)

The relations in Eq. (38) satisfy the equation c1 f1 + c2 f2 − 1 = 0. Hence, this equation is a necessary
and a sufficient condition for three sides to have a common line of intersection and it instantaneously
reduces the dof of the S–PM at hand by 1. Furthermore, by substituting Eq. (38) in T, the magnitude

of rotation about the z0-axis is given by σ = tan−1(
2c1c2

c2
2 − c2

1

) = tan−1(
2 f1 f2

f 2
2 − f 2

1

). A serial singular

configuration in which σ = 67◦ is shown in Fig. 6b. Note that in theory the platform can have an
upright position or an upside down position and yet stay parallel to the base.

Case 3: Two sides and base meet in a line: Considering a side plane �i, i = 1, 2, 3 and the base plane
�4, their line of intersection must pass through Bi. To prove if �i, � j and �4, i, j = 1, 2, 3 have a
common line of intersection, it is sufficient to prove that the points Bi and Bj simultaneously lie on
the planes � j and �i, respectively. If there exists a line common to all the three planes, it should be
along BiBj as shown in Fig. 7. For instance, if planes �1, �2 and �4 are considered, simultaneous
incidence of point B1 on �2 and that of point B2 on �1 must be satisfied and is expressed by the
following equations:

rB1 · ([w02, w2]) = 0 =⇒
− 2

√
3c1c2 f1 − 2

√
3c1 f1 f2 + 3 c1

2 f1 + 3 f1
2c1 − 3 f2

2c1 − 3 c2
2 f1 − 3 c1 − 3 f1 = 0 (39)

rB2 · ([w01, w1]) = 0 =⇒
− 4

√
3c1c2 f2 − 4

√
3c2 f1 f2 + 4 c2c1 f1 + 4 f2c1 f1 + c1

√
3 +

√
3 f1 − 3 c2 − 3 f2 = 0 (40)
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Fig. 7. Can two sides and base of the characteristic tetrahedron of the 3-RPS-3-SPR S–PM meet in a line?

Finding the Groebner basis of the polynomials in Eqs. (39) and (40) with a graded reverse lexicographic
ordering (tdeg in Maple) of the parameters c1 <grlex c2 <grlex f1 <grlex f2, results in a basis of four
polynomials. The four equations can then be solved for c1, c2, f1 and f2. Two solutions are obtained,
the first one turns out to be a complex solution and the second one is exactly the last case of (29). The
second solution should also be rejected since it is assumed for this analysis that none of the faces of
the characteristic tetrahedron degenerates into a line. Also for other combinations of sides and their
intersections with the base plane, the following equations are solved for the parameters:

rB2 · ([w03, w3]) = 0 =⇒
3 c1

2 f2 − 2 c1c2 f1 − 2 c1 f1 f2 − 3 c2
2 f2 + 3 c2 f1

2 − 3 c2 f2
2 + 3 c2 + 3 f2 = 0 (41)

rB3 · ([w02, w2]) = 0 =⇒
c1

2 f1 − 2 c1c2 f2 + c1 f1
2 − c1 f2

2 − c2
2 f1 − 2 c2 f1 f2 + c1 + f1 = 0 (42)

rB1 · ([w03, w3]) = 0 =⇒
− 4

√
3c1c2 f2 − 4

√
3c2 f1 f2 − 4 c1c2 f1 − 4 c1 f1 f2 + c1

√
3 +

√
3 f1 + 3 c2 + 3 f2 = 0 (43)

rB3 · ([w01, w1]) = 0 =⇒
2

√
3c1c2 f1 + 2

√
3c1 f1 f2 + 3 c1

2 f1 + 3 c1 f1
2 − 3 c1 f2

2 − 3 c2
2 f1 − 3 c1 − 3 f1 = 0 (44)

In each case, the solutions obtained are either complex or correspond to the last case of (29), showing
that the S–PM at hand cannot have a configuration in which any two sides and the base of its
characteristic tetrahedron meet in a line.

Another approach to solve this case is by finding the condition for incidence of an intersection line
between two sides and the base:33

Li j : (li j, li j ) = (wi × w j, w0iw j − w0 jwi) (45)

�4 ∧ Li j = 0 : w4 · li j = 0, −w03li j + w4 × li j = 0, i = 1, 2, 3 (46)

Equation (46) does not yield any real or non-trivial solutions. As a result, it is proved by contradiction
that the 3-RPS-3-SPR S–PM cannot have a serial singular configuration in which any two sides and
the base of the characteristic tetrahedron meet in a line.

Cases 4 and above: The remaining cases in Table 1 of ref. [22] include two sides meet in a plane, one
side and base meet in a plane, two sides and base meet in a plane, two faces meet in a plane. Since
the S–PM cannot attain a configuration of Case 3, it is certain that it cannot reach any configuration
corresponding to the remaining cases. For example, if two sides could meet in a plane, this case
should have appeared as a solution to Eqs. (39) and (40) and in which case, there definitely would
have existed a line of intersection between the meeting plane and the base.

To this end, all possible serial singularities are listed in Table I.
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Table I. Enumeration of serial singularities for the 3-RPS-3-SPR S–PM.

Geometrical condition Algebraic expression Instantaneous dof An example configuration

Parallel revolute joints
i. 0u1 || 0v1 c1 = 0, f1 = 0 5 Figure 3a
ii. 0u2 || 0v2 c1 = −√

3c2, f1 = −√
3 f2 5 Figure 3b

iii. 0u3 || 0v3 c1 = √
3c2, f1 = √

3 f2 5 Figure 3c
iv. Parallel base and platform (platform pure translation) 0ui || 0vi ∀i = 1, 2, 3 c1 = − f1, c2 = − f2 3 Figure 3d

Degeneracy of the characteristic tetrahedron22

vi. Four faces meet in a point (general linear complex32)
a. A real point p7(c1, c2, f1, f2) = 0 (Eq. (31)) 5 Figure 5a

b. A point at infinity c1 = − f1

f 2
1 + f 2

2

, c2 = − f2

f 2
1 + f 2

2

5 Figure 5b

vi. Three sides meet in a line (special linear complex)
a. A real line c1 f1 + c2 f2 − 1 = 0 5 Figure 6a

b. A line at infinity parallel base and platform (rotation about z0-axis) c1 = f1

f 2
1 + f 2

2

, c2 = f2

f 2
1 + f 2

2

5 Figure 6b
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It is recalled here that the singularity analysis performed in this section is by considering both
modules in the OM corresponding to c3 = f3 = 0. In fact, there are three other possibilities, c0 =
f0 = 0, c0 = f3 = 0 and c3 = f0 = 0. For these cases, the algebraic expressions for serial singularities
can be obtained by the following replacements to the ones listed in Table I. These replacements hold
true only for the orientation parameters. Favourably, the serial singular configurations for f3 = c3 = 0
expressed in Table I are only functions of orientation parameters ci, fi, i = 1, 2.

Case a. c3 = f3 = 0 : Listed in Table I

Case b. c0 = f0 = 0 : f2 → − f1, f1 → f2, c1 → −c2, c2 → c1

Case c. c0 = f3 = 0 : c1 → −c2, c2 → c1

Case d. c0 = f3 = 0 : f2 → − f1, f1 → f2 (47)

Proof: For the three-RPS ( fi, i = 0, 1, 2, 3) and the three-SPR (ci, i = 0, 1, 2, 3) parallel manipulator
modules, the orientation study parameters can be expressed in terms of the Tilt and Torsion angles,34

azimuth (φ), tilt (θ) and torsion (σ ) as follows:

f0 = cos(
θ1

2
) cos(

σ1

2
) c0 = cos(

θ2

2
) cos(

σ2

2
)

f1 = sin(
θ1

2
) cos(φ1 − σ1

2
) c1 = − sin(

θ2

2
) cos(φ2 − σ2

2
)

f2 = sin(
θ1

2
) sin(φ1 − σ1

2
) c2 = − sin(

θ2

2
) sin(φ2 − σ2

2
)

f3 = cos(
θ1

2
) sin(

σ1

2
) c3 = − cos(

θ2

2
) sin(

σ2

2
) (48)

The OM c0 = 0 or f0 = 0 renders the torsion angleσ1 = 0 orσ2 = 0 and if f3 = 0 or c3 = 0,σ1 = 180◦
or σ2 = 180◦, respectively. Furthermore, if, for instance in the OM corresponding to f0 = 0, the three-
RPS PM can never have f3 = 0, thus the parameters fi, i = 0, 1, 2, 3 can be normalized by forcing
f3 = 1. Consequently, the OM as functions of tilt and azimuth angles can be represented for each
module as follows:

Three-RPS OM-1 Three-SPR OM-1

f0 = 1 c0 = 1

f1 = tan(
θ1

2
) cos(φ1) c1 = − tan(

θ2

2
) cos(φ2)

f2 = tan(
θ1

2
) sin(φ1) c2 = − tan(

θ2

2
) sin(φ2)

f3 = 0 c3 = 0

Three-RPS OM-2 Three-SPR OM-2

f0 = 0 c0 = 0

f1 = tan(
θ1

2
) sin(φ1) c1 = − tan(

θ2

2
) sin(φ2)

f2 = − tan(
θ1

2
) cos(φ1) c2 = tan(

θ2

2
) cos(φ2)

f3 = 1 c3 = 1

(49)
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Thus, it is obvious that for the three-RPS PM, algebraic expressions in OM-2 can be obtained from
those in OM-1 by replacing f2 → − f1 and f1 → f2. For the three-SPR PM, these replacements will
be c2 → c1 and c1 → −c2. Accordingly, all the serial singular configurations of the 3-RPS-3-SPR
PM can be enumerated starting from Case a (where both modules are in OM-1) of Eq. (47).

5. Direct Kinematics Model (DKM)
The six prismatic joints of the 3-RPS-3-SPR S–PM are assumed to be actuated. Direct kinematics
gives the pose, i.e., the position and orientation, of the moving platform for given prismatic joint
lengths. For the three-RPS and the three-SPR PMs, the prismatic joint lengths are named as p1, p2, p3

and q1, q2, q3, respectively. If study parameters x0, x1, x2, x3, y0, y1, y2 and y3 represent the pose of the
moving platform relative to the base, the direct kinematics problem aims to find xi and yi, i = 0, 1, 2, 3
given p j and q j , j = 1, 2, 3.

As mentioned in Section 3, the transformation matrix between the fixed base and the moving
platform, T is determined to be a function of f1, f2, g1, c1, c2 and d1 for the case c3 = f3 = 0.
Therefore, the sphere constraint equations21 for each module after factoring out the non-zero terms
are expressed as follows:

|| 0rBi − 0rAi ||2 = p2
i i = 1, 2, 3 =⇒

S1 : = (−p1
2 + h0

2 − 4 h0h1 + 4 h1
2
)

f1
4 f2

2 + 4 f1
4g1

2 + 4 h1 f1
4g1 + h1

2 f1
4

+ (−2 p1
2 + 2 h0

2 − 8 h1
2) f1

2 f2
4 + 8 f1

2 f2
2g1

2 − 8 h1 f1
2 f2

2g1 + (−2 p1
2

+ 2 h0
2 − 6 h0h1 − 2 h1

2) f1
2 f2

2 + 8 f1
2g1

2 + 4 h1 f1
2g1 + (−p1

2 + h0
2

+ 4 h0h1 + 4 h1
2) f2

6 + 4 f2
4g1

2 − 12 h1 f2
4g1 + (−2 p1

2 + 2 h0
2 + 2 h0h1

+ 5 h1
2) f2

4 + 8 f2
2g1

2 − 12 h1 f2
2g1 + (−p1

2 + h0
2 − 2 h0h1 + h1

2
)

f2
2

+ 4 g1
2 = 0 (50)

S2 := (
4 h0

2 + 8 h0h1 + 4 h1
2 − 4 p2

2) f1
4 f2

2 + 16 f1
4g1

2 + 16 h1 f1
4g1 + 4 h1

2 f1
4

+
(

16
√

3h0h1 + 16
√

3h1
2
)

f1
3 f2

3 + 16
√

3 f1
3 f2g1h1 + 8

√
3 f1

3 f2h1
2

+ (
8 h0

2 + 40 h1
2 − 8 p2

2
)

f1
2 f2

4 + 32 f1
2 f2

2g1
2 + 16 h1 f1

2 f2
2g1 + (8 h0

2

+ 4 h1
2 − 8 p2

2) f1
2 f2

2 + 32 f1
2g1

2 + 16 h1 f1
2g1 + (16

√
3h0h1

− 16
√

3h1
2) f1 f2

5 + 16
√

3 f1 f2
3g1h1 +

(
16

√
3h0h1 − 16

√
3h1

2
)

f1 f2
3

+ 16
√

3 f1 f2g1h1 + (
4 h0

2 − 8 h0h1 + 4 h1
2 − 4 p2

2
)

f2
6 + 16 f2

4g1
2

+ (
8 h0

2 − 16 h0h1 + 8 h1
2 − 8 p2

2
)

f2
4 + 32 f2

2g1
2 + (4 h0

2 − 8 h0h1

+ 4 h1
2 − 4 p2

2) f2
2 + 16 g1

2 = 0 (51)

S3 := (
4 h0

2 + 8 h0h1 + 4 h1
2 − 4 p3

2
)

f1
4 f2

2 + 16 f1
4g1

2 + 16 h1 f1
4g1 + 4 h1

2 f1
4

+
(
−16

√
3h0h1 − 16

√
3h1

2
)

f1
3 f2

3 − 16
√

3 f1
3 f2g1h1 − 8

√
3 f1

3 f2h1
2

+ (
8 h0

2 + 40 h1
2 − 8 p3

2
)

f1
2 f2

4 + 32 f1
2 f2

2g1
2 + 16 h1 f1

2 f2
2g1 + (8 h0

2

+ 4 h1
2 − 8 p3

2) f1
2 f2

2 + 32 f1
2g1

2 + 16 h1 f1
2g1 + (−16

√
3h0h1

+ 16
√

3h1
2) f1 f2

5 − 16
√

3 f1 f2
3g1h1 +

(
−16

√
3h0h1 + 16

√
3h1

2
)

f1 f2
3

− 16
√

3 f1 f2g1h1 + (
4 h0

2 − 8 h0h1 + 4 h1
2 − 4 p3

2
)

f2
6 + 16 f2

4g1
2

+ (
8 h0

2 − 16 h0h1 + 8 h1
2 − 8 p3

2
)

f2
4 + 32 f2

2g1
2 + (4 h0

2 − 8 h0h1

+ 4 h1
2 − 4 p3

2) f2
2 + 16 g1

2 = 0 (52)
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|| 0rCi − 0rBi ||2 = q2
i i = 1, 2, 3 =⇒

S4 := (
4 h1

2 − 4 h1h2 + h2
2 − q1

2
)

c1
4c2

2 + 4 c1
4d1

2 − 4 c1
4d1h1 + c1

4h1
2

+ (−8 h1
2 + 2 h2

2 − 2 q1
2
)

c1
2c2

4 + 8 c1
2c2

2d1
2 + 8 c1

2c2
2d1h1 + (−2 h1

2

− 6 h1h2 + 2 h2
2 − 2 q1

2)c1
2c2

2 + 8 c1
2d1

2 − 4 c1
2d1h1 + (4 h1

2 + 4 h1h2

+ h2
2 − q1

2)c2
6 + 4 c2

4d1
2 + 12 c2

4d1h1 + (5 h1
2 + 2 h1h2 + 2 h2

2

− 2 q1
2)c2

4 + 8 c2
2d1

2 + 12 c2
2d1h1 + (

h1
2 − 2 h1h2 + h2

2 − q1
2
)

c2
2

+ 4 d1
2 = 0 (53)

S5 := (
h1

2 + 2 h1h2 + h2
2 − q2

2
)

c1
4c2

2 + 4 c1
4d1

2 − 4 c1
4d1h1 + c1

4h1
2

+
(

4
√

3h1
2 + 4

√
3h1h2

)
c1

3c2
3 − 4

√
3c1

3c2d1h1 + 2
√

3c1
3c2h1

2

+ (
10 h1

2 + 2 h2
2 − 2 q2

2
)

c1
2c2

4 + 8 c1
2c2

2d1
2 − 4 c1

2c2
2d1h1 + (h1

2

+ 2 h2
2 − 2 q2

2)c1
2c2

2 + 8 c1
2d1

2 − 4 c1
2d1h1 + (−4

√
3h1

2

+ 4
√

3h1h2)c1c2
5 − 4

√
3c1c2

3d1h1 +
(
−4

√
3h1

2 + 4
√

3h1h2

)
c1c2

3

− 4
√

3c1c2d1h1 + (
h1

2 − 2 h1h2 + h2
2 − q2

2
)

c2
6 + 4 c2

4d1
2 + (2 h1

2

− 4 h1h2 + 2 h2
2 − 2 q2

2)c2
4 + 8 c2

2d1
2 + (

h1
2 − 2 h1h2 + h2

2 − q2
2
)

c2
2

+ 4 d1
2 = 0 (54)

S6 := (−h1
2 − 2 h1h2 − h2

2 + q3
2
)

c1
4c2

2 − 4 c1
4d1

2 + 4 c1
4d1h1 − c1

4h1
2

+
(

4
√

3h1
2 + 4

√
3h1h2

)
c1

3c2
3 − 4

√
3c1

3c2d1h1 + 2
√

3c1
3c2h1

2

+ (−10 h1
2 − 2 h2

2 + 2 q3
2
)

c1
2c2

4 − 8 c1
2c2

2d1
2 + 4 c1

2c2
2d1h1 + (−h1

2

− 2 h2
2 + 2 q3

2)c1
2c2

2 − 8 c1
2d1

2 + 4 c1
2d1h1 + (−4

√
3h1

2

+ 4
√

3h1h2)c1c2
5 − 4

√
3c1c2

3d1h1 +
(
−4

√
3h1

2 + 4
√

3h1h2

)
c1c2

3

− 4
√

3c1c2d1h1 + (−h1
2 + 2 h1h2 − h2

2 + q3
2
)

c2
6 − 4 c2

4d1
2 + (−2 h1

2

+ 4 h1h2 − 2 h2
2 + 2 q3

2)c2
4 − 8 c2

2d1
2 + (−h1

2 + 2 h1h2 − h2
2 + q3

2
)

c2
2

− 4 d1
2 = 0 (55)

By substituting the prismatic joint lengths pi and qi, Eqs. (50) to (55) can be solved for the parameters
f1, f2, g1, c1, c2 and d1. Since each module can have up to eight direct kinematics solutions21,24 in
each OM, the 3-RPS-3-SPR S–PM can have up to 64 solutions for its direct kinematics problem in
each case of Eq. (47). The transformation matrix between the fixed frame F0 and the moving platform
frame F2 is established as T in Section 3. By expressing this matrix in dual quaternion form or
mapping it to a point in P 7 leads to the representation of the S–PM at hand in terms of the orientation
study parameters xi, i = 0, 1, 2, 3 as follows:

⎡

⎢
⎣

x0

x1

x2

x3

⎤

⎥
⎦ =

⎡

⎢
⎣

c1 f1 + c2 f2 − 1
−c1 − f1

−c2 − f2

c1 f2 − c2 f1

⎤

⎥
⎦ (56)

The expressions for the translational study parameters yi, i = 0, 1, 2, 3 as a function of f1, f2, g1, c1, c2

and d1 are shown in the Appendix. Note that every term in the right-hand side of Eq. (56) is divided

Kinematic analysis of the 3-RPS-3-SPR S–PM1258

https://doi.org/10.1017/S0263574718000826 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000826


by c1 f1 + c2 f2 − 1 �= 0. The case c1 f1 + c2 f2 − 1 = 0 is a particular singularity condition identified
as the case vi. a. in Table I. It is easy to verify from Eqs. (56) and (A1) that the study parameters xi, yi,
i = 0, 1, 2, 3 satisfy the study’s quadric equation:

x0y0 + x1y1 + x2y2 + x3y3 = 0 (57)

The Plücker coordinates (p01, p02, p03, p23, p31, p12) of the corresponding Finite Screw Axis (FSA)
are given by35

p01 = (−x2
1 − x2

2 − x2
3 )x1, p23 = x0y0x1 − (−x2

1 − x2
2 − x2

3 )y1

p02 = (−x2
1 − x2

2 − x2
3 )x2, p31 = x0y0x2 − (−x2

1 − x2
2 − x2

3 )y2

p03 = (−x2
1 − x2

2 − x2
3 )x3, p12 = x0y0x3 − (−x2

1 − x2
2 − x2

3 )y3

(58)

The following conclusions are drawn from Eqs. (56) and (58):

� x0 = 0 implies that the transformation is a finite screw motion21 with an angle of 180◦, also called
as a π screw by Study. It corresponds to the singularity condition vi. in Table I.

� x1 = x2 = 0 makes p01 = p02 = 0, implying that the direction of the FSA is vertical. It corresponds
to the singularity condition iv. in Table I where the platform and the base are parallel to each other.

� x3 = 0 makes p03 = 0, implying that the FSA is parallel to the x0y0 plane. In this case, c1 f2 = c2 f1.
If c1 = 0, then it corresponds to the singular configuration i. in Table I.

In fact, the direct kinematics problem is solved by first calculating the parameters
f1, f2, g1, c1, c2, d1 and then finding the study parameters xi, yi, i = 0, 1, 2, 3 of the whole S–PM.
To derive six equations in input prismatic joint lengths p j, q j , j = 1, 2, 3 and output study parameters
xi, yi, i = 0, 1, 2, 3 is algebraically cumbersome and is still an open problem.

6. Inverse Kinematics Model (IKM)
The inverse kinematics problem of the manipulator under study aims at finding the prismatic joint
lengths as a function of the moving platform pose. Given the study parameters, xi, yi, i = 0, 1, 2, 3
representing the transformation between the moving platform and the fixed base, the prismatic joint
lengths p j, q j , j = 1, 2, 3 must be determined. In other words, given points Ci and Ai, point Bi,
i = 1, 2, 3 (refer Fig. 1) must be determined.

Let the given transformation matrix between the fixed frame F0 and the moving platform frame
F2 be M. Thus, the coordinates of point Ci expressed in F2 as shown in Eq. (18) can be represented
in F0 as 0rCi = M 2rCi . Let the homogeneous coordinates of point Bi expressed in coordinate frame
F0 be 0rBi = [1, Bxi, Byi, Bzi]. The homogeneous coordinates of planes αi and βi shown in Fig. 1 are

αi : [−rT
Ai

ui, uT
i ]

βi : [−rT
Ci

vi, vT
i ]

where all the vectors are expressed in frame F0. To determine the points Bi, the constraints to be
respected are point Bi must lie in the plane αi and βi simultaneously and the distance between points
Bi and Bj , i �= j = 1, 2, 3 must be equal to the side length of the coupler triangular platform,

√
3h1,

h1 being the circum-radius. Three constraints in each leg lead to a total of nine algebraic constraint
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Table II. Solutions to inverse kinematics of the 3-RPS-3-SPR S–PM when h0 = 2, h1 = 1, h2 =
2 and (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) = (2.8215 : −1.2912 : −0.3348 : 1.2434 : 2.1837 : 1.1542 :

1.6012 : −3.3256).

IKM solution Bx1 By1 Bz1 Bx2 By2 Bz2 Bx3 By3 Bz3

1 1.190 0.0 1.095 0.922 −1.597 1.710 − 0.398 − 0.689 1.051
2 −0.385 0.0 2.289 −0.049 0.084 3.986 −0.773 −1.339 3.317
3 −0.867 0.0 2.650 0.562 −0.972 2.550 −0.412 −0.712 1.140
4 −1.500 0.0 3.130 0.169 −0.293 3.470 −0.564 −0.976 2.060
5 0.893 0.0 1.320 0.991 −1.710 1.540 − 0.517 −0.895 1.780
6 −1.080 0.0 2.810 0.461 −0.797 2.790 − 0.841 −1.450 3.720
7 1.210 0.0 1.080 0.724 −1.250 2.170 −0.384 −0.665 0.975
8 −1.600 0.0 3.210 −0.032 0.055 3.940 −0.845 −1.460 3.750

equations:

Point Bi belongs to plane αi:

F1 := By1 = 0 (59)

F2 := −
√

3Bx2 − By2 (60)

F3 :=
√

3Bx3 − By3 (61)

Point Bi belongs to plane βi:

F4 := (−2 x0x3 + 2 x1x2) Bx1 + (
x0

2 − x1
2 + x2

2 − x3
2
)

By1 + (2 x0x1+
2 x2x3)Bz1 + 2 x0y2 + 2 x1y3 − 2 x2y0 − 2 x3y1 = 0 (62)

F5 :=
(
−

√
3x0

2 −
√

3x1
2 +

√
3x2

2 +
√

3x3
2 + 2 x0x3 − 2 x1x2

)
Bx2 + (−2

√
3x0x3

− 2
√

3x1x2 − x0
2 + x1

2 − x2
2 + x3

2)By2 + (2
√

3x0x2 − 2
√

3x1x3 − 2 x0x1

− 2 x2x3)Bz2 − 2
√

3x0y1 + 2
√

3x1y0 + 2
√

3x2y3 − 2
√

3x3y2 − 2 x0y2 − 2 x1y3

+ 2 x2y0 + 2 x3y1 = 0 (63)

F6 :=
(√

3x0
2 +

√
3x1

2 −
√

3x2
2 −

√
3x3

2 + 2 x0x3 − 2 x1x2

)
Bx3 + (2

√
3x0x3

+ 2
√

3x1x2 − x0
2 + x1

2 − x2
2 + x3

2)By3 + (−2
√

3x0x2 + 2
√

3x1x3 − 2 x0x1

− 2 x2x3)Bz3 + 2
√

3x0y1 − 2
√

3x1y0 − 2
√

3x2y3 + 2
√

3x3y2 − 2 x0y2 − 2 x1y3

+ 2 x2y0 + 2 x3y1 (64)

||rBi − rBj ||2 = 3h2
1 i �= j = 1, 2, 3 =⇒

F7 := (Bx1 − Bx2)2 + (
By1 − By2

)2 + (Bz1 − Bz2)2 − 3 h1
2 = 0 (65)

F8 := (Bx1 − Bx3)2 + (
By1 − By3

)2 + (Bz1 − Bz3)2 − 3 h1
2 = 0 (66)

F9 := (Bx2 − Bx3)2 + (
By2 − By3

)2 + (Bz2 − Bz3)2 − 3 h1
2 = 0 (67)

Fi, i = 1, . . . , 9 can be solved for the nine parameters Bxj, Byj and Bz j , j = 1, 2, 3 to further obtain
the prismatic joint lengths.

After substituting the study parameters and the design parameters, a Groebner basis of the constraint
polynomials can be obtained over the ring C[h0, h1, h2] as a function of Bxj, Byj and Bz j , j = 1, 2, 3.
A graded reverse lexicographic ordering of these variables results in a univariate polynomial of degree
eight in any variable Bxj, Byj or Bz j . It shows that the inverse kinematics problem of the S–PM at
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A1
A2

A3

C1

C2

C3

B1

B2
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Fig. 8. Eight inverse kinematic solutions for the 3-RPS-3-SPR S–PM when h0=2, h1 = 1, h2=2 and (x0 : x1 : x2 :
x3 : y0 : y1 : y2 : y3) = (2.8215 : −1.2912 : −0.3348 : 1.2434 : 2.1837 : 1.1542 : 1.6012 : −3.3256). (a) Case
a. (b) Case b. (c) Case c. (d) Case d.
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L1 : α1 ∧ β1
L2 : α2 ∧ β2

L3 : α3 ∧ β3

Case a.
Case b.
Case c.
Case d.

Fig. 9. Eight solutions to IKM as locating three points on three lines problem.

hand has a maximum number of eight solutions. This is not surprising because the problem can
be considered as placing three points Bi on three skew lines Li, i = 1, 2, 3, where Li is the line of
intersection of planes αi and βi shown in Fig. 1. This is a classical geometrical problem and it has
been proven36 that the maximum number of solutions is indeed eight with a minimal octic univariate
polynomial. The interesting feature of the inverse kinematics of the 3-RPS-3-SPR S–PM is that the
univariate polynomial factors into four quadratic polynomials. Further examination reveals that the
four factors belong to four different combinations of the OM of each module like the four cases shown
in Eq. (47). Since the transition between two OM is a constraint singularity, one of the singularities
separating the IKM solutions is a constraint singularity21 in each module.

The IKM is solved for an example with study parameters: (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) =
(2.8215 : −1.2912 : −0.3348 : 1.2434 : 2.1837 : 1.1542 : 1.6012 : −3.3256). The design paramet-
ers are chosen to be h0 = 2, h1 = 1, h2 = 2. Eight real solutions to IKM are found as shown in
Table II.

The corresponding configurations of the S–PM are displayed in Fig. 8. Moreover, the OM of each
module is mentioned by recalling the cases from Eq. (47):

• Case a. (IKM solutions 1 and 2 in Table II) c3 = f3 = 0 =⇒ 3-RPSOM1 − 3-SPROM1

• Case b. (IKM solutions 3 and 4 in Table II) c0 = f0 = 0 =⇒ 3-RPSOM2 − 3-SPROM2

• Case c. (IKM solutions 5 and 6 in Table II) c0 = f3 = 0 =⇒ 3-RPSOM2 − 3-SPROM1

• Case d. (IKM solutions 7 and 8 in Table II) c3 = f0 = 0 =⇒ 3-RPSOM1 − 3-SPROM2

There are two inverse kinematic solutions in each of these cases. How these two solutions are separated
is still an open issue and is the subject of future work.

Figure 9 presents the eight solutions to the inverse kinematics problem of the manipulator as eight
possibilities to locate the three points, Bi on three skew lines Li : αi ∧ βi, i = 1, 2, 3.

7. Conclusions
Study parametrization of individual modules of the 3-RPS-3-SPR S–PM was used to determine six
parameters that characterize the manipulator. The kinematic Jacobian matrix was derived and can
be used to numerically determine whether a manipulator configuration is singular or not. Moreover,
the serial singularities that arise due to the stacking of the two parallel modules were enumerated
by mapping these singularities to the degeneracy of the characteristic tetrahedron of the S–PM. Both

Kinematic analysis of the 3-RPS-3-SPR S–PM1262

https://doi.org/10.1017/S0263574718000826 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000826


geometric conditions and algebraic expressions for the serial singularities were established and listed
in Table I. The Direct Kinematics Model (DKM) of the 3-RPS-3-SPR S–PM was solved to find out
that the maximum number of solutions to the DKM was the product of the maximum number of
solutions to the DKM of each module. When each module is restricted to lie in one of the OM, the
maximum number of assembly modes is up to 64. Furthermore, the Inverse Kinematics Model (IKM)
was solved to find out that the univariate polynomial splits into four factors based on the OM in which
each module lies. The number of solutions to the IKM was found to be up to eight and an example
was shown to depict those eight solutions.

As a part of the future work, the constraint equations will be written only as a function of input and
output parameters in order to solve the DKM directly instead of splitting it into two stages as shown
in this paper. Moreover, the workspace of the S–PM will be plotted and the singularities separating
the solutions to IKM will be explored.
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(Springer, Dordrecht, 2000).

Appendix
Direct kinematics: Translational parameters, yi, i = 0, 1, 2, 3 as functions of f1, f2, g1, c1, c2, d1.
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2 f2

2 − 2 c2d1 f2
4

− 3 c2 f1
2 f2

2h1 + c2 f2
4h1 − 2 c1

2c2g1 + 2 c1
2d1 f2 − c1

2 f2h1 + 2 c1c2 f1g1 − 2 c1d1 f1 f2

− 2 c2
3g1 + 2 c2

2d1 f2 + 2 c2
2 f2g1 + c2

2 f2h1 − 2 c2d1 f2
2 − 2 c2 f1

2g1 − c2 f1
2h1 − 2 c2 f2

2g1

+ c2 f2
2h1 + 2 d1 f1

2 f2 + 2 d1 f2
3 − 2 c2g1 + 2 d1 f2) (A4)
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