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1. Introduction

If G is an arbitrary group, a subgroup Q of G is called a Cartan subgroup (in the sense of
Chevalley) if it satisfies the following two conditions.

(1) Q is nilpotent and maximal with this property among subgroups of G.

(2) For any subgroup X 6 Q which is normal in Q and of finite index in Q, the
normalizer NG(X) of X in G contains X as a finite index subgroup.

The purely group-theoretic definition of a Cartan subgroup as above was designed by
Chevalley in order to capture critical properties of very specific subgroups of Lie groups.

In connected affine algebraic groups over algebraically closed fields, Cartan subgroups
are centralizers of maximal algebraic tori, they are connected, there is a unique
conjugacy class of them, and their union is dense in the group (see [3, ğğ 11 and
12]). In connected compact real Lie groups, Cartan subgroups are connected, there is
a unique conjugacy class of them, and their union covers the group (see [8, Chapitre
VI, ğ 5]). It is however worth emphasizing at the outset that in real Lie groups Cartan
subgroups need not be connected in general, a point also noticed by Chevalley in the
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introduction of [8, Chapitre VI]: ‘Il convient de noter que les groupes de Cartan de G
ne sont en général pas connexes.’ The diagonal subgroup of SL2(R) is maybe the first
example of a nonconnected Cartan subgroup that one should bear in mind. Most of the
difficulties for the study of these subgroups in the past, notably in the early work of
Cartan, have been this failure of connectedness. This is something that will eventually
need considerable attention in the present paper as well.

We are going to study Cartan subgroups from the model-theoretic point of
view of groups definable in an o-minimal structure, that is, a first-order structure
M = 〈M,6, · · ·〉 equipped with a total, dense, and without end-points definable order
6, and such that every definable subset of M is a boolean combination of intervals with
end-points in M∪{±∞}. The most typical example of an o-minimal structure is of course
the ordered field R of the reals, but there are richer o-minimal structures, such as the
field of the reals equipped in addition with the exponential function [35].

In order to deal with the nonconnectedness of Cartan subgroups in general, we will
use the following notion. If G is a group definable in an arbitrary structure M, then
we say that it is definably connected if and only if it has no proper subgroup of finite
index definable in the sense of M. A subgroup of a group G definable in M is called
a Carter subgroup of G if it is definable and definably connected (in the sense of M
as usual), and nilpotent and of finite index in its normalizer in G. All the notions of
definability depend on a ground structure M, which in the present paper will typically
be an o-minimal structure. The notion of a Carter subgroup first appeared in the case
of finite groups as nilpotent and selfnormalizing subgroups. A key feature is that, in
the case of finite solvable groups, they exist and are conjugate [7]. For infinite groups,
the notion we are adopting here, incorporating definability and definable connectedness,
comes from the theory of groups of finite Morley rank. That theory is another classical
branch of group theory in model theory, particularly designed at generalizing algebraic
groups over algebraically closed fields. Carter subgroups of groups of finite Morley rank
exist [20], and it is conjectured that they are conjugate [15]. However, it is not known
if Cartan subgroups of such groups are definably connected; if so, they would also be
Carter subgroups of the corresponding group (see Lemma 5(a′) below). We note that the
selfnormalization from the finite case becomes an almost selfnormalization property, and
indeed the finite group NG(Q)/Q associated to a Carter subgroup Q typically generalizes
the notion of the Weyl group relative to Q. This is something that will also make perfect
sense here in the case of groups definable in o-minimal structures.

We will see shortly in ğ 2 that, for groups definable in o-minimal structures, and
actually for groups with the mere descending chain condition on definable subgroups,
there is an optimal correspondence between Cartan subgroups and Carter subgroups:
the latter are exactly the definably connected components of the former. In particular,
Cartan subgroups are automatically definable subgroups, a point not following from the
definition of Chevalley in general, but which is always going to be true here.

In ğğ 3–6, we will relate Cartan and Carter subgroups to a well-behaved notion
of dimension for sets definable in an o-minimal structure, notably to slight genericity
(having maximal dimension) or to largeness (having smaller codimension). We will
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mainly develop their generous analogs: slightly generous and largely generous, where one
actually considers the slight (respectively, large) genericity of the union of conjugates
of a given set. The techniques and results here will be substantial adaptations and
generalizations from [20, 21] in the finite Morley rank case, and our arguments for
Cartan and Carter subgroups of groups definable in o-minimal structure will very much
depend on dimensional computations and generosity arguments. We will make such
dimensional computations in a rather axiomatic framework, essentially with the mere
existence of a definable and additive dimension, since they apply as such in many other
contexts (for example, groups of finite Morley rank, groups in supersimple theories of
finite rank, and groups definable over the p-adics).

Our main result can be summarized as follows.

Theorem 1. Let G be a group definable in an o-minimal structure. Then Cartan
subgroups of G exist, are definable, and fall into finitely many conjugacy classes.

Our proof of Theorem 1 will also strongly depend on the main structural theorem
about groups definable in o-minimal structures. It says in essence that any definably
connected group G definable in an o-minimal structure is, modulo a largest normal
solvable (and definable) subgroup R(G), a direct product of finitely many definably
simple groups which are essentially ‘known’ as groups of Lie type. Hence our proof
will consist in an analysis of the interplay between these definably simple factors and
the relevant definably connected solvable subgroups of G. Results specific about groups
definable in an o-minimal structure which are used here will be reviewed in ğ 7.

A large part of the work will thus be concerned with the case of definably connected
solvable groups. In this case we will make a strong use of the previously mentioned
largeness and generosity arguments. Mixing them with more algebraic inductive
arguments inspired by [13] in the finite Morley rank case, we will obtain the following
result in ğ 8.

Theorem 40. Let G be a definably connected solvable group definable in an o-minimal
structure. Then Cartan subgroups of G exist and are conjugate, and they are definable,
definably connected, selfnormalizing, and largely generous. Moreover, for any Cartan
subgroup Q, the (definable) set of elements of Q contained in a unique conjugate of Q is
large in Q and largely generous in G.

A definably connected group is semisimple if it has a finite center and modulo that
center abelian normal subgroups are trivial. One of the main theorems about groups
definable in o-minimal structures actually says that any such semisimple group with a
trivial center is a direct product of definably simple groups, with each factor a ‘known’
group of Lie type modulo certain elementary equivalences. We will review certain facts
that are more or less classical about Cartan subgroups of Lie groups in ğ 9. In ğ 10, we
will transfer the theory of Cartan subgroups of Lie groups to definably simple groups
and get a quite complete description of Cartan subgroups of definably simple groups
definable in o-minimal structures.
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In ğ 11, we will elaborate further on the definably simple case to get a similarly quite
complete description of Cartan subgroups of semisimple groups definable in o-minimal
structures, obtaining the following general theorem.

Theorem 63 (light version). Let G be a definably connected semisimple group definable
in an o-minimal structure. Then G has (definable) Cartan subgroups, and the following
hold.

(1) G has only finitely many conjugacy classes of Cartan subgroups.
(2) If Q1 and Q2 are Cartan subgroups and Q◦1 = Q◦2, then Q1 = Q2.
(3) If Q is a Cartan subgroup, then Z(G)6 Q, Q′ 6 Z(G), and Q◦ 6 Z(Q).
(4) If Q is a Cartan subgroup and a ∈ Q, then aQ◦ is slightly generous in G.
(5) The union of all Cartan subgroups, which is definable by (1), is large in G.

The general case of a definably connected group G definable in an o-minimal structure
will be considered in ğ 12. In this case, we have both G not solvable and not semisimple,
or, in other words,

G/R◦(G) 6= 1 and R◦(G) 6= 1.

In that case, Theorem 1 follows rapidly from Theorems 40 and 63, but some natural
questions will remain without an answer here. The most important one is maybe the
following: if Q is a Cartan subgroup of G, is it the case that QR◦(G)/R◦(G) is a Cartan
subgroup of the semisimple quotient G/R◦(G)? This question is indeed equivalent (see
below Remark 77) to the fact that Cartan subgroups of G/R◦(G) are exactly of the
form QR◦(G)/R◦(G) for some Cartan subgroup Q of G. We will only manage to prove
that, for a Cartan subgroup Q of G, the group QR◦(G)/R◦(G) is a finite index subgroup
of a Cartan subgroup of G/R◦(G), obtaining in particular the expected lifting for the
corresponding Carter subgroups. Getting the exact lifting of Cartan subgroups seems to
be related to interesting new problems of representation theory in a definable context.
In any case, we will mention all that we managed to prove on the correlations between
Cartan subgroups of G and of G/R◦(G), trying also to work with a not necessarily
definably connected ambient group G when possible. We will conclude in ğ 13 with
further comments on certain specialized topics, including algebraic or compact factors
and Weyl groups relative to the various Cartan subgroups.

In this paper, definability always means definability with parameters. We refer to
[24] for a complete introduction to groups definable in o-minimal structures. By recent
results in [12], every group interpretable in an o-minimal structure is also definable in
it; hence our results on definable groups also apply to the interpretable ones. Actually,
we will also work with quotient sets of definable groups. Even though an arbitrary
o-minimal structure does not eliminate imaginaries in general, any group definable in an
arbitrary o-minimal structure eliminates imaginaries, and actually has definable choice
functions in a very strong sense [10, Theorem 7.2]. In particular, imaginaries coming
from a group definable in an o-minimal structure will always be considered as definable
in what follows, and can be equipped with a finite dimension as any definable set.
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We refer to [32, Chapter 4] or [30] for the dimension of sets definable in o-minimal
structures.

Before we enter into the core of the paper, maybe is worth mentioning that the
results below are stated with rather weak assumptions. We have done so with the aim of
both putting the results in their most natural context and being able to apply them to
different contexts (as we have already mentioned). For that reason now, in the present
paper, we do not use the machinery of Lie algebras available by [26] in o-minimal
expansions of real closed field.

2. Cartan subgroups and Carter subgroups

We first consider the relations between Cartan and Carter subgroups of groups definable
in o-minimal structures. Actually, by [30, Remark 2.13], such groups satisfy the
descending chain condition on definable subgroups (dcc for short), and we will analyze
these relations in the more natural context of groups with the dcc. Throughout the
present section, G is a group definable in a structure M, and definability may refer to
Meq, and we say that G satisfies the dcc if any strictly descending chain of definable
subgroups is stationary after finitely many steps. Notice that the dcc always passes to
quotients by definable normal subgroups.

We first list some general facts needed in what follows.

Fact 2 ([1, Fact 3.1]). Let G be a definably connected group defined in an arbitrary
structure.

(a) Any definable action of G on a finite set is trivial.
(b) If Z(G) is finite, then G/Z(G) is centerless.

In a group with the dcc, any subset X is contained in a smallest definable subgroup
H(X) called the definable hull of X: take H(X) to be the intersection of all definable
subgroups of G containing X.

Fact 3 ([1, 3.3 and 3.4]). Let G be a group with the dcc and X a subset of G.

(a) If X is K-invariant for some subset K of G, then H(X) is K-invariant as well.
(b) If X is a nilpotent subgroup of G, then H(X) is nilpotent of the same nilpotency class.

We now mention an infinite version of the classical normalizer condition in finite
nilpotent groups.

Lemma 4. Let G be a nilpotent group with the dcc on definable subgroups, or merely
such that each definable subgroup has a definably connected definable subgroup of finite
index. If H is a definable subgroup of infinite index in G, then NG(H)/H is infinite.

Proof. For instance, one may argue formally as in [31, Proposition 1.12]. �

We will use the notation [] when we apply right operators (e.g., the connected
component in Lemma 5(b) below) to expressions involving several symbols.
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Lemma 5. Let G be a group with the dcc.

(a) If Q is a maximal nilpotent subgroup of G, then Q is definable.
(a′) If Q is a Cartan subgroup of G, then Q is definable and Q◦ is a Carter subgroup of

G.
(b) If Q is a Carter subgroup of G, then Q is contained in a maximal nilpotent subgroup

Q̃ of G, and any such subgroup Q̃ is a Cartan subgroup of G with [Q̃]◦ = Q.

Proof. (a) By Fact 3(b).
(a′) Q is definable by item (a). Since Q◦ is a normal subgroup of Q of finite index in Q,

Q◦ is a finite index subgroup of NG(Q◦), and Q◦ is a Carter subgroup of G.
(b) A definable nilpotent subgroup H containing Q must satisfy H◦ = Q, by Lemma 4,

and thus H 6 NG(H◦) = NG(Q). Now Fact 3(b) implies that any nilpotent subgroup H
containing Q satisfies Q 6 H 6 NG(Q). Since NG(Q)/Q is finite, there are maximal such
subgroups, proving our first claim.

Now fix any such maximal nilpotent subgroup Q̃. It is definable by item (a), and we
have already seen that Q = [Q̃]◦, and Q̃ 6 NG([Q̃]◦) = NG(Q). We now check that Q̃ is a
Cartan subgroup. Let X be any normal subgroup of finite index of Q̃. We first observe
that H◦(X) = Q: since Q̃ is definable we get H◦(X) 6 [Q̃]◦ = Q, and since H◦(X) must
have finite index in Q̃ we get the desired equality. Now, by Fact 3(a), NG(X) normalizes
H◦(X) = Q, so X 6 NG(X) 6 NG(Q). Since X has finite index in Q̃ and Q̃ has finite index
in NG(Q), X has finite index in NG(Q), and in particular X has finite index in NG(X). �

Applying Lemma 5, we have thus that in groups definable in o-minimal structures
Carter subgroups are exactly the definably connected components of Cartan subgroups,
with the latter always definable. We also note that Lemma 5(a) gives the automatic
definability of unipotent subgroups in those contexts where it implies maximal
nilpotence (see [14] for different concepts of unipotence). However, such unipotent
subgroups are in general not almost selfnormalizing, e.g., the subgroup of SL2(R)
formed by the upper unitriangular matrices. This subgroup also serves as an example
that condition (a) in the definition of a Cartan subgroup is not enough (the Cartan
subgroups of SL2(R) are described below in Remark 57).

We also note that, if Q is a maximal nilpotent subgroup of a group G with the dcc,
then Q is a Cartan subgroup of G if and only if Q◦ is a Carter subgroup (by Lemma 5)
and the latter is also equivalent to NG(Q◦)/Q◦ being finite. Finally, a selfnormalizing
Carter subgroup must be a Cartan subgroup, by Lemma 5(b), a definably connected
Cartan subgroup must be a Carter subgroup, and Carter subgroups are maximal among
definably connected nilpotent subgroups.

Definably connected nilpotent groups definable in o-minimal structures are divisible,
by [10, Theorem 6.10], so it is worth bearing in mind that the following always applies in
groups definable in o-minimal structures.

Fact 6 ([1, Lemma 3.10]). Let G be a nilpotent group with the dcc and such that G◦ is
divisible. Then G= B ∗G◦ (central product, i.e., G= BG◦ and [B,G◦] = 1) for some finite
subgroup B of G.
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When Fact 6 applies, one can strengthen Lemma 5(b) as follows. Again the following
statement is valid in groups definable in an o-minimal structure, because they cannot
contain an infinite increasing chain of definably connected subgroups (by the existence of
a well-behaved notion of dimension [24, Corollary 2.4]).

Henceforth, the notation K < G denotes that K is a proper subgroup of G.

Lemma 7. Let G be a group with the dcc. Assume that definably connected definable
nilpotent subgroups of G are divisible, and that G contains no infinite increasing chain
of such subgroups. Then any definably connected definable nilpotent subgroup of G is
contained in a maximal nilpotent subgroup of G.

Proof. Let N be a definably connected nilpotent subgroup of G. By assumption, N is
contained in a definably connected definable nilpotent subgroup N1 which is maximal for
inclusion. It suffices to show that N1 is then contained in a maximal nilpotent subgroup
of G, and by Fact 3(b) we may consider only definable nilpotent subgroups containing
N1. It suffices then to show that any strictly increasing chain of definable nilpotent
subgroups N1 < N2 < · · · is stationary after finitely many steps.

Assume towards a contradiction that N1 < N2 < · · · is such an infinite increasing chain
of definable nilpotent subgroups. Recall that N1 = N◦1, and notice also that N◦i = N1 for
each i, since N1 is maximal subject to being definably connected and containing N. By
Fact 6, each Ni has the form Bi ∗ N1 for some finite subgroup Bi 6 Ni, and in particular
Ni 6 CG(N1) · N1. We may thus replace G by the definable subgroup CG(N1) · N1.

Let X be the union of the groups Ni. Working modulo the normal subgroup N1,
we have an increasing chain of finite nilpotent groups. Now X/N1 is a periodic
locally nilpotent group with the dcc on centralizers, and by [6, Theorem A] it is
nilpotent-by-finite. Replacing X by a finite index subgroup of X if necessary, we may
thus assume that X/N1 is nilpotent and infinite. Since G = CG(N1) · N1, the nilpotency
of X/N1 and of N1 forces X to be nilpotent (of nilpotency class bounded by the sum of
that of X/N1 and N1). Replacing X by H(X), we may now assume with Fact 3(b) that
X is a definable nilpotent subgroup containing N1 as a subgroup of infinite index. Then
N1 < X◦, a contradiction to the maximality of N1. �

Before moving ahead, it is worth mentioning concrete examples of Cartan subgroups
of real Lie groups to be kept in mind in the present paper. In SL2(R) there are
up to conjugacy two Cartan subgroups, the subgroup of diagonal matrices Q1 ' R×,
noncompact and not connected, with corresponding Carter subgroup Q◦1 ' R>0, and
Q2 = SO2(R) isomorphic to the circle group, compact and connected and hence also
a Carter subgroup (see [22, p. 141–142] for more details). More generally, and again
referring to [22], the group SLn(R) has up to conjugacy b n

2c + 1 Cartan subgroups:

Qj ' [C×]j−1
× [R×]n−2j+1 where 16 j6

⌊n

2

⌋
+ 1,

except in the case n= 2(j− 1), where we also have Q n
2+1 ' [C×]

n
2−1
× SO2(R).
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We will need the following lemma relating the center to Cartan and Carter subgroups.
For any group G we define the iterated centers Zn(G) as follows: Z0(G) = {1}; and by
induction Zn+1(G) is the preimage in G of the center Z(G/Zn(G)) of G/Zn(G).

Lemma 8. Let G be a group, and for n> 0 let Zn := Zn(G).

(a) If Q is a Cartan subgroup of G, then Zn 6 Q and Q/Zn is a Cartan subgroup of
G/Zn, and conversely every Cartan subgroup of G/Zn has this form.

(b) If G satisfies the dcc, then Carter subgroups of G/Zn are exactly subgroups of the
form Q◦Zn/Zn, for Q a Cartan subgroup of G.

Proof. We may freely use the fact that the preimage in G of a nilpotent subgroup of
G/Zn is nilpotent.

(a) Clearly Zn 6 Q, by maximal nilpotence of Q. Clearly also, Q/Zn is nilpotent
maximal in the quotient G = G/Zn. Let X be a normal subgroup of finite index of
Q = Q/Zn, for some subgroup X of G containing Zn. The preimage in G of NG(X)
normalizes X, which clearly is normal and has finite index in Q. Since Q is a Cartan
subgroup of G, we easily get that X has finite index in NG(X).

Conversely, let Q be a subgroup of G containing Zn such that Q/Zn is a Cartan
subgroup of G = G/Zn. Clearly Q has to be maximal nilpotent in G. Let X be a normal
finite index subgroup of Q. NG(X) normalizes X modulo Zn, so it must contain X as a
finite index subgroup, and then X is also a finite index subgroup of NG(X).

(b) By item (a), Cartan subgroups of G/Zn are exactly of the form Q/Zn for a Cartan
subgroup Q of G containing Zn. So Carter subgroups of G/Zn are by Lemma 5 exactly of
the form [Q/Zn]

◦
= Q◦Zn/Zn, for Q a Cartan subgroup of G. �

Finally, we will also use the following lemma describing Cartan subgroups of central
products.

Lemma 9. Let G = G1 ∗ · · · ∗ Gn be a central product of finitely many and pairwise
commuting groups Gi. Then Cartan subgroups of G are exactly of the form Q1 ∗ · · · ∗ Qn,
where each Qi is a Cartan subgroup of Gi.

Proof. It suffices to prove our claim for n= 2. For i= 1 and 2, and X an arbitrary subset
of G, let πi(X) = {g ∈ Gi | ∃h ∈ Gi+1 gh ∈ X}, where the indices i are of course considered
modulo 2. It is clear that, when X is a subgroup of G, πi(X) is a subgroup Gi. If X
is nilpotent (of nilpotency class k), then πi(X) is nilpotent (of nilpotency class at most
k + 1): it suffices to consider G/Gi+1 and to use the fact that G1 ∩ G2 6 Z(Gi).

Let Q be a Cartan subgroup of G1 ∗ G2. Since Q 6 π1(Q) ∗ π2(Q), the maximal
nilpotence of Q forces equality. Now it is clear that each πi(Q) is maximal nilpotent in
Gi, by maximal nilpotence of Q again. Let now X be a normal subgroup of π1(Q) of finite
index. Then NG1(X) ∗ π2(Q) normalizes X ∗ π2(Q) and, as the latter is a normal subgroup
of finite index in Q, one concludes that X has finite index in NG1(X). Hence π1(Q) is a
Cartan subgroup of G1. Similarly, π2(Q) is a Cartan subgroup of G2.

Conversely, let Q be a subgroup of G of the form Q1 ∗ Q2 for some Cartan subgroups
Qi of Gi. Since each Qi is maximal nilpotent in Gi, it follows, considering projections as
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above, that Q is maximal nilpotent in G. Let now X be a normal subgroup of Q of finite
index. Then πi(NG(X)) normalizes the normal subgroup of finite index πi(X) of Qi. Since
Qi is a Cartan subgroup of Gi, it follows that πi(X) has finite index in πi(NG(X)). Finally,
since X 6 π1(X) ∗ π2(X)6 Q, we get that X has finite index in NG(X). �

The special case of a direct product in Lemma 9 has also been observed in [8, Chapter
VI, ğ4, Proposition 3].

Corollary 10. Let G= G1×· · ·×Gn be a direct product of finitely many groups Gi. Then
Cartan subgroups of G are exactly of the form Q1 × · · · × Qn, where each Qi is a Cartan
subgroup of Gi.

3. Dimension and unions

In this section, we work with a structure such that each nonempty definable set is
equipped with a dimension in N satisfying the following axioms for any nonempty
definable sets A and B.

(A1) (Definability) If f is a definable function from A to B, then the set {b ∈ B |
dim(f−1(b))= m} is definable for every m in N.

(A2) (Additivity) If f is a definable function from A to B, whose fibers have constant
dimension m in N, then dim(A)= dim(Im(f ))+ m.

(A3) (Finite sets) A is finite if and only if dim(A)= 0.
(A4) (Monotonicity) dim(A ∪ B)=max(dim(A),dim(B)).

In an o-minimal structure, definable sets are equipped with a finite dimension
satisfying all these four axioms, by [32, Chapter 4] or [30]. Hence our reader only
interested in groups definable in o-minimal structures may read all the following
dimensional computations in the restricted context of such groups. But, as mentioned in
the introduction, such computations are relevant in other contexts as well (for example,
groups of finite Morley rank, groups in supersimple theories of finite rank, and groups
definable over the p-adics), and thus we will proceed with the mere axioms A1–A4.

Axioms A2 and A3 guarantee that, if f is a definable bijection between two definable
sets A and B, then dim(A) = dim(B). Axiom A4 is a strong form of monotonicity in the
sense that dim(A)6 dim(B) whenever A⊆ B.

Definition 11. Let M be a first-order structure equipped with a dimension dim on
definable sets, and let X ⊆ Y be two definable sets. We say that X is:

(a) slightly generic in Y whenever dim(X)= dim(Y);
(b) generic in Y whenever Y is a definable group covered by finitely many translates of

X;
(c) large in Y whenever dim(Y \ X) < dim(Y).

Clearly, genericity and largeness both imply slight genericity when the dimension
satisfies axioms A1–A4. If G is a group definable in an o-minimal structure and X
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is a large definable subset of G, then X is generic: see [30, Lemma 2.4] for a proof
by compactness, and [25, ğ 5] for a proof with precise bounds on the number of
translates needed for genericity. In what follows we are only going to use dimensional
computations: hence the notions of slight genericity and of largeness. We are not going
to use the notion of genericity (which is imported from the theory of stable groups in
model theory), but we will make some apparently quite new remarks on genericity and
Cartan subgroups in real Lie groups (Remark 57 below).

Our arguments for Cartan subgroups in groups definable in o-minimal structures will
very much depend on computations of the dimension of their unions in the style of
[20], and to compute the dimension of a union of definable sets we adopt the following
geometric argument essentially due to Cherlin.

Assume from now on that Xa is a uniformly definable family of definable sets, with a
varying in a definable set A and such that Xa = Xa′ if and only if a = a′. We have now a
combinatorial geometry, where the set of points is U :=

⋃
a∈A Xa, the set of lines is the

set {Xa | a ∈ A} in definable bijection with A, and the incidence relation is the natural
one. The set of flags is then defined to be the subset of couples (x, a) of U × A such that
x ∈ Xa. By projecting the set of flags on the set of points, one sees with axiom A1 that,
for any r such that 06 r 6 dim(A), the set

Ur := {x ∈ U | dim({a ∈ A | x ∈ Xa})= r}

is definable. In particular, each subset of the form [Xa]r := Xa ∩ Ur, i.e., the set of points
x of Xa such the set of lines passing through x has dimension r, is definable as well.

Proposition 12. In a structure equipped with a dimension satisfying axioms A1– 2, let
Xa be a uniformly definable family of sets, with a varying in a definable set A and such
that Xa = Xa′ if and only if a = a′. Suppose, for some r such that 0 6 r 6 dim(A), that
[Xa]r is nonempty and that dim([Xa]r) is constant as a varies in A. Then

dim(Ur)+ r = dim(A)+ dim([Xa]r).

Proof. One can consider the definable subflag associated to Ur = [
⋃

a∈A Xa]r in the
point/line incidence geometry described above. By projecting this definable set on the
set of points and on the set of lines respectively, one finds using axiom A2 of the
dimension the desired equality as in [20, § 2.3]. �

Given a permutation group (G,Ω) and a subset X of Ω, we denote by N(X) and
by C(X) the setwise and the pointwise stabilizer of X, respectively; that is, G{X} and
G(X) in the usual permutation group theory notation. We also denote by XG the set
{xg
| (x, g) ∈ X × G}, where xg denotes the image of x under the action of g, as in the

case of an action by conjugation. Subsets of the form Xg for some g in G are also called
G-conjugates of X. Notice that the set XG can be seen, alternatively, as the union of
G-orbits of elements of X, or also as the union of G-conjugates of X. When considering
the action of a group on itself by conjugation, as we will do below, all these terminologies
and notations are the usual ones, with N(X) and C(X) the normalizer and the centralizer
of X respectively.
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We shall now apply Proposition 12 in the context of permutation groups in a way
much reminiscent of [21, Fact 4]. For that purpose we will need that the dimension is
well defined on certain imaginaries, and for that purpose we will make the simplifying
assumption that the theory considered eliminates such specific imaginaries. We recall
that groups definable in o-minimal structures eliminate all imaginaries, by [10, Theorem
7.2], so these technical assumptions will always be verified in this context. (And
our arguments are also valid in any context where the dimension is well defined
and compatible in the relevant imaginaries.) For any quotient X/ ∼ associated to an
equivalence relation ∼ on a set X, we call any subset of X intersecting each equivalence
class in exactly one point transversal. Throughout the paper we are going to consider
quotients with definable transversals. We do so to simplify notation, even though it
would be enough to consider the weaker property that each relevant quotient has a
bijective definable set.

Corollary 13. Let (G,Ω) be a definable permutation group in a structure equipped with
a dimension satisfying axioms A1–A3, and let X be a definable subset of Ω such that
G/N(X) (right cosets) has a definable transversal A. Suppose that, for some r between
0 and dim(A), the definable subset Xr := {x ∈ X | dim({a ∈ A | x ∈ Xa

}) = r} is nonempty.
Then

dim(Xr
G)= dim(G)+ dim(Xr)− dim(N(X))− r.

Proof. We can apply Proposition 12 with the uniformly definable family of
G-conjugates of X, which is parameterized as {Xa

| a ∈ A} since A is a definable
transversal of G/N(X). Notice that the sets [Xa

]r are in definable bijection, as
pairwise G-conjugates, and hence all have the same dimension. Notice also that
dim(A) = dim(G) − dim(N(X)), by the additivity of the dimension and its invariance
under definable bijections. �

The following corollary, which is crucial in what follows, can be compared to
[21, Corollary 5].

Corollary 14. Assume furthermore in Corollary 13 that the dimension satisfies axiom
A4, and that dim(G)= dim(Ω) and dim(X)6 dim(N(X)). Then

dim(XG)= dim(Ω) if and only if dim(X0)= dim(N(X))(= dim(X)).

In this case, X0
G is large in XG.

Proof. If dim(XG) = dim(Ω), then one has for some r as in Corollary 13 that
dim(Xr

G)= dim(Ω) by axiom A4, and then

06 r = dim(Xr)− dim(N(X))6 dim(X)− dim(N(X))6 0

by monotonicity of the dimension, showing that all these quantities are equal to 0. In
particular, r = 0, and dim(X0) = dim(N(X)). Conversely, if dim(X0) = dim(N(X)), then
dim(X0

G)= dim(G)= dim(Ω), by Corollary 13.
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Assume now that the equivalent conditions above are satisfied. The first part of the
proof above shows that dim(Xr

G)= dim(XG) (=dim(Ω)) can occur only for r = 0. Hence
X0

G is large in XG by axiom A4 again. �

Remark 15. In general it seems that one cannot conclude also that X0 is large in X in
Corollary 14. Hence, in principle, one could have dim(Xr) = dim(X) for some r > 0 and
dim(Xr

G)= dim(Ω)− r.

In the remainder of the section we will always consider the action of a group G
on itself by conjugation, so the condition dim(G) = dim(Ω) will always be met in
Corollary 14. Then we can apply Corollary 14 with X any normalizing coset of a
definable subgroup H of G, as commented in [21, page 1064]. More generally, we now see
that we can apply it simultaneously to finitely many such cosets. We first elaborate on
the notion of generosity defined in [20, 21] in the finite Morley rank case.

Definition 16. Let X be a definable subset of a group G definable in a structure
equipped with a dimension satisfying axioms A1–A4. We say that X is:

(a) slightly generous in G whenever XG is slightly generic in G;

(b) generous in G whenever XG is generic in G;

(c) largely generous in G whenever XG is large in G.

Corollary 17. Suppose that H is a definable subgroup of a group G definable in a
structure equipped with a dimension satisfying axioms A1–A4, and suppose that W is a
finite subset of N(H) such that G/N(WH) has a definable transversal. Then WH is slightly
generous in G if and only if

dim([WH]0)= dim(N(WH)).

In this case, [WH]G0 is large in [WH]G, and dim([WH]0) = dim(WH) = dim(H) =
dim(N(WH)).

Proof. Let X = WH. Since W is finite, X is definable. In order to apply Corollary 14,
one needs to check that dim(X) 6 dim(N(X)). Of course, the subgroup H normalizes
each coset wH, for each w ∈W ⊆ N(H), and in particular H 6 N(WH). We get thus that
dim(X)= dim(WH)= dim(H)6 dim(N(WH))= dim(N(X)).

Now Corollary 14 gives our necessary and sufficient condition, and the largeness of
[WH]G0 in [WH]G. It also gives dim(X0) = dim(X) = dim(N(X)). We have seen already
that dim(X)= dim(H). �

The following lemma is a fundamental trick that is used below.

Lemma 18. Let G be a group definable in a structure equipped with a dimension
satisfying axioms A1–A4 and with the dcc. Let X be a definable subset of G, let X0

be the subset of elements of X contained in only finitely many G-conjugates of X, and let
U be a definable subset of X such that U ∩ X0 6= ∅. Then N◦(U)6 N(X).
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Proof. As in [20, Lemma 3.3]. First, we note that N(U) normalizes U ∩ X0. For, if
g ∈ N(U) and h ∈ U ∩ X0, then hg

∈ U ⊆ X; hence hg
∈ U ∩ X0. Therefore, N◦(U) acts on

the finite set {Xg
| Xg
⊇ U ∩ X0, g ∈ N◦(U)}, by Fact 2(a) the action is trivial; so N◦(U)

fixes X(⊇ U ∩ X0), which means that N◦(U)6 N(X). �

4. Cosets arguments

Corollary 17 will be used at the end of this paper in certain arguments reminiscent of
a theory of Weyl groups from [21]. Since such specific arguments follow essentially from
Corollary 17, we insert here, as a warm up, a short section devoted to them.

Theorem 19. Let G be a group definable in a structure equipped with a dimension
satisfying axioms A1–A4 and with the dcc, let H be a slightly generous definable subgroup
of G, and let w be an element normalizing H and such that G/N(H) has a definable
transversal. Then one of the following must occur.

(a) The coset wH is slightly generous in G.
(b) The definable set {hwn−1

hwn−2
· · · h | h ∈ H}, where hwi

is (wi)−1hwi, is not large in H
for any multiple n of the (necessarily finite) order of w modulo H. If w centralizes H,
then {hn

| h ∈ H} is not large in H.

Proof. We proceed essentially as in [21, Lemmas 11–12]. Assume that wH is not slightly
generous. In particular, w ∈ N(H) \ H, since H is slightly generous by assumption. By
Corollary 17, H0 is slightly generic in N(H); in particular, H has finite index in N(H).
Of course, N(wH) 6 N(H), since H = {ab−1

: a, b ∈ wH}, and one sees then that N(wH)
is exactly the preimage in N(H) of the centralizer of w modulo H. To summarize,
H 6 N(wH) 6 N(H), with N(H)/H finite. In particular, w has finite order modulo H.
Notice also at this stage that G/N(wH) has a definable transversal (of the form AX,
where X is a definable transversal of G/N(H) and A is a definable transversal of the finite
quotient N(H)/N(wH)). Since we assume that wH is not slightly generous, Corollary 17
implies that [wH]0 is not slightly generic in wH. In other words, the (definable) set of
elements of the coset wH contained in infinitely many G-conjugates of wH is large in wH.

Assume towards a contradiction that {hwn−1
hwn−2

· · · h | h ∈ H} is large in H for n a
multiple of the finite order of w modulo H. Let φ : wh 7→ (wh)n denote the definable map,
from wH to H, consisting of taking n-powers. As

φ(wH)= wn
· {hwn−1

hwn−2
· · · h | h ∈ H},

our contradictory assumption forces that φ(wH) must be large in H.
Then H0 ∩ φ(wH) must be slightly generic in H. Since the dimension can only decrease

when taking images by definable functions, φ−1(H0 ∩ φ(wH)) necessarily has to be
slightly generic in the coset wH. Therefore one finds an element x in the intersection of
this preimage with the large subset [wH]\[wH]0 of elements of wH contained in infinitely
many G-conjugates of wH. Now, since wn

∈ H and N(wH) has finite index in N(H), it
follows that φ(x) = xn belongs to infinitely many G-conjugates of H, a contradiction,
since φ(x) belongs to H0. This proves our main statement in case (b).
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For our last remark in case (b), notice that when w centralizes H one has
{hwn−1

hwn−2
· · · h | h ∈ H} = {hn

| h ∈ H}. �

Corollary 20. Suppose additionally in Theorem 19 that w has order n modulo H and
that H is n-divisible (n> 1). Then one of the following must occur.

(a) The coset wH is slightly generous in G.

(b) CH(w) is a proper subgroup of H.

Proof. Suppose that both alternatives fail. Then {hn
| h ∈ H} is not large in H, by

Theorem 19, a contradiction, since this set is H by n-divisibility. �

The following corollary of Theorem 19 will be particularly adapted in what follows to
Cartan subgroups of groups definable in o-minimal structures.

Corollary 21. Suppose additionally in Theorem 19 that H is definably connected and
divisible, and that 〈w〉H is nilpotent. Then the coset wH is slightly generous in G.

Proof. This is clear if w is in H, so we may assume that w ∈ N(H) \ H. As above, w has
finite order modulo H = H◦. By the dcc of the ambient group and [1, Lemma 3.10], the
coset wH contains a torsion element which commutes with H = H◦, and thus we may
assume that CH(w) = H. By divisibility of H = H◦, {hn

| h ∈ H} = H is large in H, and by
Theorem 19 the coset wH must be slightly generous in G. �

We will also use the following more specialized results in the same spirit, which apply
as usual to nilpotent groups definable in o-minimal structures, by [10, Theorem 6.10].

Lemma 22. Let H be a nilpotent divisible group definable in a structure equipped with
a dimension satisfying axioms A1–A4, with the dcc, and with no infinite elementary
abelian p-subgroups for any prime p. Let φ be the map consisting of taking nth powers for
some n > 1. If X is a slightly generic definable subset of H, then φ(X) is slightly generic
as well.

Proof. Considering the dimension, it suffices to show that φ has finite fibers. Suppose
that an

= bn for some elements a and b in H. If aZ(H) = bZ(H), then our assumption
forces, with a fixed, that b can only vary in a finite set, as desired. Hence, working
in H/Z(H), it suffices to show that an

= bn implies that a = b. But, by [1, Lemma
3.10(a′)], all definable sections of H/Z(H) are torsion-free, and our claim follows easily by
induction on the nilpotency class of H/Z(H). �

Corollary 23. Let Q be a nilpotent group definable in a structure equipped with a
dimension satisfying axioms A1–A4, with the dcc, and with no infinite elementary
abelian p-subgroups for any prime p. Suppose that Q◦ is divisible, and let a ∈ Q, let
n be a multiple of the order of a modulo Q◦, and let φ be the map consisting of taking nth
powers. If X is a slightly generic definable subset of aQ◦, then φ(X) is a slightly generic
subset of Q◦.
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Proof. By [1, Lemma 3.9], we may assume that a centralizes Q◦. Now for any x ∈ Q◦

we have φ(ax) = anxn. Hence, if x varies in a slightly generic definable subset of Q◦, then
φ(ax) also varies in a slightly generic definable subset of Q◦ by Lemma 22 with H = Q◦.�

5. Generosity and lifting

In the present section, we study the behavior of slight or large generosity when passing
to quotients by definable normal subgroups. We continue with the mere axioms A1–A4
of ğ 3 for the dimension. We will assume that all the relevant quotients have definable
transversals. Everything in this section applies in particular to groups definable in
o-minimal structures.

Proposition 24. Let G be a group definable in a structure equipped with a dimension
satisfying axioms A1–A4, let N be a definable normal subgroup of G, let H be a definable
subgroup of G containing N, and let Y be a definable subset of H large in H.

(a) If H/N is slightly generous in G/N, then Y is slightly generous in G.
(b) If H/N is largely generous in G/N, then Y is largely generous in G.

Proof. First note that HG is a union of cosets of N, since N 6 H and N E G. Hence the
slight (respectively, large) generosity of H/N in G/N forces the slight (respectively, large)
generosity of H in G. In any case, dim(HG)= dim(G).

Replacing Y by YH if necessary, we may assume that H 6 N(Y) and Y are large in H.

Claim 25. Let Z = H \ Y. Then ZG cannot be slightly generic in HG.

Proof. Suppose that ZG is slightly generic in HG. Then dim(ZG) = dim(HG) = dim(G).
Since Z ⊆ H ⊆ NG(Z), Corollary 14 yields dim(Z) = dim(NG(Z)). In particular, dim(Z) =
dim(H), a contradiction to the largeness of Y in H. �

(a) Since dim(HG)= dim(G) and HG
= YG

∪ ZG, claim 25 yields dim(YG)= dim(G).
(b) In this case, HG is large in G. Since G = (G \ HG) t (HG

\ YG) t YG, claim 25 now
forces YG to be large in G. �

Corollary 26. Assume that G, N, H, and Y are as in Proposition 24, and that Y = QH

for some largely generous definable subgroup Q of H.

(a) If H/N is slightly generous in G/N, then so is Q in G

(b) If H/N is largely generous in G/N, then so is Q in G.

Proof. It suffices to apply Proposition 24 with Y = QH , noticing that YG
= QG. �

Corollary 27. Assume furthermore that Q is a Carter subgroup of H in Corollary 26.
Then, in both cases (a) and (b), Q is a Carter subgroup of G.

Proof. By definition, Q is definable, definably connected, and nilpotent. So it suffices
to check that Q is a finite index subgroup of NG(Q). But in any case, it follows from
the slight generosity of Q in G given in Corollary 26 and from Corollary 17 that
dim(Q)= dim(NG(Q)). Now axiom A3 applies. �
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6. Slightly generous nilpotent subgroups

In the present section, we shall rework arguments from [20] concerning slightly generous
Carter subgroups. Throughout the section, G is a group definable in a structure with
a dimension satisfying axioms A1–A4, and with the dcc. As in ğ 5, we will assume that
all relevant quotients have definable transversals. Again, everything applies to groups
definable in an o-minimal structure.

Lemma 28. Let G be a group definable in a structure with a dimension satisfying axioms
A1–A4, and with the dcc. Let H be a definable subgroup of G such that N◦(H) = H◦, let
H0 be the set of elements of H contained in only finitely many conjugates of H, and let N
be a definable nilpotent subgroup of G such that N ∩ H0 is nonempty. Then N◦ 6 H◦.

Proof. Let U = N ∩ H. By assumption, U ∩ H0 is nonempty, so, by Lemma 18,
N◦(U) 6 N◦(H) = H◦. In particular, N◦N(U) 6 (N ∩ H)◦ = U◦, which shows that U has
finite index in NN(U). Now Lemma 4 shows that U must have finite index in N, and in
particular U◦ = N◦. Hence, N◦ = (N ∩ H)◦ 6 H◦. �

Corollary 29. Let G be a group definable in a structure with a dimension satisfying
axioms A1–A4, and with the dcc. Let Q be a definable nilpotent slightly generous
subgroup of G, and let Q0 denote the set of elements of Q contained in only finitely
many conjugates of Q. Then, the following hold.

(a) For any definable nilpotent subgroup N such that N ∩ Q0 6= ∅, we have N◦ 6 Q◦.
(b) For any g in G such that Q0 ∩ Qg

6= ∅, we have that Q◦ = [Q◦]g.

Proof. (a) As Q is slightly generous, we have N◦(Q) = Q◦, by Corollary 17. Hence
Lemma 28 gives N◦ 6 Q◦. (b) Item (a) applied with N = Qg yields [Q◦]g = [Qg

]
◦ 6 Q◦.

Now applying Lemma 4 shows that [Q◦]g cannot be of infinite index in Q◦ (as otherwise
we would contradict that N◦(Q)= Q◦), and thus [Q◦]g = Q◦. �

Corollary 30. Suppose in addition in Corollary 29 that Q is a Carter subgroup of
G. Then, for any g ∈ Q0 and any definably connected definable nilpotent subgroup N
containing g, we have N 6 Q. In particular, Q is the unique maximal definably connected
definable nilpotent subgroup containing g, and the distinct conjugates of Q0 are indeed
disjoint, forming thus a partition of a slightly generic subset of G.

Proof. First, let g and N be as in the statement, so in particular N ∩ Q0 6= ∅,
and by Corollary 29(a) we have N 6 Q. Suppose now that Qg

0 ∩ Qh
0 6= ∅ for some

g, h ∈ G. Then Q0 ∩ Qhg−1

0 6= ∅, and hence by Corollary 29(b) we have Q = Qhg−1 , so
Qg

0 = [Q
g
]0 = [Qh

]0 = Qh
0. �

As a result, one also obtains the following general theorem, which can be compared to
the main result of [20].

Theorem 31. Let G be a group definable in a structure with a dimension satisfying
axioms A1–A4, and with the dcc. Then G has at most one conjugacy class of largely
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generous Carter subgroups. If such a Carter subgroup exists, then the set of elements
contained in a unique conjugate of that Carter subgroup is large in G.

Proof. Let P and Q be two largely generous Carter subgroups of G. We want to show
that P and Q are conjugate. We have P0

G and Q0
G large in G, by Corollary 17. Since

the intersection of two large sets is nontrivial (and in fact large as well), we get that
P0

G
∩ Q0

G is nonempty, so after conjugation we may thus assume that P0 ∩ Q0 is
nonempty. But then Corollary 30 gives P= Q.

Our last claim follows also from Corollary 30. �

7. On groups definable in o-minimal structures

We shall now collect results specific to groups definable in o-minimal structures which
are needed in what follows. We recall that groups definable in o-minimal structures
satisfy the dcc on definable subgroups [30, Remark 2.13], and o-minimal structures
are equipped with a dimension satisfying axioms A1–A4 considered in the previous
sections [32, Chapter 4]. As commented before, we can freely apply all the results of the
preceding sections to the specific case of groups definable in an o-minimal structure. We
also recall that all the technical assumptions on the existence of transversals in ğğ 3–6
are satisfied, since groups definable in o-minimal structures eliminate all imaginaries, by
[10, Theorem 7.2]. As mentioned in the introduction, we consider only definable groups,
but by the results in [12] this class also includes groups interpretable in o-minimal
structures.

Fact 32 ([1, ğ 6]). Let G be a group definable in an o-minimal structure, with G◦

solvable, and let A and B be two definable subgroups of G normalizing each other. Then
[A,B] is definable, and definably connected whenever A and B are. In particular, if G is
moreover definably connected and solvable, then G′ is definable and definably connected.

Any group G definable in an o-minimal structure has a largest normal nilpotent
subgroup F(G), which is also definable [1, Fact 3.5], and a largest normal solvable
subgroup R(G), which is also definable [1, Lemma 4.5].

Fact 33. Let G be a definably connected solvable group definable in an o-minimal
structure.

(a) [10, Theorem 6.9 ]G′ is nilpotent.
(b) [1, Proposition 5.5 ]G′ 6 F◦(G). In particular, G/F◦(G) and G/F(G) are divisible

abelian groups.
(c) [1, Corollary 5.6 ] If G is nontrivial, then F◦(G) is nontrivial. In particular, G has an

infinite abelian characteristic definable subgroup.
(d) [1, Lemma 3.6 ] If G is nilpotent and H is an infinite normal subgroup of G, then

H ∩ Z(G) is infinite.

In general, for any structure and any H and G definable subgroups of a given definable
group, with G normalizing H, a G-minimal subgroup of H is an infinite G-invariant
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definable subgroup of H, which is minimal with respect to these properties. If moreover
H satisfies the dcc on definable subgroups, then G-minimal subgroups of H always
exist. As the definably connected component of a definable subgroup is a definably
characteristic subgroup, we get also in this case that any G-minimal subgroup of H must
be definably connected.

Lemma 34. Let G be a definably connected solvable group definable in an o-minimal
structure, and let A be a G-minimal subgroup of G. Then A 6 Z◦(F(G)), and
CG(a)= CG(A) for every nontrivial element a in A.

Proof. By Fact 33(c), A has an infinite characteristic abelian definable subgroup.
Therefore the G-minimality of A forces A to be abelian. In particular, A 6 F(G). Since
A is normal in F(G), Fact 33(d) and the G-minimality of A now force that A 6 Z(F(G)).
Since A is definably connected, we have indeed A6 Z◦(F(G)).

Now F(G) 6 CG(A), and G/CG(A) is definably isomorphic to a quotient of G/F(G). In
particular, G/CG(A) is abelian, by Fact 33(b). If A 6 Z(G), then clearly CG(a) = CG(A)
(=G) for every a in A, and thus we may assume that G/CG(A) is infinite. Consider the
semidirect product A o (G/CG(A)). Since A is G-minimal, A is also G/CG(A)-minimal.
Now an o-minimal version of Zilber’s Field Interpretation Theorem for groups of finite
Morley rank [27, Theorem 2.6] applies directly to A o (G/CG(A)). It says that there is an
infinite interpretable field K, with A ' K+ and G/CG(A) an infinite subgroup of K×, and
such that the action of G/CG(A) on A corresponds to scalar multiplication. In particular,
G/CG(A) acts freely (or semiregularly in another commonly used terminology) on
A \ {1}. This means exactly that, for any nontrivial element a in A, CG(a) 6 CG(A);
i.e., CG(a)= CG(A). �

For definably connected groups definable in an o-minimal structure which are not
solvable, our study of Cartan subgroups will make heavy use of the main theorem about
groups definable in o-minimal structures. It can be summarized as follows, compiling
several papers to which we will refer immediately after the statement. Recall that a
group is definably simple if the only definable normal subgroups are the trivial and the
full subgroup.

Fact 35. Let G be a definably connected group definable in an o-minimal structure M.
Then

G/R(G)= G1 × · · · × Gn,

where each Gi is a definably simple infinite definable group. Furthermore, for each i,
there is an M-definable real closed field Ri such that Gi is M-definably isomorphic to a
semialgebraically connected semialgebraically simple linear semialgebraic group, definable
in Ri over the subfield of real algebraic numbers of Ri.

Besides, for each i, either

(a) 〈Gi, ·〉 and 〈Ri(
√
−1),+, ·〉 are bi-interpretable; in this case, Gi is definably

isomorphic in 〈Gi, ·〉 to the Ri(
√
−1)-rational points of a linear algebraic group;

or
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(b) 〈Gi, ·〉 and 〈Ri,+, ·〉 are bi-interpretable; in this case, Gi is definably isomorphic in
〈Gi, ·〉 to the connected component of the Ri-rational points of an algebraic group
without nontrivial normal algebraic subgroups defined over Ri.

The description of G/R(G) as direct product of definably simple definable groups can
be found in [26, 4.1]. The second statement about definably simple groups is in [26, 4.1
and 4.4], with the remark concerning the parameters in the proof of [28, 5.1]. The final
alternative for each factor, essentially between the complex case and the real case, is in
[27, 1.1].

When applying Fact 35 in what follows, we will also use the following.

Remark 36. Let M be an o-minimal structure, let R be a real closed field definable in
M, and let X be an R-definable subset of some Rn. Then dimM(X)= dimR(X).

Proof. By o-minimality, M is a geometric structure [27, Definition 3.2]. Moreover,
since dimM(R) = 1, by [30, Proposition 3.11], we deduce that R itself is R-minimal
in the sense of [27, Definition 3.3]. Hence, by [27, Lemma 3.5], we have that
dimM(X)= dimM(R) dimR(X)= dimR(X). �

We finish the present section with specific results about definably compact groups
which might be used when such specific groups are involved in what follows.

Fact 37. Let G be a definably compact definably connected group definable in an
o-minimal structure.

(a) [29, Corollary 5.4 ] Either G is abelian or G/Z(G) is semisimple. In particular, if G is
solvable, then it is abelian.

(b) [11, Proposition 1.2 ]G is covered by a single conjugacy class of a definably connected
definable abelian subgroup T such that dim(T) is maximal among dimensions of
abelian definable subgroups of G.

With Fact 37 we can entirely clarify properties of Cartan subgroups in the specific
case of definably compact groups definable in o-minimal structures, with a picture
entirely similar to that in compact real Lie groups.

Corollary 38. Let G be a definably compact definably connected group definable in an
o-minimal structure. Then Cartan subgroups T of G exist and are abelian, definable,
definably connected, and conjugate, and G= TG.

Proof. Let T be a definably connected abelian subgroup as in Fact 37(b). We show that
T is a Cartan subgroup of G. Indeed, since G = TG, T is in particular slightly generous,
and thus of finite index in its normalizer, by Corollary 17. Hence T is a Carter subgroup
of G. Since G = TG again, and t ∈ T 6 C◦(t) for every t ∈ T, we have the property that
g ∈ C◦(g) for every g in G.

We now prove our statement by induction on dim(G). By Lemma 5, T 6 Q for
some Cartan subgroup such that Q◦ = T. This takes care of the existence of Cartan
subgroups of G, and their definability follows from Lemma 5(a). We also have G = TG.
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We now claim that T = Q. Otherwise, T = Q◦ < Q, and we find by Fact 6 an element
a in Q \ T centralizing T. Since a ∈ Tg for some g ∈ G, we have T and Tg in C◦(a).
Now the Carter subgroups T and Tg of C◦(a) are conjugate by an element of C◦(a),
obviously if C◦(a) = G and by induction otherwise. Since a ∈ Tg 6 C◦(a), we get a ∈ T, a
contradiction. Hence T = Q is a Cartan subgroup of G.

It remains just to show that Cartan subgroups of G are conjugate. Let Q1 be an
arbitrary Cartan subgroup of G, and let z be a nontrivial element of Z(Q1) (Fact 6 and
Fact 33(d)). We also have z ∈ Tg for some g ∈ G, and thus Q1, Tg 6 C(z). If C◦(z) < G,
the induction hypothesis applied in C◦(z) yields the conjugacy of Q◦1 and of T, giving
also Q1 = Q◦1 by maximal nilpotence of T. So we may assume that z ∈ Z(G). If Z(G) is
finite, then G/Z(G) has a trivial center, by Fact 2(b), and the previous argument applied
in G/Z(G), together with Lemma 8(a), yields the conjugacy of Q1 and T. There remains
the case of Z(G) infinite: then, applying the induction hypothesis in G/Z(G), and using
Lemma 8(a), also gives the conjugacy of Q1 and T. This completes our proof. �

We have seen in the proof of Corollary 38 that the T of Fact 37(b) must be
Cartan subgroups; then both types of subgroup coincide (by the conjugacy of Cartan
subgroups) and so such T are conjugate. Note that the latter conjugacy result was
also proved under an additional unnecessary hypothesis in [11, Proposition 1.2]. On
the other hand, in [2], working over expansions of real closed fields, the author
considers maximal tori of a definably compact group as those maximal abelian definably
connected subgroups proving that they are all conjugate (so they coincide with the T of
Fact 37(b)) and that their union is the whole group. Making use of all these results and
over an expansion of a real closed field, the proof of Corollary 38 can be simplified.

Besides, we note that the maximal nilpotence of a Cartan subgroup T of a group G
always implies that CG(T) = Z(T). In particular, in Corollary 38, CG(T) = T, and the
‘Weyl group’ W(G,T) := NG(T)/CG(T) acts faithfully on T.

Finally, we take this opportunity to mention, parenthetically, a refinement of
Fact 37(a).

Corollary 39. Let G be a definably compact definably connected group definable in an
o-minimal structure. Then R(G)= Z(G).

Proof. By Fact 37(a) and [1, Lemma 3.13]. �

8. The definably connected solvable case

In the present section, we are going to prove the following theorem.

Theorem 40. Let G be a definably connected solvable group definable in an o-minimal
structure. Then Cartan subgroups of G exist and are conjugate, and they are definably
connected, selfnormalizing, and largely generous in G. Moreover, for any Cartan
subgroup Q, the (definable) set of elements of Q contained in a unique conjugate of
Q is large in Q and largely generous in G.
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To prove Theorem 40, we first look at the minimal configuration for our analysis,
which can be thought of as an abstract analysis of Borel subgroups of SL2 (over C or R),
first studied by Nesin in the case of groups of finite Morley rank [4, Lemma 9.14]. We
recall that, given a group G and a normal subgroup N of G, a complement of N in G is
any subgroup H of G such that G= HN and H ∩ N = 1.

Lemma 41. Let G be a definably connected solvable group definable in an o-minimal
structure, with G′ a G-minimal subgroup and Z(G) finite. Then G = G′ o Q for some
(abelian) selfnormalizing definably connected definable largely generous complement Q.
Moreover, we have the following.

(a) F(G)= Z(G)× G′ = CG(G′).

(b) For any x in G \ F(G), xG′ = xG′ , G= G′ o CG(x), and CG(x) is the unique conjugate
of CG(x) containing x. And any two complements of G′ are G′-conjugate.

Proof. We elaborate on the proof given in [15, Theorem 3.14] in the finite Morley
rank case. Since Z(G) is finite, the definably connected group G is not nilpotent,
by Fact 33(d), and in particular CG(G′) < G. By G-minimality of G′ and Lemma 34,
G′ 6 Z◦(F(G)) and CG(a)= CG(G′) for every nontrivial element a of G′.

For any element x in G \ CG(G′), we now show that Q := CG(x) is a required
complement of G′. Since x 6∈ CG(G′), CG′(x) = 1 and in particular dim(xG) > dim(G′).
On the other hand, xG

⊆ xG′ as G/G′ is abelian, and it follows that dim(xG) = dim(G′),
or in other words that dim(G/Q) = dim(G′). Since Q ∩ G′ = 1, the definable subgroup
G′ o Q has maximal dimension in G, and since G is definably connected we get that
G= G′ o Q. Of course Q' G/G′ is abelian, and definably connected as G is. We also see
that NG′(Q)= CG′(Q)= 1, since CG′(x)= 1, and thus the definable subgroup Q= CG(x) is
selfnormalizing.

(a) The finite center Z(G) is necessarily in Q = CG(x) in the previous paragraph, and
in particular Z(G) ∩ G′ = 1. Since G= G′ o Q and Q is abelian, CQ(G′)6 Z(G), and since
G′ 6 Z(F(G)) one gets Z(G)× G′ 6 F(G)6 CG(G′)6 Z(G)× G′, proving item (a).

(b) Let again x be any element in G \ F(G). The map G′→ G′: u 7→ [x, u] is a definable
group homomorphism, since G′ is abelian, with trivial kernel as CG′(x) = 1, and an
isomorphism onto G′, since the latter is definably connected. It follows that any element
of the form xu′, for u′ ∈ G′, has the form xu′ = x[x, u] = xu for some u ∈ G′; i.e., xG′ = xG′ .

Next, notice that any complement Q1 of G′ is of the form Q1 = CG(x1) for any
x1 ∈ Q1 \ Z(G). Indeed, x1 6∈ Z(G) and Q1 abelian imply that x1 6∈ CG(G′), and as above
CG(x1) is a definably connected complement of G′ containing Q1, and comparing the
dimensions we get Q1 = CG(x1).

Moreover, if Q1 = CG(x1) and Q2 = CG(x2) are two complements of G′, we can always
choose x1 and x2 in the same G′-coset; then they are G′-conjugate, as well as Q1 and
Q2. It is also now clear that, for any x ∈ G \ F(G), CG(x) is the unique complement of G′

containing x, proving item (b).
It is clear from item (b) that two complements of G′ are G′-conjugate, and that such

complements are largely generous in G. �
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Corollary 42. Let G be a group as in Lemma 41. Then the following hold.

(a) If X is an infinite subgroup of a complement Q of G′, then NG(X) = Q, and so
NG(X) ∩ G′ = 1.

(b) If X is a nilpotent subgroup of G not contained in F(G), then X is in an abelian
complement of G′.

(c) Complements of G′ in G are both Carter and Cartan subgroups of G, and all are of
this form.

Proof. (a) Since Q is abelian and X is contained in Q, we have Q 6 NG(X). And thus,
G= G′oQ implies that NG(X)= NG′(X)oQ. On the other hand, [NG′(X),X]6 G′∩X = 1;
hence NG′(X) ⊆ CG(X). Now, let x ∈ X \ Z(G) (which exists since X is infinite and
Z(G) finite); then x 6∈ CG(G′), since x ∈ Q, which is abelian, and G = G′ o Q. Then
NG′(X) ⊆ CG(X) ⊆ CG(x). Then, by Lemma 41(b), CG(x) = Q, and so NG′(X) = 1. Hence
NG(X)= Q, and so NG(X) ∩ G′ = 1.

(b) X contains an element x outside of F(G) = CG(G′). Replacing X by its definable
hull H(X), and using Fact 3(b), we may assume without loss of generality that X is
definable. As in the proof of Lemma 41, X ∩ G′ = {[x, u] | u ∈ X ∩ G′}, and the nilpotency
of X forces that X ∩ G′ = 1. Hence X is abelian, and in the complement CG(x) of G′.

(c) Complements of G′ are selfnormalizing Carter subgroups, by Lemma 41, and thus
also Cartan subgroups, by Lemma 5. Conversely, one sees easily that a Carter or a
Cartan subgroup of G cannot be contained in F(G), and then must be a complement of
G′, by item (b). �

Crucial in our proof of Theorem 40, the next point shows that any definably
connected nonnilpotent solvable group has a quotient as in Lemma 41.

Fact 43 (Cf. [13, Proposition 3.5]). Let G be a definably connected nonnilpotent solvable
group definable in an o-minimal structure. Then G has a definably connected definable
normal subgroup N such that (G/N)′ is G/N-minimal and Z(G/N) is finite.

Proof. The proof works formally exactly as in [13, Proposition 3.5] in the finite Morley
rank case. All facts used there about groups of finite Morley rank have their formal
analogs in Fact 33(a) and Lemma 34 in the o-minimal case. We also use the fact that
lower central series and derived series of definably connected solvable groups definable in
o-minimal structures are definable and definably connected, which follows from Fact 32
here. �

In the proof of Theorem 40, and further on, we will make use of the following classical
group-theoretic argument.

Fact 44 (Frattini argument). Let G be a group, and let L be a normal subgroup of G.
Let S be a collection of subgroups of L closed under G-conjugation and all of them
L-conjugate. Then, for any Q ∈ S , G= LNG(Q).

Proof. Let Q ∈ S and g ∈ G; then Qg
∈ S . Hence there is h ∈ L such that Qg

= Qh; thus
h−1g ∈ NG(Q). And so g ∈ LNG(Q). �
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We now pass to the proof of the general theorem, 40. At this stage we could follow
the analysis by abnormal subgroups of [7] in finite solvable groups, as developed in the
case of infinite solvable groups of finite Morley rank in [13]. However, we provide a more
conceptual proof of Theorem 40, mixing the use of Fact 43 with our general genericity
arguments, in particular those of ğ 6. We note that the proof of Theorem 40 we give here
would work equally in the finite Morley rank case (in that case there is no elimination
of imaginaries, but the dimension is well defined on imaginaries), providing a somewhat
more conceptual proof of the analogous theorem in [13] in that case.

Proof of Theorem 40. We proceed by induction on dim(G). Clearly a minimal
counterexample G has to be nonnilpotent, and then has a definably connected definable
normal subgroup N, as in Fact 43. In what follows, we use the notation ‘ ’ to denote
quotients by N. Notice that G is necessarily infinite in Fact 43, and that N is a subgroup
of infinite index in G.

Claim 45. G contains a definably connected and selfnormalizing Cartan subgroup Q
which is largely generous in the following sense: the (definable) set of elements of Q
contained in a unique conjugate of Q is large in Q and largely generous in G.

Proof. Let H be a definable subgroup of G containing N such that H is a selfnormalizing
largely generous Carter subgroup of G, as in Lemma 41. Notice that H is definably
connected, since H and N are. As G

′ is infinite, dim(H) < dim(G), and dim(H) < dim(G).
We can thus apply the induction hypothesis in H, and assume that H contains a
definably connected and selfnormalizing Cartan subgroup Q with the strong large
generosity property: the set of elements of Q contained in a unique H-conjugate of Q
is large in Q and largely generous in H. We will show that Q is the required subgroup.

First note that Q, being definably connected, is a largely generous Carter subgroup
of H. By Corollaries 26 and 27, Q must be a largely generous Carter subgroup of G.
We now show that Q is selfnormalizing in G. Notice that Q has an infinite image in
H, since it is largely generous in H and N is normal and proper in H. If x ∈ NG(Q),
then x ∈ NG(Q) = H, by Corollary 42(a), and since Q is selfnormalizing in H it follows
that x ∈ NH(Q) = Q. Thus Q is selfnormalizing in G. By Lemma 5, Q is also a Cartan
subgroup of G.

It remains just to show the largeness issue. Let Q0 denote the set of elements of
Q contained in a unique H-conjugate of Q. We know that Q0 is large in Q and that
[Q0]

H is large in H, so [Q0]
G (=[[Q0]

H
]
G) is large in G, by Proposition 24. This shows

that Q is largely generous in G, and thus it remains only to show it is in the strong
sense of our claim. For that purpose, one easily sees that it is enough to show that
the subset X of elements of Q0 contained in a unique G-conjugate of Q is still large
in Q0, given the large partition of G, as in Corollary 30 and Theorem 31 (see also
Proposition 12). Since Q is largely generous in H and the preimage L in H of F(G) is
normal and proper in H, we get that Q 66 L, and thus it suffices to show that Q0 \ X is
in L. Suppose towards a contradiction that an element x in Q0 and not in L is in Qg for
some g not in NG(Q). Looking at images in G, and since x ∈ H \ Z(G), we then see with
Lemma 41 that g ∈ NG(H)= H, and thus g ∈ H. Then x ∈ Q ∩ Qg for some g ∈ H \ NH(Q),
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a contradiction, since x is in a unique H-conjugate of Q. This completes our proof of
claim 45. �

Claim 46. Carter subgroups of G are conjugate.

Proof. There are indeed at this stage two quick ways to argue for the conjugacy of
Carter subgroups, either by quotienting by a G-minimal subgroup of G, as in [15, Proof
of Theorem 3.11], or still looking at the quotient G. Since we have already used G for
the existence of a largely generous Carter subgroup, we keep on this second line of
arguments.

Let Q1 be an arbitrary Carter subgroup of G. By Theorem 31, it suffices to prove that
Q1 is a largely generous Carter subgroup of G. Let L be the preimage of [G]′ in G; notice
that L is definably connected, as [G]′ and N are. If Q1 6 L, then a Frattini argument
(see Fact 44) applied in L, using the induction hypothesis in L, gives G= L · NG(Q1), and
since Q1 is a Carter subgroup this gives that L has finite index in G, a contradiction.
Therefore Q1 66 L, and since Q1 is definably connected we also get Q1 66 F(G), by
Lemma 41(a). In particular, by Corollary 42(b), Q1 is contained in a definably connected
definable subgroup H, as in the proof of claim 45. Since H < G, the induction hypothesis
applies in H, and thus Q1 must be conjugate in H to a largely generous Carter subgroup
Q of H. In particular, by the proof of claim 45, Q1 is a largely generous Carter subgroup
of G, as required. �

The Cartan subgroup Q provided by claim 45 is also a Carter subgroup, by definable
connectedness and Lemma 5(a′). If Q1 is an arbitrary Cartan subgroup, then Q◦1 is
a Carter subgroup, by Lemma 5(a′), and hence a conjugate of Q, by claim 46, and
the maximal nilpotence of Q forces Q◦1 = Q1. Hence Cartan subgroups are definably
connected and conjugate. This completes the proof of Theorem 40. �

Corollary 47. In a definably connected solvable group definable in an o-minimal
structure, Cartan subgroups and Carter subgroups coincide.

Proof. If Q is a Cartan subgroup, then it is definably connected, by Theorem 40, and
thus a Carter subgroup, by Lemma 5(a′). If Q is a Carter subgroup, then Q is the
definably connected component of a Cartan subgroup Q̃, by Lemma 5, and thus Q = Q̃,
by Theorem 40. �

There are other aspects refining further the structure of definably connected solvable
groups that we will not follow here, but which could be followed. They include
the already mentioned approach of Cartan/Carter subgroups as minimal abnormal
subgroups [7, 13], as well as covering properties of nilpotent quotients by Cartan/Carter
subgroups (see also [15, ğğ 4–5]), and also the peculiar theory of ‘generalized centralizers’
of [13, ğ 5.3]. We merely mention the most basic covering property, but before that we
mention a Frattini argument following Theorem 40.

Corollary 48. Let G be a group definable in an o-minimal structure, let N be a definably
connected definable normal solvable subgroup, and let Q be a Cartan/Carter subgroup of
N. Then G= NG(Q)N.
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Proof. By a standard Frattini argument (see Fact 44), following the conjugacy in
Theorem 40. �

Lemma 49. Let G be a definably connected solvable group definable in an o-minimal
structure, let N be a definable normal subgroup such that G/N is nilpotent, and let Q be a
Cartan/Carter subgroup of G. Then G= QN.

Proof. Suppose that QN < G. Then QN/N is a definable subgroup of infinite index in
the definably connected nilpotent group G/N. By Lemma 4, and since NG(QN) is the
preimage in G of NG/N(QN/N), we have thus QN of infinite index in K := NG(QN). But Q
is a Cartan/Carter subgroup of the definably connected solvable group [QN]◦, normal in
K, and thus K = NK(Q)[QN]◦ = NK(Q)N◦, by Corollary 48. Since Q is a Carter subgroup,
we get that QN must have finite index in K, a contradiction. �

We note that Lemma 49 always applies with N = F◦(G), in view of Fact 33(b), giving
thus in particular G = QF◦(G) for any definably connected solvable group G and any
Cartan/Carter subgroup Q of G.

9. On Lie groups

In this section, we collect properties needed in what follows concerning Cartan
subgroups (in the sense of Chevalley as usual) of Lie groups.

By a Lie algebra, we mean a finite-dimensional real Lie algebra. We are going to make
use of the following concepts about Lie algebras: subalgebras, commutative, nilpotent,
and semisimple Lie algebras [5, I.1.1, I.1.3, I.4.1 and I.6.1]. If g is a Lie algebra and x ∈ g,
the linear map adx : g→ g : y 7→ [x, y] is called the adjoint map of x. If h is a subalgebra
of g, the normalizer of h in g is ng(h) := {x ∈ g: adx(h) ⊆ h}, and the centralizer of h in g

is zg(h) := {x ∈ g: [adx]|h = id|h}.

Definition 50. Let g be a Lie algebra, and let h be a subalgebra of g. We say that h is a
Cartan subalgebra of g if h is nilpotent and selfnormalizing in g.

The two following facts can be found in [33, Theorem 4.1.2] and [33, Theorem 4.1.5],
respectively.

Fact 51. Every Lie algebra has a Cartan subalgebra.

Fact 52. Let g be a semisimple Lie algebra, and let h be a subalgebra of g. Then h is a
Cartan subalgebra of g if and only if the following hold.

(a) h is a maximal abelian subalgebra of g.

(b) For every x ∈ h, adx is a semisimple endomorphism of g; i.e., adx is diagonalizable
over C.

By a Lie group, we mean a finite-dimensional real Lie group G. The connected
component of the identity is denoted by G◦. The Lie algebra of G is denoted by L(G).
A connected Lie group G is called a semisimple Lie group if L(G) is a semisimple
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Lie algebra (equivalently, every normal commutative connected immerse subgroup of
G is trivial [5, Proposition III.9.8.26]). If g is an element of a Lie group G, then
Ad(g) : L(G)→ L(G) denotes the differential at the identity of G of the map from G
to G mapping h to ghg−1, for each h ∈ G. If g is the Lie algebra of G and h is a
subalgebra of g, the centralizer of h in G is ZG(h) := {g ∈ G :Ad(g)(x)= x for every x ∈ h}.

In most of the current literature, Cartan subgroups of a Lie group G are defined as
centralizers in G of a Cartan subalgebra of g. This definition coincides with the intrinsic
one given by Chevalley if the Lie group is reductive (e.g., semisimple), as is shown in
Fact 53 below. In general, if G is a connected Lie group, H is a Cartan subgroup of G,
and g and h are their corresponding Lie algebras, then ZG(h) can be strictly contained in
H [23].

Fact 53. Let G be a connected semisimple Lie group with Lie algebra g, and let H be a
subgroup of G. Then H is a Cartan subgroup of G if and only if H = ZG(h) for some
Cartan subalgebra h of g. Moreover, in this case, h is L(H).

Proof. As G is connected, [23, Theorem A.4] implies that H is a Cartan subgroup of G if
and only if

(C0) H is a closed subgroup of G;
(C1) h(=L(H)) is a Cartan subalgebra of g; and
(C2) H = C(h).

Here, C(h) is defined by a centralizer-like condition. To avoid introducing more notation,
instead of properly defining C(h), we make use of [23, Lemma I.5], which states that
C(h)= ZG(h), provided that h is reductive in g, which is our case, since g is semisimple.

For the converse, we observe that, if H = ZG(h) for some Cartan subalgebra h of
g, then H is closed in G and L(H) = zg(h), by [5, Proposition III.9.3.7]. Since h is
abelian, by Fact 52, we have h⊆ zg(h). Therefore, h= zg(h), by maximality of h. We then
conclude as above, first applying Lemma I.5 and then Theorem A.4 from [23]. �

Fact 54. Let G be a connected semisimple centerless Lie group, and let H be a subgroup
of G. If H is a Cartan subgroup of G, then H is abelian.

Proof. By Fact 53, H = ZG(h), with h= L(H) a Cartan subalgebra of g. By [17, Lemma
8, p. 556], we have that H/Z(G) is abelian (see also [34, Theorem 1.4.1.5], noting that
since G is semisimple the general assumption (1.1.5) holds). Hence H is abelian. �

We note that the assumption that Z(G) = 1 is essential to get the Cartan subgroup
abelian in Fact 54. For example, SL3(R) has a simply connected double covering with
non-abelian Cartan subgroups [22, p. 141], an example which can also occur in the
context of our Theorem 63 below.

Let us also note, even if we do not make use of it, that, if G is a connected Lie group
and H a Cartan subgroup of it, then h, the Lie algebra of H, is a Cartan subalgebra of g

(see the proof of Fact 53).

Fact 55. Let G be a connected semisimple Lie group. Then the following hold.
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(a) There are only finitely many conjugacy classes of Cartan subgroups of G. All
Cartan subgroups of G have the same dimension, and their connected components
are abelian.

(b) If H1 and H2 are two Cartan subgroups of G with H1
◦
= H2

◦, then H1 = H2. In
particular, if H1

◦ and H2
◦ are conjugate, then H1 and H2 are conjugate as well.

(c) For any Cartan subgroup H of G, the set of elements of H contained in a unique
conjugate of H is dense in H.

Proof. (a) Let g = L(G). Then g is semisimple, and it has finitely many Cartan
subalgebras, say h1, . . . , hs, such that any Cartan subalgebra h of g is conjugate to
one of them by an element of Ad(G); i.e., Ad(g)(h) = hi for some i ∈ {1, . . . , s} and some
g ∈ G (see [16, Corollary to Lemma 2] or [34, Corollary 1.3.1.11]).

Next, note that, for every g in G and every (Cartan) subalgebra h of g, we
have ZG(Ad(g)(h)) = gZG(h)g−1. This is because h ∈ ZG(Ad(g)(h)) if and only if
Ad(h)Ad(g)x = Ad(g)x for every x ∈ h, and the latter is equivalent to g−1hg ∈ ZG(h).
Therefore, conjugate Cartan subalgebras correspond to conjugate centralizers, and by
Fact 53 to conjugate Cartan subgroups.

We prove the second part. By Fact 53, the Lie algebra of a Cartan subgroup is
a Cartan subalgebra. By [33, Corollary 4.1.4], all Cartan subalgebras have the same
dimension. If H is Cartan, then H◦ is abelian, because L(H◦) = L(H) is abelian (see
Fact 52).

(b) It is clear, since L(Hi) = L(Hi
◦), for i = 1, 2, and Hi = ZG(L(Hi)). (Actually, to

prove (b) we do not need G to be semisimple: just consider the C(L(Hi)) of the proof of
Fact 53, instead of the centralizers.)

(c) We essentially refer to [18]. Recall that, by Fact 53 and its proof, in the semisimple
case, our notion of a Cartan subgroup is the same as that used in that paper, and
C(h)= ZG(h) for any Cartan subalgebra h of g := L(G). Let Reg(G) be the set of regular
elements of G, as defined after Lemma 1.3 in [18]. We first show that each element
g of Reg(G) lies in a unique Cartan subgroup of G. Fix g ∈ Reg(G). By the proof
of [18, Proposition 1.5], we have that g1(Ad(g)) := {x ∈ g : (∃n ∈ N)(Ad(g) − 1)nx = 0}
is a Cartan subalgebra of g, and g belongs to the Cartan subgroup ZG(g

1(Ad(g))).
To show the uniqueness, let H be a Cartan subgroup of G containing g. By Fact 53,
H = ZG(h), with h = L(H) a Cartan subalgebra of g. Since g ∈ ZG(h), we have
that h ⊆ g1(Ad(g)), and hence h = g1(Ad(g)), by maximality of Cartan subalgebras.
Therefore H = ZG(g

1(Ad(g))).
Finally, by [18, Proposition 1.6], the subset Reg(G) ∩ H is dense in H for all Cartan

subgroups H of G. �

For the following, we refer directly to [36, Proposition 5] and (the proof of)
[36, Lemma 11] respectively.

Fact 56. Let G be a connected Lie group. Then the following hold.

(a) The union of all Cartan subgroups of G is dense in G.
(b) For any Cartan subgroup H of G, [H◦]G contains an open subset.
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We finish this section with a remark which, as far as we know, does not seem to have
been made before. We will show later that all Cartan and Carter subgroups of a group
definable in an o-minimal structure are, as indicated by Fact 56(b), slightly generous
in the sense of Definition 16(a). Our remark is essentially that the stronger notion of
generosity of Definition 16(b) may be satisfied or not, depending of the Carter subgroups
considered, and this phenomenon occurs even inside SL2(R). Recall that the Cartan
subgroups of SL2(R) are, up to conjugacy, the subgroup Q1 of diagonal matrices and
Q2 = SO2(R). Considering the characteristic polynomial, the two following equalities are
easily checked:

QSL2(R)
1 = {A ∈ SL2(R) : |tr(A)|> 2} ∪ {I,−I}

QSL2(R)
2 = {A ∈ SL2(R) : |tr(A)|< 2} ∪ {I,−I}

Remark 57. Let G= SL2(R). Then, according to Definition 16(b), the following hold.

(a) The Cartan subgroup Q1 of diagonal matrices is generous in G.

(b) The Cartan subgroup Q2 = SO2(R) is not generous in G.

Proof. (a) Fix a, b ∈ (0, 1
13 ) and consider the matrices A1 = I,

A2 =

(
0 1

−1 0

)
, A3 =

(
a−1 0

0 a

)
, and A4 =

(
0 −b−1

b 0

)
.

We show that G= ∪4
i=1AiQG

1 . Suppose there exists

M =

(
x y

u v

)
∈ G,

with M 6∈ ∪4
i=1AiQG

1 . Since M 6∈ A1QG
1 ∪ A2QG

1 , we have x = ε − v and y = u + δ for
some ε, δ ∈ [−2, 2]. Since M 6∈ A3QG

1 , we have that |ax + a−1v| = |a(ε − v) + a−1v| 6 2,
so v ∈ [−2a−a2ε

1−a2 , 2a−a2ε
1−a2 ]. Since ε ∈ [−2, 2], we deduce that v ∈ [−2a

1−a ,
2a

1−a ]. Similarly, it
follows from M 6∈ A4QG

1 that u ∈ [−2b
1−b ,

2b
1−b ].

Finally, since a, b< 1
13 , we have that |v|, |u|< 1

6 and |x|, |y|< 2 + 1
6 < 3. In particular,

det(M)= |xv− uy|6 |x||v| + |u||y|< 1, a contradiction.
(b) We show that the family of matrices

Mx =

(
x2 x− 1

1 x−1

)

with x > 0 cannot be covered by finitely many translates of QG
2 . It suffices to prove that,

for a fixed matrix

A=

(
a b

c d

)
∈ G,
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we have that {x ∈ R>0
: |tr(A−1Mx)| > 2} ⊆ {x ∈ R>0

: Mx 6∈ AQG
2 } is not bounded. Since

tr(A−1Mx)= x2d − b− c(x− 1)+ ax−1 and x is positive, it follows that |tr(A−1Mx)|> 2 if
and only if one of the following two conditions holds:

dx3
− cx2

− (b− c+ 2)x+ a> 0 (1)

dx3
− cx2

− (b− c− 2)x+ a< 0. (2)

It is easy to check that, if d 6= 0, then either (1) or (2) is satisfied for large enough x. If
d = 0, then c 6= 0 (otherwise det(A)= 0), and again the same holds. �

In Remark 57, the generous Cartan subgroup is noncompact and the nongenerous
one is compact. One can then wonder about the various possibilities for generosity
depending on compactness. But considering Q1 × Q2 in SL2(R)× SL2(R), one gets from
Remark 57 a nongenerous and noncompact Cartan subgroup. Besides, any compact
group is typically covered by a single conjugacy class of compact Cartan subgroups, by
Corollary 38, and these compact Cartan subgroups are in particular generous. As far as
we know, it is not known if every simple Lie group has a generous Cartan subgroup.

10. From Lie groups to definably simple groups

We now return to the context of groups definable in o-minimal structures. In the present
section, we prove the following theorem, essentially transferring via Fact 35 the results of
ğ 9 on Lie groups to definably simple groups definable in an o-minimal structure.

Theorem 58. Let G be a definably simple group definable in an o-minimal structure.
Then G has definable Cartan subgroups, and the following hold.

(1) G has only finitely many conjugacy classes of Cartan subgroups.
(2) If Q1 and Q2 are Cartan subgroups of G and Q1

◦
= Q◦2, then Q1 = Q2.

(3) Cartan subgroups of G are abelian, and have the same dimension.
(4) If Q is a Cartan subgroup of G, then the set of elements of Q contained in a unique

conjugate of Q is large in Q. In particular, if a ∈ Q, then the set of elements of aQ◦

contained in a unique conjugate of aQ◦ is large in aQ◦, and aQ◦ is slightly generous
in G.

(5) The union of all Cartan subgroups of G, which is definable by (1), is large in G.

Before passing to the proof of Theorem 58, we explain the ‘In particular’ part of item
(4). So let Q be a Cartan subgroup such that the set Q0 of elements of Q contained in a
unique conjugate of Q is large in Q. Let [aQ◦]0 be the set of elements of aQ◦ contained
in a unique conjugate of aQ◦, for some a ∈ Q. We see easily that Q0 ∩ aQ◦ ⊆ [aQ◦]0, and
since Q0 is large in Q we get that Q0 ∩ aQ◦ is large in aQ◦, and hence also [aQ◦]0 is
large in aQ◦. Now, since Q◦ 6 N(aQ◦) 6 N(Q◦) and dim(Q◦) = dim(N(Q◦)), we get that
dim([aQ◦]0)= dim(N(aQ◦)), and Corollary 17 gives the slight generosity of aQ◦.

We now embark on the proof of Theorem 58, bearing in mind that for item (4) we
only need to prove the first statement. We first prove some results that will allow us to
transfer statements between different structures. For our purposes it will be enough to
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work over o-minimal expansions of ordered groups where we have an absolute control of
the relevant parameters (see the comments at the end of this section).

Lemma 59. Let M be an o-minimal expansion of an ordered group with a distinguished
element different from 0, and let {Gt : t ∈ T} be a definable family of definable groups over
∅. Then the subfamily of nilpotent subgroups is definable over ∅. Moreover, in all cases
the obtained definable families give the desired families in any model of Th(M).

Proof. For the ‘Moreover’ part, just note that the proof is actually independent of the
model. We can assume that all Gt have the same dimension (because of the definability
of dimension). If dim(Gt) = 0, then all are finite, and there is a uniform bound on the
cardinality of the groups. In particular, we have a definable partition of the definable
family into a finite number of isomorphic types, and the result holds. If dim(Gt) > 0,
then by Fact 33(d) we can assume that each Z(Gt) is infinite. Since a group Gt is
nilpotent if and only if Gt/Z(Gt) is nilpotent, the subfamily is definable by induction. �

Theorem 60. Let G be a definable group over a set of parameters A in an o-minimal
expansion of an ordered group M with a distinguished element different from 0. Then the
family of Cartan subgroups of G is a definable family {Qs : s ∈ S} over A. Moreover, for
every model N of Th(MA), the realization {Qs(N) : s ∈ S(N)} of the family in N is the
family of Cartan subgroups of G(N).

Proof. We first prove by induction that, if {Gt : t ∈ T} is a definable family over ∅ of
groups, then there is a definable family over ∅ of groups

{Ht,s : t ∈ T, s ∈ St}

such that for each t ∈ T the groups {Ht,s : s ∈ St} are exactly the maximal definably
connected nilpotent subgroups of Gt. We point out that in the following process each of
the definable families obtained gives actually the maximal definably connected nilpotent
subgroups in any model of Th(M).

First note that we can assume that all Gt are definably connected, and with the same
dimension. If dim(Gt) = 0, then we know that there is a uniform bound on the cardinal
of the groups Gt; thus we have a definable partition of the definable family into a finite
number of isomorphic types, and the result is obvious. If dim(Gt) > 0, then we can
assume that one of the following three cases holds.

(1) All Gt are centerless. We first observe that any definably connected nilpotent
subgroup of Gt is contained in CGt(x) for some x ∈ Gt \ {1}. Indeed, if the subgroup is
trivial, then we are done. If it is not, then it is infinite, and therefore it is enough to
pick a point x 6= 1 in its infinite center. Thus, the family of maximal definably connected
nilpotent subgroups of the definable family {Gt : t ∈ T} coincides with the one of the
definable family {CGt(x) : t ∈ T, x ∈ Gt \ {1}}. Then the result follows by induction, since
dim(CGt(x)) < dim(Gt).

(2) All Gt have infinite center or all have finite center. Then, either by induction or by
(1), the family of maximal definably connected nilpotent subgroups of {Gt/Z(Gt) : t ∈ T}
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is a definable family {Ht,s : t ∈ T, s ∈ St} over ∅. Then {π−1
t (Ht,s)

◦
: t ∈ T, s ∈ St} is the

family of maximal definably connected nilpotent subgroups of {Gt : t ∈ T}, as required.
All in all, we deduce that the family of maximal definably connected nilpotent

subgroups of a definable group G over A is a definable family {Hs : s ∈ S} over A. In
fact, the subfamily of {Hs : s ∈ S} of those subgroups which have finite index in its
normalizer is again definable over A, because we have a uniform bound on the finite
groups of {NG(Hs)/Hs : s ∈ S}. In other words, the family of Carter subgroups of G is
a definable family {Q◦s : s ∈ S} over A. Again, note that this definable family gives the
Carter subgroups in any model of Th(MA).

Finally, since there is a uniform bound on the cardinal of the finite groups
{NG(Q◦s )/Q

◦
s : s ∈ S}, the family of all subgroups of NG(Q◦s ) containing Q◦s , s ∈ S, is again

definable over A. In particular, the subfamily of the nilpotent subgroups is definable by
Lemma 59. From that family of nilpotent subgroups we can extract definably over A the
maximal ones, i.e., the Cartan subgroups of G. �

Corollary 61. Let G be a definable group over a set of parameters A in an o-minimal
expansion of an ordered group M with a distinguished element different from 0. Then G
satisfies properties (1)–(5)of Theorem 58 if and only if the realization of G in any model
of Th(MA) satisfies properties (1)–(5).

Proof. Properties (1)–(5) are definable, and therefore the result follows directly from
Theorem 60. �

Corollary 62. Let G be a definable group in an o-minimal expansion of an ordered group
M over a set of parameters A containing an element different from 0. Assume that G has
a finite number of Cartan subgroups up to conjugacy. Then, in each conjugacy class there
exists a Cartan subgroup definable over A.

Proof. The definable closure dclM(A) is a model of Th(MA), and therefore the result
follows again from Theorem 60. �

Proof of Theorem 58. Let M denote the ground o-minimal structure. By Fact 35,
there is an M-definable real closed field R (with no extra structure) such that G
is M-definably isomorphic to a semialgebraically connected semialgebraically simple
semialgebraic group, definable in R over the real algebraic numbers Ralg. By Remark 36,
the dimensions of sets definable in R, computed in M or R, are the same. Since
M-definable bijections preserve dimensions, all the conclusions of Theorem 58 would
then be true if we prove them in this semialgebraic group definable in R. Therefore,
replacing M by R, we may suppose that M is a pure real closed field, and that
G = G(M) is a semialgebraically connected semialgebraically simple group defined over
Ralg. Then, by Corollary 61, it suffices to show our statements for G(R).

Now, we observe that G(R) is a finite-dimensional semisimple centerless connected
real Lie group. By Facts 51 and 53, it has Cartan subgroups, necessarily definable as
usual by Lemma 5(b). It remains just to notice that all items (1)–(5) are true in the
connected real Lie group G(R), by Facts 54, 55 and 56(a). For item (4), we recall that it
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suffices to prove the first claim, as explained just after the statement of Theorem 58. It
follows from Fact 55(c), noticing that a definable subset has maximal dimension if and
only it has interior [30, Proposition 2.14], and thus is dense if and only if it is large. �

We note that the second claim in Theorem 58(4) could also have been shown using
Fact 56(b).

As commented by the referee, in the hypothesis of Theorem 60 we could just have
required that G is A-definable in an o-minimal structure (without the expansion of a
group assumption). In this case, we would conclude that the family of Cartan subgroups
is (A ∪ c)-definable for some finite set of parameters c. To do this, it suffices to consider
in Lemma 59 and in the proof of Theorem 60 families of (quotients of) subgroups of
a given definable group. Then, as we have mentioned, we can apply [10, Theorem 7.2]
to consider these quotients as definable objects, taking into account that we need extra
parameters (see [10, proof of Theorem 2.5]).

11. The semisimple case

We now prove a version of Theorem 58 for definably connected semisimple groups
definable in an o-minimal structure. Recall that a definably connected group G is
semisimple if R(G) = Z(G) is finite; modulo that finite center, G is a direct product
of finitely many definably simple groups, by Fact 35.

Theorem 63. Let G be a definably connected semisimple group definable in an
o-minimal structure. Then G has definable Cartan subgroups and the following hold.

(1) G has only finitely many conjugacy classes of Cartan subgroups.
(2) If Q1 and Q2 are Cartan subgroups of G and Q◦1 = Q◦2, then Q1 = Q2.
(3) If Q is a Cartan subgroup, then Z(G) 6 Q, Q′ 6 Z(G), and Q◦ 6 Z(Q). Furthermore,

all Cartan subgroups have the same dimension.
(4) If Q is a Cartan subgroup of G and a ∈ Q, then the set [aQ◦]0 of elements of

aQ◦ contained in a unique conjugate of aQ◦ is large in aQ◦, and aQ◦ is slightly
generous in G. In addition, if a1 belongs to another Cartan subgroup Q1, then either
[aQ◦]0 ∩ a1Q◦1 = ∅ or aQ◦ = a1Q◦1.

(5) The union of all Cartan subgroups of G, which is definable by (1), is large in G.
(6) There are finitely many pairwise disjoint definable sets of the form [aQ◦]G0 with Q

a Cartan subgroup of G and a ∈ Q, each slightly generic and consisting of pairwise
disjoint conjugates of [aQ◦]0, whose union is large in G.

Proof. Assume first that R(G)= Z(G)= 1. By Fact 35, G= G1×· · ·×Gn, where each Gi

is an infinite definably simple definable factor. Now, by Corollary 10, Cartan subgroups
Q of G are exactly of the form

Q= Q̃1 × · · · × Q̃n,

with Q̃i a Cartan subgroup of Gi for each i. In particular, G has definable Cartan
subgroups, by Theorem 58. Since Q◦ = Q̃1

◦
× · · · × Q̃n

◦ and the dimension is additive,
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items (1)–(3) follow easily from Theorem 58(1)–(3). By additivity of the dimension, the
first claim in item (4) also transfers readily from Theorem 58(4). If some element α
belongs to [aQ◦]0 ∩ a1Q◦1, for some Cartan subgroups Q and Q1 and some a ∈ Q and
a1 ∈ Q1, then Q◦1 6 CG

◦(α)= Q◦, by the commutativity of Q and Q1 and Lemma 18, and
Q◦ = Q◦1. In particular, aQ◦ = αQ◦ = αQ◦1 = a1Q◦1, proving item (4). For items (5) and
(6), notice that, if some [aQ◦]G0 ∩ [a1Q◦1]

G
0 is nonempty in item (4), then aQ◦ = [a1Q◦1]

g

for some g (conjugating in particular Q◦ to Q◦1), so the finitely many slightly generic
definable sets of the form [aQ◦]G0 are pairwise disjoint and consist of a disjoint union of
G-conjugates of [aQ◦]0. By the largeness of [aQ◦]G0 in [aQ◦]G provided by Corollary 17,
and the largeness of the union of all Cartan subgroups provided by Theorem 58(5), the
union of all these sets [aQ◦]G0 is large in G, proving items (5) and (6).

Assume now just R(G)= Z(G) finite, and let the notation ‘ ’ denote the quotients by
Z(G). By the centerless case, all the conclusions of Theorem 63 hold in G. By Lemma 8,
Cartan subgroups of G contain Z(G), and are exactly the preimages in G of Cartan
subgroups of G/Z(G). In particular, G has definable Cartan subgroups, and we now
check that they still satisfy (1)–(6).

(1) Since Z(G) is contained in each Cartan subgroup, item (1) transfers from the
centerless case. (2) If Q1 and Q2 are two Cartan subgroups of G with Q◦1 = Q◦2, then
Qi
◦ = [Qi]

◦ and Q1 = Q2 by (2) in G, giving Q1 = Q2. (3) By the centerless case, Q is
abelian, and thus Q′ 6 Z(G). In particular, [Q,Q◦] is in the finite center Z(G), but, since
[Q,Q◦] is definable and definably connected by [1, Corollary 6.5], we get [Q,Q◦] = 1,
proving the first claim of (3). Since the natural (and definable) projection from G onto
G has finite fibers, one gets by axioms A2–A3 of the dimension that dim(Q) = dim(Q),
transferring also from G to G the second claim of (3). (4) Let Q and Q1 be two Cartan
subgroups, a ∈ Q, and a1 ∈ Q1. If some element α belongs to [aQ◦]0 ∩ a1Q◦1, one sees,
as in the centerless case, still using Lemma 18, but now the fact that Q◦ 6 Z(Q) and
Q◦1 6 Z(Q1), that aQ◦ = a1Q◦1. We now show that [aQ◦]0 is large in aQ◦. For that
purpose, first notice that [aQ◦]0 is exactly the set of elements of aQ◦ contained in finitely
many conjugates of aQ◦: this is because, if α is in aQ◦ and in only finitely many of
its conjugates, say (aQ◦)g1 , . . . , (aQ◦)gk , then, as above, Lemma 18 yields Q◦ = C◦(α),
and aQ◦ = (aQ◦)g1 = · · · = (aQ◦)gk . For the largeness of [aQ◦]0 in aQ◦, it suffices as in
item (3) to show that [aQ◦]0 contains the preimage of the set of elements α of aQ◦

contained in a unique G-conjugate of aQ◦. So assume towards a contradiction that
there exists an element α in aQ◦, in infinitely many G-conjugates of aQ◦, but such
that α is in a unique conjugate of aQ◦. Now, for g varying in infinitely many cosets
of N(aQ◦), and in particular in infinitely many cosets of N◦(aQ◦) = N◦(Q◦) = Q◦, we
have aZ(G)Q◦ = [aZ(G)Q◦]g. But such elements g must normalize the subgroup Z(G)Q◦,
and in particular [Z(G)Q◦]◦ = Q◦, and hence cannot vary in infinitely many cosets of
Q◦. This contradiction proves that [aQ◦]0 is large in aQ◦, and the slight generosity of
aQ◦ in G follows as usual with Corollary 17. (5) Using the projection from G to G, the
non-slight genericity of the complement of the union of all Cartan subgroups passes from
G to G, and thus the union of all Cartan subgroups of G is large in G. Item (6) also
follows, as in the case Z(G)= 1. �
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In Theorem 63(3), Cartan subgroups need not be abelian outside of the centerless
case, since the simply connected double covering of SL3(R) with non-abelian Cartan
subgroups mentioned after Fact 54 is definable in R. The following question then arises
naturally.

Question 64. Let G be a definably connected semisimple group definable in an
o-minimal structure, and let Q be a Cartan subgroup of G. When it is the case that
Q= Q◦Z(G), or more generally, Q is abelian?

For Carter subgroups, one gets the following corollary of Theorem 63.

Corollary 65. Let G be a definably connected semisimple group definable in an
o-minimal structure. Then G has finitely many conjugacy classes of Carter subgroups.
Each Carter subgroup Q◦ is abelian and slightly generous in the following strong sense:
the set of elements of Q◦ contained in a unique conjugate of Q◦ is large in Q◦ and slightly
generous in G.

Proof. We know by Lemma 5 that Carter subgroups are exactly the definably
connected components Q◦ of Cartan subgroups Q of G. In particular, item (3) of
Theorem 63 shows that Q◦ 6 Z(Q), and hence Q◦ is abelian. The other conclusions
follow immediately from items (1) and (4) in Theorem 63. �

Before moving to more general situations, we make a few additional remarks about
the semisimple case. We first mention a general result on control of fusion, reminiscent
from [9, Corollary 2.12] in the finite Morley rank case.

Lemma 66 (Control of fusion). Let G be a group definable in an o-minimal structure, let
Q be a Cartan subgroup of G, and let X and Y be two G-conjugate subsets of C(Q◦) such
that C◦(Y) has a single conjugacy class of Carter subgroups. Then Y = Xg for some g in
N(Q◦).

Proof. Let g in G be such that Y = Xg. Then C◦(Y)= C◦(X)g contains both Q◦ and Q◦g,
so our assumption forces that [Q◦]gγ = Q◦ for some γ in C◦(Y). Now gγ normalizes Q◦,
and Xgγ

= Yγ = Y. �

Lemma 67. Let G be a definably connected semisimple group G definable in an
o-minimal structure, and let Q be a Cartan subgroup of G. Then Q= F(NG(Q◦)).

Proof. Any definable nilpotent subgroup containing the Carter subgroup Q◦ is a finite
extension of it, by Lemma 4, and hence is in NG(Q◦). By Theorem 63(2), there is a
unique maximal nilpotent subgroup containing Q◦. This proves that Q E NG(Q◦). Hence
Q6 F(NG(Q◦)), and in fact there is equality by maximal nilpotence of Q. �

With Lemma 66, we can rephrase the last part of Theorem 63(4).

Corollary 68. Let G be a definably connected semisimple group definable in an
o-minimal structure, and let Q be a Cartan subgroup of G. If a1 and a2 are two
G-conjugate elements of Q such that ai ∈ [aiQ◦]0 as in Theorem 63(4) for i = 1 and 2,
then a1Q◦ and a2Q◦ are N(Q)-conjugate.
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Proof. By Theorem 63(3), ai ∈ C(Q◦) for each i, and, by Lemma 18, Q◦ = C◦(a1) =

C◦(a2). Lemma 66 implies then that a2 = a1
g for some g in N(Q◦). But since

QE NG(Q◦), by Lemma 67, g ∈ NG(Q). �

As just seen in Corollary 68, if Q is a Cartan subgroup of a definably connected
semisimple group G definable in an o-minimal structure, then

NG(Q)= NG(Q
◦).

Now the finite group W(G,Q) := NG(Q)/Q= NG(Q◦)/Q can naturally be called the Weyl
group relative to Q, or, equivalently, relative to Q◦. If G is definably simple, then one
has the two alternatives at the end of Fact 35. In the first case, G is essentially a simple
algebraic group over an algebraically closed field (of characteristic 0). It is well known in
this case that there is only one conjugacy of Cartan subgroups, the maximal algebraic
(and split) tori, which are also Carter subgroups by divisibility (see [3, 12.6 and 13.17]).
Then there is only one relative Weyl group for such G, and their classification for G
varying among these definable groups is provided by the classification of the simple
algebraic groups. In the second alternative at the end of Fact 35, the group is essentially
a simple real Lie group, and again the Weyl groups relative to the various Cartan
subgroups, corresponding to the various split or non-split tori, are classified in this case.
For a general definably connected semisimple ambient group G, the structure of the
Weyl groups is inherited from that of the definably simple factors of G/R(G), as we will
see in ğ 13.

Theorem 63(6) equips any definably connected semisimple group with some kind of
partition into finitely many canonical ‘generic types’. We finish this section by counting
them precisely.

Remark 69. The number n(G) of slightly generic definable sets of the form [aQ◦]G0
as in Theorem 63(6) is clearly bounded by the sum ΣQ∈Q|Q/Q◦|, where Q is a
system of representatives of the set of Cartan subgroups of G. But it might happen
in Theorem 63(4) that two distinct sets of the form aQ◦ and a′Q◦, for a and a′

in a common Cartan subgroup Q, are conjugate by the action of the Weyl group
W(G,Q) = NG(Q)/Q. If one denotes by ∼Q the equivalence relation on Q/Q◦ by the
action of W(G,Q) naturally induced by conjugation on Q/Q◦, then one sees indeed with
Corollary 68 that

n(G)=ΣQ∈Q|[Q/Q
◦
]∼Q |.

12. The general case

We now analyze the general case of a group definable in an o-minimal structure. As far
as possible, we will restrict ourselves to definably connected groups only when necessary.
We start by lifting Carter subgroups.

Lemma 70. Let G be a group definable in an o-minimal structure, and let N be a
definable normal subgroup of G such that N◦ is solvable. Then, H is a Carter subgroup of
G/N if and only if there is a Carter subgroup Q of G such that H = QN/N.
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Proof. We use the notation ‘ ’ to denote the quotients by N and π : G→ G/N
to denote the quotient map. Suppose first that Q is a Carter subgroup of G.
Then Q = QN/N is nilpotent and definably connected, so it suffices to prove that
it is almost selfnormalizing to conclude that is a Carter subgroup of G/N. Let
S = π−1(NG(Q))(=NG(QN)). Since S normalizes [QN]◦ = QN◦ and Q is also a Carter
subgroup of the definable subgroup QN◦, by Corollary 48 we have that S = NS(Q)QN◦ 6
NG(Q)N. Hence Q must have finite index in its normalizer in G, and is thus a Carter
subgroup of G. Conversely, let X/N be a Carter subgroup of G for some subgroup X of
G containing N. Since X/N is definable, X must be definable. By Theorem 40, X◦ has a
Carter subgroup Q, and of course Q must also be a Carter subgroup of X. We now prove
that X = QN. Since X = X◦N and X◦ = Q(X◦ ∩ N) by Lemma 49, we get that X = QN.
It suffices to prove that Q is almost selfnormalizing in G, to conclude that Q is the
required Carter subgroup of G. Since Q is a Carter subgroup of QN, the index of Q in
NQN(Q) must be finite. On the other hand, QN is a Carter subgroup of G, and so QN has
finite index in NG(QN). Since QN 6 NG(Q)N 6 NG(QN), we get that Q has finite index in
NG(Q). �

The following special case of Lemma 70 with N = R◦(G) is of major interest, and for
the rest of the paper one should bear in mind that

R◦(G)= R◦(G◦).

Corollary 71. Let G be a group definable in an o-minimal structure. Then Carter
subgroups of G/R◦(G) are exactly of the form QR◦(G)/R◦(G) for Q a Carter subgroup of
G.

At this stage, we can prove our general theorem, 1, giving the existence, the
definability, and the finiteness of the set of conjugacy classes of Cartan subgroups in
an arbitrary group definable in an o-minimal structure.

Proof of Theorem 1. Let G be our arbitrary group definable in an arbitrary o-minimal
structure. The quotient G◦/R◦(G) is semisimple, by Fact 2, and has Carter subgroups,
by Theorem 63. Hence G◦ has Carter subgroups, by Corollary 71. This takes care
of the existence of Carter subgroups of G◦, and of course of G as well. Now G has
Cartan subgroups, by Lemma 5. Their definability is automatic as usual, in view of
Lemma 5(a′). To prove that Cartan subgroups fall into only finitely many conjugacy
classes, it suffices by Lemma 5(a′) to prove it for Carter subgroups. We may then
assume G to be definably connected. Now groups of the form QR◦(G)/R◦(G), for Q a
Carter subgroup of G, are Carter subgroups of the semisimple quotient G/R◦(G). By
Theorem 63(1), there are only finitely many G/R◦(G)-conjugacy classes of groups of the
form QR◦(G)/R◦(G), and thus only finitely many G-conjugacy classes of groups of the
form QR◦(G). Replacing G by such a QR◦(G), we may thus assume G to be definably
connected and solvable. But now in G there is only one conjugacy class of Carter
subgroups, by Theorem 40. This completes our proof of Theorem 1. �

We mention some consequences of Theorem 1.

884

https://doi.org/10.1017/S1474748013000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000352


Cartan subgroups

Corollary 72. Let G be a definable group in an o-minimal expansion of an ordered group
M over a set of parameters A containing an element different from 0. Then, in each
conjugacy class there exists a Cartan subgroup definable over A.

Proof. By Theorem 1 and Corollary 62. �

Corollary 73. Let G be a definably connected group definable in an o-minimal structure,
and let N be a definable normal subgroup of G. Then G = NG

◦(Q)N◦ for any Cartan
subgroup Q of N.

Proof. Clearly, for any element g of G, Qg is a Cartan subgroup of N. On the other
hand, the set Q of conjugacy classes of Cartan subgroups of N is finite, by Theorem 1,
and the action of G on N by conjugation naturally induces a definable action on the
finite set Q. Since G is definably connected, Fact 2(a) shows that this action must be
trivial. Hence, for any g in G, Qg is indeed in the same N-conjugacy class as Q, i.e.,
Qg
= Qh for some h ∈ N; in particular, g = gh−1h ∈ NG(Q)N. Hence G = NG(Q)N, and in

fact G= NG
◦(Q)N◦ by definable connectedness. �

We shall now inspect case by case what survives of Theorem 63(2)–(5) in the general
case. We first consider Theorem 63(2).

Theorem 74. Let G be a definably connected group definable in an o-minimal structure,
and let Q be a Cartan subgroup of G. Then there is a unique (definable) subgroup KQ

of G containing R◦(G) such that KQ/R◦(G) is the unique Cartan subgroup of G/R◦(G)
containing Q◦R◦(G)/R◦(G). Moreover, QR(G)6 KQ and

Q= F(NKQ(Q
◦))= CKQ(Q

◦)Q◦ = CG(Q
◦)Q◦.

Proof. By Corollary 71, the group Q◦R◦(G)/R◦(G) is a Carter subgroup of the
semisimple quotient G/R◦(G). By Theorem 63(2), it is contained in a unique Cartan
subgroup, of the form K/R◦(G) for some subgroup K containing R◦(G) and necessarily
definable by Lemma 5(a′). We will show that KQ = K satisfies all our claims. Since
QR◦(G)/R◦(G) is nilpotent and contains the Carter subgroup Q◦R◦(G)/R◦(G), we have
QR◦(G) 6 K. Since R(G)/R◦(G) is the center of G/R◦(G), it is contained in K/R◦(G), by
Lemma 8(a), and thus R(G)6 K. Hence, QR(G)6 K.

To prove our last equalities, we first show that F(NK(Q◦)) = CK(Q◦)Q◦. Since
Q◦ = F◦(NK(Q◦)) by Lemma 4, the inclusion from left to right follows from Fact 6.
For the reverse inclusion, notice that CK(Q◦)Q◦ is normal in NK(Q◦). Since Cartan
subgroups of G/R◦(G) are nilpotent in two steps by Theorem 63(3), the second term of
the descending central series of CK(Q◦)Q◦ is in R◦(G), and thus in Q◦, because Q◦ is
selfnormalizing in Q◦R◦(G), by Theorem 40. By keeping taking descending central series
and using the nilpotency of Q◦, we then see that CK(Q◦)Q◦ is nilpotent, and thus in
F(NK(Q◦)), by normality in NK(Q◦).

Since CG(Q◦) 6 K, clearly by considering its image modulo R◦(G), our last equality is
true. Finally, Q = CQ(Q◦)Q◦, by Fact 6, and thus Q 6 CK(Q◦)Q◦ = F(NK(Q◦)). Now the
maximal nilpotence of Q forces Q= F(NK(Q◦)), and our proof is complete. �
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With Theorem 74 one readily gets the analog of Theorem 63(2). Of course definable
connectedness is a necessary assumption here, since a finite group may have several
Cartan subgroups.

Corollary 75. Let G be a definably connected group definable in an o-minimal structure,
and let Q1 and Q2 be two Cartan subgroups. If Q◦1 = Q◦2, then Q1 = Q2.

The main question we are facing with at this stage is the following.

Question 76. Is it the case, in Theorem 74, that QR◦(G)/R◦(G) is a Cartan subgroup of
G/N? Or equivalently, is it the case in Theorem 74 that KQ = QR◦(G)?

Remark 77. Let G be a definably connected group definable in an o-minimal structure.
Let N be a normal definable definably connected and solvable subgroup of G. Suppose
that, for any Cartan subgroup of G, its image in G/N is a Cartan subgroup of G/N. Then
the Cartan subgroups of G/N are exactly of the form QN/N for some Q Cartan subgroup
of G.

Proof. Let X = H/N be a Cartan subgroup of G/N. So X◦ = H◦/N is a Carter subgroup
of G/N. By Lemma 70, X◦ = Q1N/N for some Q1 Carter subgroup of G. By Lemma 5,
there is a Cartan subgroup Q of G with Q◦ = Q1. Hence X◦ = Q1N/N = [QN/N] ◦,
and both X and QN/N are Cartan subgroups of G/N. By Corollary 75, we have that
X = QN/N, and thus X is of the required form. �

In Theorem 74, we also get that QR◦(G) is normal in KQ, and actually has a quite
stronger uniqueness property in KQ.

Corollary 78. We use the same assumptions and notation as in Theorem 74. Then
[KQ]

◦
= Q◦R◦(G), and QR◦(G) is invariant under any automorphism of KQ leaving [KQ]

◦

invariant.

Proof. The first equality comes from Lemma 70.
Let σ be an arbitrary automorphism of KQ leaving [KQ]

◦ invariant. Since Q◦ is a
Cartan subgroup of [KQ]

◦, by Corollary 47, its image by σ is also a Cartan subgroup of
[KQ]

◦, and with Theorem 40 one gets [Q◦]σ = [Q◦]k for some k in [KQ]
◦. Since QR◦(G)

is normalized by k, we can thus assume that σ leaves Q◦ invariant. But now σ leaves
F(NKQ(Q

◦)) invariant. Hence, by Theorem 74, Q is left invariant by σ , and thus σ leaves
Q[KQ]

◦
= QR◦(G) invariant. �

Question 76 has a priori stronger forms, which are indeed equivalent, as the following
lemma shows.

Lemma 79. Under the assumptions and notation of Theorem 74, the following are
equivalent.

(a) KQ = PR◦(G) for some Cartan subgroup P of G.

(b) KQ = PR◦(G) for any Cartan subgroup P of KQ.
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Proof. Assume that KQ = P1R◦(G) for some Cartan subgroup P1 of G, and suppose
that P2 is a Cartan subgroup of KQ. Then P◦1 and P◦2 are Carter subgroups of [KQ]

◦,
by Lemma 5(a′). Since they are [KQ]

◦-conjugate by Theorem 40, we may assume that
P◦1 = P◦2 up to conjugacy. Now applying Theorem 74 with the Cartan subgroup P1, or
just Corollary 75, we see that P1 = P2 up to conjugacy, and thus KQ = P2R◦(G).

Conversely, suppose that KQ = PR◦(G) for any Cartan subgroup P of KQ. This applies
in particular to the Cartan subgroup Q of G. �

By the usual Frattini argument following the conjugacy of Cartan/Carter subgroups
in [KQ]

◦, we have that KQ = Q̂R◦(G), where

Q̂= NKQ(Q
◦).

The subgroup Q̂ is solvable and nilpotent-by-finite, and with the selfnormalization
property of Q◦ in the definably connected solvable group Q◦R◦(G) one sees easily that
Q̂/Q' KQ/(QR◦(G)). Hence Question 76 is equivalent to proving that the finite quotient
Q̂/Q is trivial.

Retaining all the notation introduced so far, Theorem 63(3) takes the following form
for a general definably connected group.

Theorem 80. We use the same assumptions and notation as in Theorem 74. Then
[KQ]

′ 6 R(G), and [Q̂, [Q̂]′]6 Q◦ ∩ R◦(G), where Q̂= NKQ(Q
◦).

Proof. By Theorem 63(3), [KQ]
′ 6 R(G) and [KQ, [KQ]

′
] 6 R◦(G). The second inclusion

shows in particular that [Q̂, [Q̂]′]6 R◦(G), and, since Q◦ is selfnormalizing in Q◦R◦(G) by
Theorem 40, we get inclusion in Q◦ as well. �

With respect to Theorem 63(3), we also have the following.

Question 81. Do all the Cartan subgroups of a given group definable in an o-minimal
structure have equal dimension?

We now consider Theorem 63(4) and give its most general form in the general case
(working in particular without any assumption of definable connectedness of the
ambient group).

Theorem 82. Let G be a group definable in an o-minimal structure, let Q be a Cartan
subgroup of G, and let a ∈ Q. Then aQ◦ is slightly generous in G. In fact, the set of
elements of aQ◦ contained in a unique conjugate of aQ◦ is large in aQ◦. Furthermore, if
G is definably connected, then the set of elements of Q contained in a unique conjugate of
Q is large in Q.

Proof. We first prove that the set of elements of Q◦ contained in a unique G-conjugate
of Q◦ is large in Q◦. For that purpose, it suffices by Corollary 30 to show that the set of
elements of Q◦ contained in only finitely many G-conjugates of Q◦ is large in Q◦. Assume
towards a contradiction that the set Q∞ of elements of Q◦ contained in infinitely many
G-conjugates of Q◦ is slightly generic in Q◦. By Theorem 40, we may restrict Q∞ to
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the subset of elements contained in a unique Q◦R◦(G)-conjugate of Q◦, and still have a
slightly generic subset of Q◦. Now Q∞ must have a slightly generic image in Q◦ modulo
R◦(G). By Theorem 63(4), we must then find an element x ∈ Q∞ which, modulo R◦(G),
is in a unique conjugate of Q◦ (i.e., if x is in Q◦

g then g ∈ NG(Q
◦), where ‘ ’ means

quotient by R◦(G)). Then we have infinitely many Carter subgroups of Q◦R◦(G) passing
through x, a contradiction, since they are all Q◦R◦(G)-conjugate, by Theorem 40.

We now consider the full Cartan subgroup Q, and an arbitrary element a in Q. For
the slight generosity of aQ◦ in G, it suffices to use our general Corollary 21. Indeed, by
Corollary 17, it suffices to show the stronger property that the set of elements of aQ◦ in
a unique conjugate of aQ◦ is large in aQ◦. Assume towards a contradiction that the set
X of elements of aQ◦ in at least two distinct conjugates of aQ◦ is slightly generic in aQ◦.
If n is the order of a modulo Q◦, then the set of nth powers of elements of X would be
slightly generic in Q◦, by Corollary 23. Hence by the preceding paragraph one would find
an element x in X such that xn is in a unique conjugate of Q◦. This is a contradiction as
usual, since xQ◦ must then be the unique conjugate of aQ◦ containing x.

We now prove our last claim about Q when G is definably connected. Assume towards
a contradiction that the set X of elements in Q and in at least two distinct conjugates
of Q is slightly generic in Q. Then it should meet one of the cosets aQ◦ of Q◦ in Q in a
slightly generic subset, say X′. By Corollary 23 again, one finds an element x in X′ such
that x|Q/Q

◦
| is in a unique conjugate of Q◦. Now all the conjugates of Q passing through

x should have the same definably connected component, and thus are NG(Q◦)-conjugate.
Then they are all equal by Corollary 75, a contradiction. �

When Question 76 fails, we unfortunately found no way of proving Theorem 82 for a
in Q̂ \ Q. Besides, our method for proving the slight generosity of aQ◦ in G does not seem
to be appropriate for attacking the following more refined question.

Question 83. Let G, Q, and a be as in Theorem 82, with G definably connected and such
that, modulo R◦(G), a is in a unique conjugate of aQ◦.

(a) Is it the case that [aQ◦]R
◦(G) is large in aQ◦R◦(G)?

(b) Suppose now a is in Q̂, and the rest of the conditions remain the same. Is it the case
that [aQ◦]R

◦(G) is large in aQ◦R◦(G)?

By Theorem 82, the union of Cartan subgroups of a group definable in an o-minimal
structure must be slightly generic, but the much stronger statement of Theorem 63(5)
now becomes a definite question.

Question 84. Let G be a definably connected group definable in an o-minimal structure.
Is it the case that the union of its Cartan subgroups forms a large subset?

We now prove that Question 84 can be seen on top of both Questions 76 and 83.

Proposition 85. Let G be a definably connected group definable in an o-minimal
structure whose Cartan subgroups form a large subset. Then the following hold.

(a) Cartan subgroups of G/R◦(G) are exactly of the form QR◦(G)/R◦(G) with Q a Cartan
subgroup of G.
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(b) For every Cartan subgroup Q and a in Q such that, modulo R◦(G), a is in a unique
conjugate of aQ◦, [aQ◦]R

◦(G) is large in aQ◦R◦(G).

Proof. (a) Assume towards a contradiction that, for some Cartan subgroup Q, and
with the previously used notation, we have QR◦(G) < KQ. Let B be the large subset of
(KQ/R◦(G)) \ (QR◦(G)/R◦(G)) then provided by Theorem 63(4), and B its pull back in G.
By additivity of the dimension, BG must be slightly generic in G. Now the largeness of
the set of Cartan subgroups forces the existence of an element g in B∩ P for some Cartan
subgroup P of G. Let g denote the image of g in G/R◦(G). We have g ∈ KQ \ QR◦(G),
and C◦(g) = Q◦R◦(G)/R◦(G) by considering the structure of Cartan subgroups in the
semisimple quotient G/R◦(G) and the uniqueness property of g. By Lemma 70, the group
P◦, modulo R◦(G), is a Carter subgroup of G/R◦(G). Now P, modulo R◦(G), is included
in a Cartan subgroup of G/R◦(G), and its definably connected component centralizes g,
by Theorem 63(3). We then get P◦R◦(G)/R◦(G) 6 C◦(g) = Q◦R◦(G)/R◦(G), and actually
equality since the first group is a Carter subgroup. Hence P◦R◦(G) = Q◦R◦(G), and
Theorem 74 yields P 6 KQ. Since Q◦ and P◦ are conjugate in Q◦R◦(G), by Theorem 40,
we may also assume without loss of generality that P◦ = Q◦. But then P = Q by
Corollary 75, a contradiction, since g 6∈ QR◦(G).

(b) Let A be the pull back in G of the large set of G/R◦(G) provided in Theorem 63(5),
and let

A= A1 t · · · t An(G)

be the pull back in G of the corresponding partition of that large set equally provided
in Theorem 63(6). Here n(G) is the number of ‘generic types’ of G/R◦(G) computed with
precision in Remark 69. By additivity of the dimension, A is large in G, and each Ai

is slightly generic. Our claim is that, for Q a Cartan subgroup of G and a ∈ Q ∩ Ai for
some i, the set [aQ◦]R

◦(G) is large in aQ◦R◦(G). Since Q◦ normalizes the coset aQ◦, this is
equivalent to showing that [aQ◦]Q

◦R◦(G) is large in aQ◦R◦(G). But, by Theorem 63(4)–(5)
applied in G/R◦(G), one can see that the largeness of the set of Cartan subgroups of G
and the additivity of the dimension forces [aQ◦]Q

◦R◦(G) to be large in aQ◦R◦(G). �

For instance, if G is a definably connected real Lie group definable in an o-minimal
expansion of R, then its Cartan subgroups form a large subset by Fact 56(a) and
the fact that density implies largeness for definable sets (as seen in the proof of
Theorem 58). Hence, by Proposition 85, such a G cannot produce a counterexample
to either Question 76 or Question 83. Attacking Question 84 in general would seem to
rely on an abstract version of Fact 56(a), but with a priori no known abstract analog of
regular elements (as in the proof of Fact 55(c)) it seems difficult to find any spark plug.

13. Final remarks

We begin this final section with additional comments on Question 76 in special cases. If
G is a definably connected group definable in an o-minimal structure, then by Fact 35 we
have

G/R(G)= G1/R(G)× · · · × Gn/R(G)
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for some definable subgroups Gi containing R(G) and such that Gi/R(G) is definably
simple. For each i, Gi/R(G) is definably connected, and thus Gi = Gi

◦R(G). From the
decomposition G= G1 · · ·Gn, we get G= G1

◦
· · ·Gn

◦R(G). By definable connectedness of
G, we also get a decomposition

G= G1
◦
· · ·Gn

◦, (*)

where each Gi
◦ is definably connected, contains R◦(G), and Gi

◦/R◦(G) is
finite-by-(definably simple), as R(Gi

◦) = Gi
◦
∩ R(G) and Gi

◦/R(Gi
◦) is definably

isomorphic to Gi/R(G). We may analyze certain factors Gi
◦ individually with the

following result.

Remark 86. Let M be an o-minimal structure, and let G be a definably connected
group definable in M with R(G) = Z(G) finite and G/Z(G) definably simple. If G is
stable as a pure group, then it has a single conjugacy class of Cartan subgroups, which
are divisible, definably connected, and largely generous.

Proof. Since G/Z(G) is stable and definably simple, G is definably isomorphic to an
algebraic group over an algebraic closed field (see [19, 4.4(ii), 6.3]). Since G is moreover
reductive, the maximal algebraic tori coincide with Cartan subgroups (see [3, 12.6 and
13.17]). Hence they are isomorphic to a direct product of finitely many copies of the
multiplicative group of the ground field (where the number of copies is the Lie rank of
the group seen as a pure algebraic group). In particular, they are divisible, and thus
with no proper subgroup of finite index. Moreover, by Theorem 63(5), they are largely
generous in G. �

Consider the decomposition (*) of a definably connected group G as above, and let
I = {1, . . . , n}. Let I1 be the subset of elements i ∈ I such that Gi

◦/R◦(Gi
◦) is stable as a

pure group or definably compact (notice that it suffices to require the definably simple
group Gi

◦/R(Gi
◦) to be stable or definably compact). Let I2 be the subset of elements

i ∈ I such that Cartan subgroups of Gi
◦/R◦(Gi

◦) are definably connected. Finally, let I3
be the subset of elements i ∈ I such that in Gi

◦ Question 76 has a positive answer for any
Cartan subgroup. Corollary 38 and Remark 86 show that I1 ⊆ I2 and Lemma 70 shows
that I2 ⊆ I3. Hence

I1 ⊆ I2 ⊆ I3 ⊆ I,

and the inclusion I1 ⊆ I3 reads informally as the fact that the definably simple factors
of G/R(G) which are algebraic or compact cannot produce any counterexample to the
lifting problem of Question 76. More precisely, we have the following statement.

Remark 87. If I2 = I, then, for every Q Cartan subgroup of G, KQ = QR◦(G) in
Question 76.

Proof. First, one can check that, modulo R◦(G), the decomposition (*) of G becomes a
central product:

G/R◦(G)= G1
◦/R◦(G) ∗ · · · ∗ G1

◦/R◦(G).
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Indeed, if i 6= j, then [Gi
◦,Gj

◦
] 6 R(G), and R(G) is finite modulo R◦(G). Hence any

element in Gi
◦/R◦(G) has a centralizer of finite index in the other factor Gj

◦/R◦(G),
which must then be the full factor Gj

◦/R◦(G) by definable connectedness. Therefore
the factors Gi

◦/R◦(G) pairwise commute, as claimed. Now Lemma 9 gives that Cartan
subgroups of G/R◦(G) are exactly of the form Q1/R◦(G) ∗ · · · ∗ Qn/R◦(G) with, for each i,
Qi/R◦(G) a Cartan subgroup of Gi

◦/R◦(G).
Assuming now that I2 = I we get that, for each i, each Cartan subgroup Qi/R◦(G) of

Gi
◦/R◦(G) is definably connected. We then see that Cartan subgroups of G/R◦(G) must

be definably connected as well. Now Lemma 70 implies that Question 76 is positively
satisfied for every Cartan subgroup of G (and that such Cartan subgroups of G are all
definably connected and Carter subgroups by Corollary 47). �

The decomposition (*) of a definably connected group G as above is also convenient
for describing the various relative Weyl groups. If Q is a Cartan subgroup of G, then we
still have that NG(Q◦) = NG(Q) by Corollary 75. If Question 76 is positively satisfied for
Q, then, retaining the notation of ğ 12 and using the notation ‘ ’ for quotients modulo
R◦(G), we get, as after Lemma 79, that

W(G,KQ)' NG(Q)/Q.

We also see, with Theorem 74 or just Lemma 8(a), that R(G) does not contribute to
the Weyl group W(G,KQ). Hence the latter is isomorphic to the direct product of the
Weyl groups in Gi/R(G) relative to the factors of QR(G)/R(G) in its decomposition along
the decomposition G1/R(G) × · · · × Gn/R(G) of G/R(G) (Corollary 10). Since the group
NG(Q)/Q is isomorphic to W(G,KQ), it has the same isomorphism type, and may be
called the Weyl group relative to Q.

Without assuming the exact lifting of Question 76 for the Cartan subgroup Q we only
get, with Corollary 78, and as after Lemma 79, that

W(G,KQ)' (NG(Q)/Q)/(Q̂/Q).

In this case, the Weyl group W(G,KQ) has the same description as above, but NG(Q)/Q
just has a quotient isomorphic to W(G,KQ).
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