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Abstract

Understanding the processes that allow phylogenetically related plant species coexist is
important to understand the ecological and evolutionary processes that structure biological
communities. In this study, we investigated how the species Erythroxylum simonis,
Erythroxylum pauferrense and Erythroxylum citrifolium share ecological niche dimensions
according to the abiotic characteristics of their environments of occurrence. To this end, in ten
pre-established plots in an Atlantic Forest remnant in northeastern Brazil, we carried out a
population survey of the three species and characterised their abiotic niche by measuring light
availability, humidity and the physical–chemical properties of the soil. We used generalised
linear models to test whether abiotic variables influence species abundance. Our results indicate
that the three species coexist along the different environmental gradients, with some level of
niche overlap. The species E. simonis is the best competitor, showing generalist behaviour and
the highest abundance in all environmental gradients. We emphasise that the adult populations
of the species have adapted to various environmental and ecological challenges. Thus, the
results reported are influenced by their ability to perform well in terms of physiology, growth
and survival in their early-life stages.

Introduction

Understanding how different phylogenetically close and potentially competing plant species
manage to coexist is important, as it helps us to understand the ecological and evolutionary
processes that structure biological communities (Cavender-Bares et al. 2009; Chase and Leibold
2009; Silvertown 2004a). Niche theory (Elton 1927; Grinnell 1917; Hutchinson 1957) explains
how species manage to coexist over time and space by relating abiotic and biotic factors to their
abundance, distribution and the intensity at which they compete and share available resources in
the environment (González et al. 2017). Niche theory suggests that the species achieving better
performance (higher rank in a continuum of species competitive ability, henceforth competitive
hierarchy) under low levels of a given limiting resource may drive the competitive exclusion of
lower rank species (Chesson 2000). Stable species coexistence, however, is possible considering
heterogeneity in time and space of limiting resource levels, particularly if two or more resources
are taken into consideration (Kobe and Vriesendorp 2011; Silvertown 2004b).

In fact, the stable coexistence of species is easier with two ormore limiting conditions because
the various possible combinations of these conditions over time and/or space can also allow for
changes in the position of species in the competitive hierarchy (Dybzinski and Tilman 2007).
Thus, species coexistence is related to the sharing of multiple niche dimensions, with each
species exhibiting different strategies for using and tolerating specific aspects of each niche
dimension (Dybzinski and Tilman 2007; Kim and Ohr 2020; Tilman et al. 1981). For example,
the classic study by MacArthur and Wilson (1967) in which the coexistence of lizard species of
the genus Anolis was observed on different islands. Each lizard species occupied different strata
of the environment and exhibited distinct behaviours, which allowed for slightly different
utilisation of island resources, thus promoting coexistence. Furthermore, high phenotypic
plasticity may also play an important role in species coexistence, as it allows species to adjust
their behaviour to reduce (or even avoid) niche overlap, especially considering the competition
for multiple limiting resources (Meilhac et al. 2020). Over time, it can lead to evolutionary
differentiation within each species (‘ghost of past competition’; (Cavender-Bares et al. 2004;
Meilhac et al. 2020), making species coexistence more likely. However, if these behavioural
phenotypic plasticity adjustments are not possible or are unfavourable, one species can lead the
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other to local extinction (Esch et al. 2018; Levine and
HilleRisLambers 2009; MacArthur and Levins 1967).

Particularly for plants, environmental conditions such as light
availability (Comita et al. 2009; Kobe 1999), water availability (Lin
et al. 2012) and soil nutrients (Bai et al. 2012) are crucial for the
establishment and development of many species, acting to select
subsets of species capable of supporting them (Belyea and
Lancaster 1999; Ettinger et al. 2011). Within these subsets, biotic
interactions, such as interspecific competition, influence the
formation of local plant communities by modulating the
coexistence of species through both sharing of multiple niche
dimensions and species phenotypic adjustments (Holt 2009;Wang
et al. 2022). Consequently, although some niche overlap still
occurs, plant species may occupy different positions in the
multidimensional niche space, reducing competition (Belyea and
Lancaster 1999; Esch et al. 2018) and increasing the chances of
coexistence (including phylogenetically close species; Casper and
Jackson 1997; Silvertown 2004b). For example, within plant
communities, coexistence among congeneric species with prefer-
ences for abiotic niche gradients (such as variation in soil texture
and nutrient availability) can occur through root morphological
differentiations, resulting in permanence in different soil textures
and differences in soil nutrient uptake potential (see Chen et al.
2022; Eckhart et al. 2017).

In this study, we used three congeneric species belonging to the
genus Erythroxylum (Eryhroxylaceae) as a study model. Because
they are phylogenetically related species, it is more likely that they
share common traits (for example, leaf size, height, fruit size and
type) or life history characteristics (Silvertown 2004b), making
them excellent models for studies related to niche partitioning and
species coexistence among congeneric plant. Here we investigate
how three plant species belonging to the genus Erythroxylum, these
being Erythroxylum simonis Plowman, Erythroxylum pauferrense
Plowman and Erythroxylum citrifolium A. St.-Hil., share the
dimensions of the ecological niche according to the abiotic
characteristics of the environment in which they are located to
allow coexistence. We hypothesise that multiple resources (light,
water and mineral nutrients) or environmental conditions (soil
texture) limit the three Erythroxylum species, and their niche space
should be differentially fulfilled by individuals (differences in
abundance and position in multidimensional space) along those
environmental gradients, reducing competition and allowing
coexistence. Thus, we expect that (1) a linear increase in the
Erythroxylum species population as the availability of resource/
environmental conditions increases and (2) the three
Erythroxylum species, taken in pairs, must show a lower degree
of multidimensional niche overlap than expected by chance.

Material and Methods

Study area

This study was conducted in Mata do Pau Ferro State Park, located
in the municipality of Areia, State of Paraíba, Northeast Brazil
(Figure 1). The park is in a 600 ha Atlantic Rainforest disjuncture,
regionally known as ‘Brejos de Altitude’ (Barbosa et al. 2004).
‘Brejos de altitude’ are enclaves of the Atlantic Rainforest within
the Caatinga domain, a deciduous vegetation formation adapted to
semi-arid climates (Andrade-Lima 1982; Pennington et al. 2009).
The Mata do Pau Ferro State Park is located 600 m above sea level
with an average annual temperature of 22ºC, relative humidity of
around 85% and annual precipitation of 1500 mm, with a humid

climate and deep and medium fertile soils (Mayo and Fevereiro
1982; Pôrto et al. 2004). This State Park is home to the most
representative high-altitude forest in the State of Paraíba, with
about 309 species of Angiosperms, distributed in 84 families, of
which Rubiaceae, Malvaceae and Solanaceae stand out as the most
representative families in a number of species (Barbosa et al. 2004).
In addition, four species of the Erythroxylaceae family occur in the
study site: Erythroxylum simonis, Erythroxylum pauferrense,
Erythroxylum citrifolium and Erythroxylum deciduum A. St.-Hil.

During the nineteenth century, the tropical Atlantic Forest
cover located in the Northeast region of Brazil, suffered heavily
from increased anthropic pressures driven by agricultural
activities, which reduced it to a small fraction of its original area
(Crouzeilles et al. 2019), resulting in a hyper-fragmented landscape
(Pôrto et al. 2004). The creation of the Mata do Pau Ferro State
Park as a protected area has reduced habitat loss in the locality,
however, impacts such as illegal logging are still recorded.

Experimental design

Focal species and population survey
The genus Erythroxylum is characterised by woody, shrubby or
arboreal plants with alternate, entire leaves, monocline flowers and
fleshy (less than 1 cm in size), reddish, single-seeded fruits (Loiola
et al. 2007). This genus is exclusively tropical and comprises about
240 species, of which 187 present a distribution exclusively in the
Neotropical region (Plowman andHensold 2004). Brazil is pointed
as one of the main centres of diversity and endemism of plant
species belonging to the genus Erythroxylum (Plowman et al.
1999). Of the species with a distribution in the Neotropical region,
approximately 50 per cent occur in Brazil (Cordeiro et al., 2017),
including species with a restricted distribution, such as
Erythroxylum pauferrense Plowman, endemic to remnants of the
Atlantic Rainforest in northeastern Brazil (Cordeiro et al. 2017;
Loiola et al. 2007). The species in this group show great ecological
versatility, with species found in humid and semi-arid regions, and
occurring at different levels of altitudes (Loiola et al. 2007). In the
present research, we emphasise three species belonging to this
genus, E. citrifolium, E. pauferrense (endemic species in small
fragments of Atlantic Forest in Northeast Brazil) and E. simonis,
because they are well represented in terms of abundance in the
study area (Araújo 2016).

The species E. citrifolium has a tree to shrub life form, with a
height of between 1.5 and 4 m. The leaves are large and elliptical,
with a pointed apex (the size of the leaves can vary according to
their distribution; at our study site, the leaves of this species are
larger than those of the other two focal species). The branches are
2–4 mm in diameter (colour varies from greyish to brown), the
flowers are small and yellowish-white and the fruit is fleshy, single-
seeded, reddish and small (less than 1 cm in size; Plowman and
Hensold 2004). In the study area, flowering and fruiting usually
take place between April and June. In addition, it is a species with a
wide distribution in the Neotropical Region, being preferentially
found in humid forest environments (Loiola et al. 2007).

The species E. pauferrense, like E. citrifolium, has a life form of
tree to shrub, with a height of between 1.5 and 4 m. However, its
leaves are small, slightly discoloured and generally elliptical
(sometimes rounded). The branches can be 2–3 mm in diameter
and vary in colour from greyish to brown, the flowers are also small
and yellowish-white, the fruit fleshy, with a single seed (with
grooves), reddish and small (less than 1 cm in size; Plowman 1986).
Unlike E. citrifolium, its flowering and fruiting in the study area
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takes place over a longer period, fromMarch to July. E. pauferrense
is endemic to the Northeastern Region of Brazil and is found in
remnant areas of the Atlantic Rainforest (Loiola et al. 2007). In
addition, it is worthmentioning that this species has a great affinity
in terms of characteristics and habitat with E. simonis and can be
distinguished by the following features: E. simonis has a height of
between 2 and 2.5 m, thick, elliptical leaves with a pointed apex, a
bright green colour on the adaxial side and fruits with smooth seeds
(Loiola et al. 2007). Its flowering and fruiting in the study area may
be in two periods, the first betweenMarch and June and the second
between October and November. The distribution of E. simonis is
restricted to north-eastern Brazil, with occurrence in fragments of
the Atlantic Forest in the states of Paraíba, Pernambuco, Ceará,
Sergipe and Rio Grande do Norte (Cordeiro et al. 2017).

To survey the species, we used ten 20m× 50m plots, previously
established in the study area. The plots were distributed
throughout the Mata do Pau Ferro State Park in order to cover
its surface as much as possible. Within the plots, we marked and
counted the individuals belonging to the three species of the genus
Erythroxylum that were at least 10 cm in diameter at breast height
(Felfili et al. 2011).

Characterising the abiotic multidimensional niche overlap

Luminosity
In June 2019, we took hemispherical photographs of the canopy
using a Digital Plant Canopy Imager – CID-110 analyzer (CID,
Inc) to obtain the light availability through photosynthetically
active radiation (PAR) present in the understory (Table S1). The
photographs were taken 1 m above the ground, in the four corners
and centre of the plots, at moments with diffuse light conditions (in

our case, early in the morning) to allow the maximum possible
contrast between the forest canopy and the sky (Whitford et al.
1995). After the photographs were taken, the value of photosyn-
thetically active radiation for each plot was obtained by calculating
the average of the five photos taken in each plot.

Chemical composition and soil granulometry
In each plot, with the help of a Dutch auger, we collected six simple
soil samples (depth between 0 and 20 cm), after this process, we
mixed all the samples and took a 300 g aliquot for the chemical and
granulometric analyses of the soils. Following the protocol
described in (Donagema et al. 2011), the granulometric ratios
and chemical composition of the soils were measured. In total, 13
soil chemical and physical variables were collected: clay, sand, silt,
C, HþAl, Al, Na, K, P, pH, Mg, Ca and organic matter. The clay,
sand and silt values were converted into percentages to be used in
the statistical analysis.

Soil moisture
We collected soil twice, before and after the rainy season, to obtain
the average moisture content of each plot. In each collection, we
took a 100 g aliquot from the composite sample of each plot. We
weighed the samples (fresh weight – FW) and dried them in an
oven (temperature of 60ºC) until constant weight, which was
considered as the sample dry weight (DW). With this, we
calculated the moisture content (h, measured in percentage) of the
soil following the formula (Donagema et al. 2011; Klar et al. 1966;
Papadakis 1941):

Figure 1. Map with the location of the Mata do Pau Ferro State Park in the Municipality of Areia – PB, highlighting the sampling units (dark circles).
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h ¼ FW � DW
DW

� 100

We calculated Spearman’s cross-correlation matrix to check
(Figure S1) for multicollinearity among the 15 potential predictors
(abiotic variables) of the study. Through the correlation matrix, we
found that the 15 variables were highly correlated. Thus, we
selected only those variables that had correlation values between
−0.7 and 0.7 to ensure some degree of independence among the
variables. The six continuous explanatory variables selected for
inclusion in the models were PAR, moisture, sand, silt, potassium
and calcium. Subsequently, we performed a variance inflation
factor (VIF) analysis of each predictor using the car and MuMin
statistical packages for R software version 3.6.0 (R Development
Core Team 2020). In the analysis, the highest VIF obtained was 2.2,
which indicates low collinearity between the predictor variables
(Neter et al. 1990) thus allowing them to be included in our
statistical model.

Analysis of data

We constructed generalised linear models (GLM) to understand
how the three species of the Erythroxylum genus share the
multidimensional niche space according to the abiotic variables
considered in our study. We build three individual models (one
model for each of the three Erythroxylum species) to see how each
species responds separately to the environmental variables. In
these models, the response variable is the abundance of the
Erythroxylum species itself in each plot. The basic GLMmodel was
AbunSp~ PARþmoistureþ sandþ siltþ Kþ Ca, where AbunSp
is the abundance of species, PAR is photosynthetically active
radiation,moisture is the variable related to the availability of water
in the plots under study sand and silt represent the percentage
concentration of sand and silt in the soils, K and Ca are the
concentrations of potassium and calcium in the soils of the plots
studied. As the abundance of the species is count data, wemodelled
it as a Poisson distribution with a logarithmic link function. In
addition, the predictor variables used in the analyses were Z-
transformed to ensure comparability between the variables.

We assessed the degree of abiotic niche overlap considering the
three species taken in pairs. We produced relative density surfaces
for each species based on the Kernel index, using the ecospat.-
grid.clim.dyn function provided by the ‘ecospat’ package (Di Cola
et al. 2017). Subsequently, we determined the equivalence (and
statistical significance) of their niches using the ‘ecospat.niche.e-
quivalency.test’ function from the same package, based on the
niche overlap index D (Warren et al. 2008). We adopted the
hypothesis of niche separation and set the ‘overlap.alternative’
parameter to the ‘lower’ option. To check the validity of the
hypothesis, the model was adjusted for 100 randomisations, and
the observed D value was compared with the randomised values
(Broennimann et al. 2012).

All the analyses were carried out in the R statistical software (R
Development Core Team 2020).

Results

We sampled a total of 1027 individuals belonging to the three
species of the genus Erythroxylum in the ten plots under study. Of
this number, 781 individuals belonged to the species E. simonis
(occurring in all plots, occurrence frequency = 1), 177 to

E. pauferrense (0.8 occurrence frequency) and 69 to E. citrifolim
(0.5 occurrence frequency) (Table S2).

Effect of predictor variables on the abundance of
Erythroxylum species

Our abundance models for the three Erythroxylum species
suggested that the availability of photosynthetically active
radiation exerted different effects on the abundance of the three
focal plant species in our study. The abundance of E. simonis
increased in response to the light gradient, unlike E. citrifolium,
which responded negatively to increased light availability.
E. pauferrense on its turn, showed no consistent response across
our gradient of PAR incidence (Table 1; Figure 2A).

The species E. citrifolium and E. simonis exhibited similar
patterns of monotonic increasing abundance as soil moisture rises
(as illustrated in Figure 2B). In contrast, E. pauferrense showed a
slightly negative response (driven by a single dry plot harbouring
about 40 individuals), but with a higher concentration of occupied
plots (consequently, higher proportion of relative abundance) in
wetter plots (Table 1; Figure 2B). The proportions of sand and silt
played different roles on the abundance of the three plant species.
Our results show that E. citrifolium showed no influence of the
sand gradient on its abundance but responded negatively to
increasing silt proportion (Table 1; Figure 2C and 2D). The
abundance of E. pauferrense was positively correlated to the
proportion of sand but showed no response to silt proportion,
while E. simonis showed increased abundance as the concentration
of sand and silt increased (Table 1; Figure 2C and 2D).

The availability of potassium in the soil had a positive effect on
the population of E. citrifolium and a marginally significant effect
on the abundance of the species E. pauferrense but did not affect
E. simonis abundance (Table 1, Figure 2E). In addition, the
populations of E. simonis and E. pauferrense were positively
affected by soil calcium concentrations, with a higher slope;
consequently, a stronger effect on the species E. simonis (Table 1,
Figure 2F).

Abiotic niche overlap of Erythroxylum species along
environmental gradients

The relative abundance distribution of the three species of the
genus Erythroxylum showed different responses along the
gradients of environmental variables describing their observed
ecological niche (Figure 3). The species E. simonis showed the
highest relative abundance along all environmental gradients
(Figure 3; Figure S2), with abundance peaking in wet environments
under low to intermediate luminosity. In addition, E. simonis
occurred at higher abundances on soil texture of about 60% of sand
and 10% silt, with low potassium concentration, and showed high
abundance across the whole calcium gradient (Figure 3C to 3F and
Figure S2). E. pauferrense showed preferences for environments
with low to intermediate incidence of photosynthetically active
radiation (it is absent in sites with high luminosity), low to high
water availability, soils with intermediate proportion of sand and
silt and low concentrations of potassium and calcium (Figures 3A
to 3F and Figure S2). E. citrifolium showed the lowest relative
abundance along the gradients, exhibiting a conspicuous peak of
relative abundance in sites with lower incidence of photosyntheti-
cally active radiation, higher water availability, soils with a
significant presence of sand, low concentrations of silt, high
availability of potassium and low calcium availability (Figures 3A
to 3F and Figure S2).
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Taken together, species-specific response to each abiotic niche
dimension produces its multidimensional abiotic niche, which
showed different levels of niche overlap with the multidimensional
abiotic niche of the remaining species. Two pairs of species showed
lower niche overlap (D) than randomly expected. The species
E. citrifolium and E. pauferrense presented D-value 2.18 times
lower than the expected by chance (observed D= 0.395 vs. random
D= 0.859 ± 0.041; p= 0.009), while E. simonis and E. pauferrense
showed D-value 1.42 times lower than randomD (0.508 vs. 0.721 ±
0.071; p= 0.009). E. simonis and E. citrifolium, however, showed
D-value 1.04 times higher than randomly calculated (0.594 vs.
0.571 ± 0.059), but differences did not depart from expected by
chance (p = 0.712).

Discussion

Our results indicate that the three species belonging to the genus
Erythroxylum coexist along the different environmental gradients,
with some level of ecological niche overlap. We found that, based
on species abundance and occurrence frequency across plots,
E. simonis is the best competitor, showing a generalist behaviour
and the highest abundance across all environmental gradients. The

species E. pauferrense, on its turn, appeared as the second stronger
competitor. Its behaviour across environmental gradients is similar
to E. simonis, but E. pauferrense showed a less generalist character
and exhibited lower niche overlap than expected by chance with
both remaining species. The species E. citrifolium occupies the
lowest rank in the competitive hierarchy and showed a narrow
pattern in resource use and habitat preference (specialist
behaviour), although it presents high level of niche overlap with
E. simonis. E. citrifolium, exhibited very conspicuous peaks of
relative abundance concentration, achieving higher population
density in sites with lower light incidence, higher water availability,
moderate amounts of sand, low amounts of silt, higher levels of
potassium and lower concentration of calcium in the soil.
Additionally, it is important to emphasise that the adult population
of the species studied has been able to adapt to various
environmental and ecological challenges. Thus, the outcomes we
report here are influenced by the species’ ability to perform well in
terms of physiology, recruitment, growth and survival during their
early life stages. Finally, we recognise that despite the considerable
effort put into data collection, the sample size of the plots (n= 10)
can be considered small. A larger sample could provide a more
robust and detailed view of species dynamics and their ecological
interactions. Therefore, future studies with a larger number of
sample plots would be valuable to confirm and expand our results,
offering a more comprehensive understanding of niche sharing
between the three focal species of our study.

The monotonic increase in the population of a plant species in a
resource gradient indicates that the plant’s performance is limited
by that resource (Farrior et al. 2013; Gleeson and Tilman 1992;
Liebig 1855), our data suggests light, water and calcium as limiting
resources. It is also known from literature (Dybzinski and Tilman
2007; McPeek 2019; Tilman 1990; Tilman et al. 1981) that
increases in the availability of limiting resources must foster
performance of the best competitor species, E. simonis in our case.
The other two Erythroxylum species had more variable behaviour,
showing opposite responses to the moisture gradient, and
alternating from no-responsive to slightly responsive (either
increasing or decreasing) to the other resource gradients (light,
potassium and calcium). It suggests that E. citrifolium and
E. pauferrense tend to segregate their ecological niche space and use
resources differently, highlighting a possible fierce competition in
the past. Additionally, gradients of environmental conditions, soil
texture in our study, may modulate population size of the three
species, with E. simonis achieving higher population density across
the whole gradient, which points to high phenotypic plasticity.
E. citrifolium and E. pauferrense, however, showed opposite trends
concerning soil texture, indicating that these species are better
adapted, respectively, to sandy and silty soils. This complex set of
responses to resource availability and environmental conditions
allows the three plant species to coexist, and the whole picture
points to different levels of niche overlap amongst them.

The coexistence of phylogenetically close species requires some
differentiation in the acquisition and use of available resources to
minimise competitive pressures (Dybzinski and Tilman 2007;
Martin andMallik 2023; Tilman et al. 1981), which can drive niche
overlapping or segregation (Weber and Strauss 2016). Our results
show that the three species, in the absence of their close
competitors, can occupy the whole resource and environmental
condition gradients, but they alleviate competitive pressures by
shifting their observed niche. For example, species pairs
E. citrifoliumwith E. pauferrense and E. simoniswith E. pauferrense
fulfill different parts of the possible multidimensional niche space,

Table 1. Effect of abiotic variables of the ten study plots on the abundance of
E. citrifolium, E. pauferrense and E. simonis in a landscape Brazilian Atlantic
Tropical Rainforest

Model Df Deviance
Resid.
Df

Resid.
Dev p

Erythroxylum
citrifolium

PAR 1 25.75 8 147.41 <0.001

Moisture 1 98.99 7 48.42 <0.001

Sand 1 0.30 6 48.13 0.586

Silt 1 25.03 5 23.10 <0.001

K 1 23.10 4 0.00 <0.001

Ca 1 0.00 3 0.00 1.000

Erythroxylum
pauferrense

PAR 1 0.79 8 194.38 0.372

Moisture 1 11.99 7 182.39 <0.001

Sand 1 49.98 6 132.41 <0.001

Silt 1 0.17 5 132.24 0.677

K 1 3.73 4 128.50 0.053

Ca 1 4.54 3 123.96 0.033

Erythroxylum
simonis

PAR 1 20.48 8 110.11 <0.001

Moisture 1 22.26 7 87.85 <0.001

Sand 1 22.51 6 65.34 <0.001

Silt 1 14.69 5 50.65 <0.001

K 1 0.04 4 50.61 0.836

Ca 1 41.86 3 8.74 <0.001

Notes: PAR, photosynthetically active radiation; K, potassium; Ca, calcium.
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with a coexistence strategy of reducing niche overlap and
decreasing competition. Concerning E. simonis and E. citrifolium,
however, the coexistence strategy seems different. In this case, the
species E. citrifolium, concentrates its population in a restricted
part of the multidimensional niche space, presumably around the
optimal values for each resource and condition evaluated, which
favours its persistence in the system, although this niche space still
shared with E. simonis. From this, we believe that phenotypic
plasticity plays a central role as it is involved in both coexistence
strategies, either allowing species to modify their phenotype in
order to segregate their niches, either allowing a species to restrict
its population to sites where it achieves higher performance in
order to maximise their survival likelihood. Additionally, the role
of species characteristics such as root depth and resource use
efficiency can collaborate in the efficient use of water, modulate
population size and competitive strategy. For example, the species
E. simonis has a deep root system that allows it to reach water and
mineral deposits inaccessible to the other two remaining species

(Briones et al. 1996; Silvertown 2004b), thus gaining access to these
extra resources.

The processes underlying species coexistence in space and time
rise in importance in the current scenario of increasing
anthropogenic disturbances, like natural resources hyper-exploi-
tation, land cover change and global climate change (Åkesson et al.
2021; Descombes et al. 2020). Such anthropogenic disturbances
could favour the replacement of disturbance-sensitive organisms,
the loser species sensu Filgueiras et al. (2021) by habitat-generalist
and disturbance-adapted ones, the winner species sensu Filgueiras
et al. (2021). Such replacement can be fostered by changes in
species competitive hierarchy driven by anthropogenic disturb-
ances, leading to increased taxonomic, functional and phylogenetic
similarity among ecological communities (i.e. biotic homogenisa-
tion; Tabarelli et al. 2012). Thus, investigating and understanding
how environmental changes act on the responses of species with
different limited resource utilisation strategies is fundamental for
building appropriate conservation protocols (Daru et al. 2021),

Figure 2. Response of the abundance of E. citrifolium, E. pauferrense and E. simonis along gradients of environmental variables in the ten study plots in a landscape Brazilian
Atlantic Tropical Rainforest. Par: photosynthetically active radiation.
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especially when it comes to species that are more restricted to
certain environmental conditions, phylogenetically close, or rare,
as is the case of E. pauferrense (Loiola et al. 2007). Our results also
suggest that phenotypic plasticity plays an important role in
species coexistence as it could allow, on one side, niche segregation
leading to character displacement and, on the other side,
constraining observed ecological niche to the optimal zones even
though it elicits a reduction in population size as a handicap.
Finally, we acknowledge that the processes behind the niche
partitioning among the three species may be related to other
mechanisms, such as biotic interactions (i.e. seed dispersal or
pollination), which can reverberate across local communities’
assembly processes, deserving further investigation in the future.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0266467424000282.
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