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Abstract

This article examines whether there are different hedonic price models for different German
wines by grape variety, and identifies influential factors that focus on weather variables and
direct and indirect quality measures for wine prices. A log linear regression model is first
applied only for Riesling, and then machine learning is used to find hedonic price models
for Riesling, Silvaner, Pinot Blanc, and Pinot Noir. Machine learning exhibits slightly
greater explanatory power, suggests adding additional variables, and allows for a more
detailed interpretation of results. Gault&Millau points are shown to have a significant positive
impact on German wine prices. The log linear approach suggests a huge effect of different
quality categories on the wine prices for Riesling with the highest price premiums for
Auslese and “Beerenauslese/Trockenbeerenauslese/Eiswein (Batbaice),” while the machine
learning model shows, that additionally the alcohol level has a positive effect on wines in
the quality categories “QbA,” “Kabinett,” and “Spätlese,” and a mostly negative one in the
categories “Auslese” and “Batbaice.” Weather variables exert different affects per grape
variety, but all grape varieties have problems coping with rising maximum temperatures in
the winter and with rising minimum and maximum temperatures in the harvest season.
(JEL Classifications: C45, L11, Q11)

Keywords: German wine prices, hedonic pricing, machine learning, weather changes.

I. Introduction and Literature

In the hedonic price approach, the price of a good or service is split into several
implied prices that relate to specific characteristics of a good or service for which
consumers are willing to pay. In the most common application of the hedonic
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approach to analyzing wine prices, a log-linear regression is used to estimate the
price

ln(P) ¼ Xβþ ε, ð1Þ

where P is a price vector of a 0.75 liter bottle of wine, X denotes a matrix of charac-
teristics which are supposed to have an influence on the wine price, β is the vector of
parameters that are associated to these characteristics, and ɛ is the error term
(Thrane, 2004).

There is a growing number of studies dealing with the impact of weather changes
on wine quality and wine prices.1 Most of these studies suggest that temperature and
precipitation during the growing and harvesting seasons may have an important
impact on wine prices (e.g., Ashenfelter, 2010; Ashenfelter and Storchmann, 2010;
Byron and Ashenfelter, 1995; Haeger and Storchmann, 2006; Jones and
Storchmann, 2001; Lecocq and Visser, 2006; Oczkowski, 2001, 2014, 2016;
Ramirez, 2008; Storchmann, 2005, 2012). As weather information is not given on
the wine label, visible quality indicators include the quality categories or the
alcohol level as direct measures of quality that are affected by weather (Niklas,
2017), and wine guide scores as indirect measures of wine quality (Schamel, 2000,
2002, 2003; Shapiro, 1983; Tirole, 1996).

Most of the extant studies use either time series data or cross-sectional data and
apply (log)linear regression approaches to identify the impact of the weather,
while other disciplines such as engineering or stock exchange trading use machine
learning (Shavlik and Diettrich, 1990) as the core technology for their model build-
ing capabilities (Stone et al., 2016).2 There is only one paper to date, that deals with
the prediction of wine prices applying machine learning. This paper focuses on time-
series analyses required for stock exchange trading (Yeo, Fletcher, and Shawe-Taylor,
2015).

The current study focuses on separate equations for different German grape vari-
eties, assuming that these grape varieties react differently to weather variables. The
results of the log linear regression (and squared forms) and the machine learning
are first compared for the Riesling grape variety, then the machine learning is
applied for the other grape varieties.

The article is organized as follows. Section II presents the data. Section III
describes the methodological approach. Section IV reports the results and Section
V draws conclusions.

1Ashenfelter and Storchmann (2016) provide a survey of the relevant literature.
2Autonomous driving, speech recognition, or face recognition technology in modern photographic equip-
ment or video monitoring are other examples for the application of machine learning (National Science
and Technology Council, Committee on Technology, 2016).
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II. Data on German Weather and Wine Prices

We base our analysis on a dataset that covers farm gate prices for 0.75 liter bottles of
wine,3 reported by 177 wine producers that we sampled at random for the Riesling,
Silvaner, Pinot Blanc, and Pinot Noir grape varieties for the vintages 1998 to 2013,
for all 13 German wine regions. We obtained farm gate prices4 from these producers
with data on various control variables from “Gault&Millau Weineguide
Deutschland” (Diel and Payne, 2002–2009; Payne, 2010–2015). Table 1 summarizes
all collected variables for the Riesling grape variety.5

We use German quality categories as direct measures of quality. German wines
are categorized by the degree of ripeness of the grapes, measured as the content of
natural sugar in the must (grape juice) at harvest. However, these so called
“quality categories” do not measure, per se, whether a wine is of good or bad
quality.6 The German term is “degree Oechsle”7 and the following categories are dis-
tinguished: Qualitätswein (QbA),8 Kabinett, Spätlese, Auslese, Beerenauslese,
Trockenbeerenauslese, and Eiswein9 (Ashenfelter and Storchmann, 2010).

Instead of collecting data from a single weather station, as shown in the literature
(Lecocq and Visser, 2006; Haeger and Storchmann, 2006), this study uses daily data
(daily average temperature,10 average of the daily maximum and daily minimum
temperature all in degrees Celsius, sum of precipitation in mm, and daily average
humidity in percent) from 13 different local weather stations,11 as especially since
precipitation varies between German wine regions, which therefore differ in their

3 In the Gault&Millau Weinguide Deutschland (Diel and Payne, 2002–2009; Payne, 2010–2015), only
prices of 0.75 liter bottles are published.
4Farm gate prices are those prices that consumers pay when visiting the farm and buying in the “farm
shop,” but could be related to recommended retail prices.
5Not all variables are included in all models; further explanations can be found in the methodology
Chapter III. The descriptive statistics for Silvaner, Pinot Blanc, and Pinot Noir can be found in the
online supplementary material.
6Hence there is no multicollinearity issue between quality levels and Gault&Millau points. Please see the
correlation matrix between Gault&Millau points and quality levels in Table A1 of the Appendix.
7 It denotes the specific weight of the must compared to the weight of the water at a temperature of 20
degrees. One liter of water weighs 1,000 g, which equals 0 degrees Oechsle. Grape must, with a mass of
1,084g per liter, has 84 degrees Oechsle. The mass difference is almost entirely due to the sugar dissolved
in the must, so that Oechsle measures the sweetness of the grape juice (Ashenfelter and Storchmann, 2010).
8Although their production levels are insignificant (less than 1% of total production), there are two cat-
egories below the QbA, that is, Tafelwein and Landwein.
9The Oechsle thresholds vary from region to region. In the region Pfalz (Palatinate), for example, the
quality categories fall into the following brackets: Qualitätswein (QbA) (60–72° Oechsle), Kabinett
(73–84° Oechsle), Spätlese (85–91° Oechsle), Auslese (92–119° Oechsle), Beerenauslese and Eiswein
(120–149° Oechsle), and Trockenbeerenauslese (>150° Oechsle) (Ashenfelter and Storchmann, 2010).
10The average is calculated from at least 21 hourly measurements each day.
11The German Weather Service provided the regional weather data from the following weather stations:
Ahr: Bad Neuenahr-Ahrweiler – Baden: Karlsruhe/Rheinstetten and Freiburg, Franken: Würzburg as
closest station, Hessische Bergstraße: Mannheim – Mittelrhein: Montabaur and Nastätten, Mosel:
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Table 1
Descriptive Statistics for Riesling

Variable Obs. Mean
Std.
Dev. Min. Max. Skewness Kurtosis

Price 0.75l bottle 8,334 19.42 32.76 2.10 550 5.74 47.94
Gault&Millau points 8,334 86.39 3.2 72 100 0.27 3.09
Age 8,334 2.06 0.21 2 9 9.74 195.59
Trend 8,334 10.07 3.94 3 16 –0.16 1,84
Alcohol 8,334 10.96 2.04 5.5 14.5 –0.68 2.16
Precipitation Growing Season
(sum)c

8,334 266.23 79.16 70.4 584 0.92 4.64

Precipitation Harvest Season
(sum)c

8,334 156.02 65.38 40.2 500.9 1.10 5.94

Air Temperature Growing Season
(avg.)c

8,334 17.36 0.96 15.25 21.14 0.58 3.96

Air Temperature Harvest Season
(avg.)c

8,334 10.34 1.11 7.76 13.78 0.49 3.69

Minimum Air Temperature
Growing Season (avg.)c

8,334 12.12 0.72 10.62 15,07 0.79 3.83

Minimum Air Temperature
Harvest Season (avg.)c

8,334 6.65 1.04 4.45 9.74 0.65 3.25

Maximum Air Temperature
Winter Season (avg.)c

8,334 13.22 2.11 7.36 17.61 –0.10 2.51

Sunshine Hours Winter Season
(sum)c

8,334 330.55 65.02 122.4 538.05 –0.20 3.29

Humidity Winter Season (avg.)c 8,334 7.62 0.61 6.03 8.99 0.01 2.35
Humidity Growing Season (avg.)c 8,334 13.59 0.66 12.01 15.80 –0.13 2.98
Humidity Harvest Season (avg.)c 8,334 10.57 0.91 8.78 13.69 0.86 4.70
QbAa 8,334 0.355 0.48 0 1 0.61 1.37
Kabinett 8,334 0.18 0.39 0 1 1.64 3.71
Spätlese 8,334 0.285 0.45 0 1 0.96 1.91
Auslese 8,334 0.12 0.33 0 1 2.34 6.50
Batbaiceb 8,334 0.06 0.24 0 1 3.68 14.57
Ahr 8,334 0.003 0.058 0 1 17.16 295.68
Baden 8,334 0.041 0.020 0 1 4.61 22.27
Franken 8,334 0.049 0.22 0 1 4.16 18.33
Hessische Bergstr. 8,334 0.007 0.85 0 1 11.66 136.92
Mittelrhein 8,334 0.057 0.23 0 1 3.81 15.57
Mosel 8,334 0.329 0.47 0 1 0.73 1.53
Nahe 8,334 0.091 0.29 0 1 2.84 9.07
Pfalz 8,334 0.123 0.33 0 1 2.29 6.24
Rheingau 8,334 0.129 0.33 0 1 2.22 5.92
Rheinhessen 8,334 0.130 0.34 0 1 2.20 5.85
Saale-Unstrut 8,334 0.005 0.68 0 1 14.51 211.72
Sachsen 8,334 0.004 0.61 0 1 16.31 266.87
Württemberg 8,334 0.031 0.17 0 1 5.38 29.97

aQbA: Qualitätswein

bBatbaice: Beerenauslese/Trockenbeerenauslese/Eiswein

cWinter Season: 12/01–02/28; Growing Season: 03/01–09/15; Harvest Season: 09/16–10/31

Source: Authors’ calculations.
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suitability for grape growing, while one weather station would have been suitable in
the case of the temperature due to spatial correlation (Ashenfelter and Storchmann,
2010; Haeger and Storchmann, 2006). Overall, our sample comprises 8,334 observa-
tions for Riesling, 2,004 for Pinot Noir, 1,294 for Pinot Blanc, and 917 for Silvaner.

Mainly the regions Mosel (32.9%), Pfalz (12.3%), Rheingau (12.9%), and
Rheinhessen (13%) produce Riesling and the quality categories are QbA
(35.5%), Spätlese (28.5%), Kabinett (18%), Auslese (12%), and Beerenauslese/
Trockenbeerenauslese/Eiswein (Batbaice) (6%). The price of Riesling varies tremen-
dously, from €2.10 to €550.00 per bottle, while Gault&Millau quality points vary
between 72 and 100.

III. Methods

In the first step, we run a log linear regression for Riesling and follow the variables
employed in the previous literature. The hedonic equation is

ln(Pi) ¼ β0 þ β1GMPit þ β2ageit þ β3trendit þ β4W4it þ . . .þ βkWkit

þ γ1(Quality)þ γ2(Region)þ γ3(Producer)þ εit,

ð2Þ

where GMP denotes Gault&Millau points (as an indirect measure of quality), age is
the age of the wine at the time of purchase, trend is an annual trend variable to
capture inflationary trends, W4 ... Wk are various weather variables (average air tem-
perature, squared temperature, sum of precipitation in mm) which we split into the
growing and harvest seasons,12 Quality is a series of dummy variables for the
German quality categories (as a direct measure of quality), Region is a series of
dummy variables depicting the region from where the grapes are sourced, and
Producer is a series of dummy variables reflecting price policies and other farm
specific factors (production cost, capital cost, owner structure, etc.).

In the second step, we substitute the log linear regression algorithm with machine
learning (Witten, Eibe, and Hall, 2017). We build a non-linear regression model
including all variables, which uses a classic feed forward artificial neural network
(ANN) algorithm (Witten, Eibe, and Hall, 2017; Hornik, Stichcombe, and White,
1990; Rumelhart, Hinton, and Williams, 1986) to generate the functional model
between environmental and other variables related to logarithmic bottle prices.

Bernkastel and Trier Petrisberg, Nahe: Bad Kreuznach, Pfalz: Bad Dürkheim, Rheingau: Geisenheim,
Rheinhessen: Alzey, Saale-Unstrut: Osterfeld, Sachsen: Dresden-Hosterwitz, Württemberg: Sachsenheim.
12The whole season comprises the winter (Dec. 1 to Feb. 28), growing (Mar. 1 to Sep. 15.), and harvest
(Sep. 16 to Oct. 31). The growing phase now starts in March, while the majority of grapes are picked
from the middle of September to the end of October (Fecke, 2014; Kriener and Mortsiefer, 2017; Jones
and Storchmann, 2001).
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An ANN is a mathematical simulation of the biological nervous cell system and
consists of many regression units, which are typically non-linear, but could also be
linear for scaling purposes. These units are also known in the literature as perceptrons
(Rosenblatt, 1958), neurons, or nodes and are organized in layers (Witten, Eibe, and
Hall, 2017; Hornik, Stichcombe, and White, 1990; Rumelhart, Hinton, and Williams,
1986). Each layer is stacked on top of the other and all nodes of the underlying layer
have a direct weighted link to each unit in the following layer. Several kinds of archi-
tecture exist, where the layers can be skipped or where there are feedback loops
between previous layers (Witten, Eibe, and Hall, 2017). Feed forward networks,
those without any feedback loops or recursions, typically have three types of layers.
The input layer type that uses the values of the independent variables as input, the
hidden layer type that is responsible for the non-linear functional regression, and
the output layer type that performs the final transformation to the dependent vari-
ables. Equation (3) describes the general form of the network architecture as

ln(Pi) ¼ fo
X

k!h
wkhfh

X
j!k

w jkfi
X

i!j
wijxi

� �� �� �
, ð3Þ

where xi is an independent variable and fi is the transfer function on the input layer, fh
is the transfer function of the hidden layer, and fo is the transfer function of the output
layer. The transfer function in this case is the logistic sigmoidal function as described
in Equation (4).

f (x) ¼ (1þ e�x)�1 ð4Þ
In the third step, we calculate the dependency matrix (Rinke, 2015) for the previ-

ously generatedANNmodel.We derive the dependencymatrix from a sensitivity anal-
yses of theANNmodel,whichHashem (1992) originally presented andYehandCheng
(2010) further investigated. It represents a normalized, accumulated Jacobi matrix
(Rudin, 1976) over the observed data samples and expresses the relative importance
of an independent variable with respect to the dependent variable of the ANNmodel.

There are two other methods of describing the “importance” of an independent
variable with respect to the dependent variable, but these are based only on the
learned internal network weights wij (Olden and Jackson, 2002; Olden, Joy, and
Death, 2004; Garson, 1991; Goh, 1995; Giam and Olden, 2015). Yeh and Cheng
(2010) show that calculating importance as a value, based on the first order partial
derivative and further on, the second order partial derivative is more accurate
than other common methods.

We calculate the dependency factor (Rinke, 2015) for each independent variable of
the model with respect to the dependent variable separately using Equation (5). Yeh
and Cheng (2010) call this dependency factor the “average linear importance factor”

DF (y(x)) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X ∂y
∂x

� �2
s

ð5Þ
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where ∂y
∂x represents the partial derivative of the function y(x) and n the number of

samples.

In addition to the dependency factors, we examine the semi-elasticity ε of y(x)
(Owen, 2012). Semi-elasticity measures the percentage change in the dependent var-
iable caused by a unit change in the independent variable. In the log-linear-regression
model log(y) = ß0 + ß1x + u. The variable ß1 measures the semi-elasticity of the
dependent variable in relation to the respective independent variable. Since we use
a log-linear specification between the log-price and an independent variable x, a
change of one unit of x results in an ε× 100 percent change in y.13 We calculate
the semi-elasticity following Equation (6) and the average semi-elasticity following
Equation (7).

εy,x ¼ ∂y
∂x

1
y

ð6Þ

εy,xi ¼ 1
n

X
i¼1::n

εy,xi; ð7Þ

for n observations

In the fourth step, we calculate the average semi-elasticity for each independent var-
iable of the model with respect to the dependent variable separately for each German
quality category (QbA, Kabinett, Spätlese, Auslese, and Batbaice) and discuss the
results. For the remaining grape varieties, Silvaner, Pinot Blanc, and Pinot Noir, we
repeat steps two to four and summarize the results (only available online).

IV. Results

A. Riesling Models

(1) Log Linear Regression

We apply the hedonic Equation (2) using average temperature functions for the
growing and harvest seasons in Model 1, squared temperature functions in Model 2,
and omitting Gault&Millau points in Model 3 applying robust standard errors.14

The reason for using squared temperatures in Model 2 is to check for non-linear
temperature effects. The Gault&Millau points are omitted in Model 3 to check
whether the weather variables can cover most quality aspects. The results are shown
in Table 2 with an R2 of 0.7974 (Model 1), 0.7979 (Model 2), and 0.6168 (Model 3).15

13See Greene (2008) for a more detailed discussion.
14Since the Breusch–Pagan/Cook–Weisberg test finds heteroscedasticity for all three models, see Table A5
of the Appendix.
15There is no multicollinearity issue except for the temperature variables and its squared version in Model
2, the respective variance inflation factor test for Models 1, 2, and 3, and the correlation matrix can be
found in Tables A6 and A7 of the Appendix.
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All significant weather variables show a positive impact on wine prices in all three
models. Model 3 suggests that average temperatures during the growing and harvest
seasons have a significantly positive but decreasing effect, because the squared func-
tions are negative. Based on these results, we calculate the price-maximizing temper-
ature, which is 19.98 degrees Celsius for the growing season and 12.42 degrees
Celsius for the harvest season.

Table 2
Comparison of Model 1, 2, and 3 for Riesling (without Regional and Producer Fixed Effects)

ln price
Model (1)

ln price
Model (2)

ln price
Model (3)

Gault&Millau points 0.133***
(76.53)

0.133***
(76.28)

Age 0.0543*
(2.08)

0.0495
(1.93)

0.111**
(2.68)

Trend 0.0196***
(17.87)

0.0190***
(17.05)

0.0376***
(25.57)

Precipitation Growing Season (sum)b 0.000364***
(6.22)

0.000375***
(6.31)

0.000187*
(2.29)

Precipitation Harvest Season (sum)b 0.000280***
(4.06)

0.000248***
(3.58)

0.000135
(1.43)

Air Temperature Growing Season (avg.)b 0.0455***
(9.42)

0.390***
(3.87)

0.0428***
(6.28)

Air Temperature Growing Season (avg.) squaredb –0.00976***
(–3.42)

Air Temperature Harvest Season (avg.)b 0.0226***
(5.96)

0.124**
(2.71)

0.0127*
(2.42)

Air Temperature Harvest Season (avg.) squaredb –0.00499*
(–2.33)

Kabinett –0.170***
(–17.68)

–0.168***
(–17.48)

–0.250***
(–18.81)

Spätlese –0.0454***
(–4.74)

–0.0444***
(–4.64)

0.127***
(9.23)

Auslese 0.470***
(25.81)

0.470***
(25.79)

1.010***
(42.95)

Batbaicea 1.508***
(58.86)

1.508***
(58.83)

2.308***
(80.31)

Constant –10.56***
(–57.36)

–14.06***
(–16.36)

0.694***
(4.35)

Observations 8,335 8,335 8,335
R2 0.7974 0.7979 0.6168

Note: Robust t statistics are in parentheses; significance levels are *p< 0.05, **p< 0.01, and ***p< 0.00.

aBatbaice: Beerenauslese/Trockenbeerenauslese/Eiswein

bWinter Season: 12/01–02/28; Growing Season: 03/01–09/15; Harvest Season: 09/16–10/31

Source: Authors’ calculations.
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Gault&Millau points have the greatest influence on the Riesling price, as the price
increases by 13.3% with each additional point in Models 1 and 2. The exclusion of
Gault&Millau points leads to less accurate results and a much lower R2.

The price trend has a significantly positive impact in all three models (between
1.9% and 3.76%) and the wine price increases with the age of the wine by 5.43%
in Model 1 and 11.1% in Model 3, but is insignificant in Model 2.

Quality categories also have a significant impact. Compared to QbA, the Kabinett
category leads to a decline in prices for all three models and Spätlese leads to a
decline in prices for Models 1 and 2, while the higher-quality categories lead to
much higher prices. The quality Auslese category has a positive price impact from
47% (Models 1 and 2) to 101% (Model 3), and Batbaice from 150.8% (Models 1
and 2) to 230.8% (Model 3).

We then estimate the above models applying regional fixed effects to control
regional unobserved heterogeneity. Table 3 (left side) shows the results with an R2

of 0.8020 (Model 4), 0.8020 (Model 5), and 0.6348 (Model 6).

While most of the results are confirmed, Model 5 shows the most obvious change
in results. Including squared temperature variables now makes all temperature var-
iables insignificant. One reason might be that non-linear temperature effects are only
observed in some regions, so the effects are no longer significant when we apply
regional fixed effects. We confirm this assumption when running regressions for
regional subsamples: squared temperature variables for both the growing and
harvest seasons are only significant for the regions of Baden (in the very south of
Germany) and for Mittelrhein (a sunny wine region), while for the harvest season
squared temperature variables are only significant for the regions of Nahe and
Württemberg (again, in the very south of Germany). The majority of observations
(6,504 out of 8,335), however, cover German wine regions with linear temperature
effects. Model 6 again has less accurate results than the other two models.

Finally, we estimate the same models applying regional and producer fixed effects
that can reflect pricing policies and other farm-specific factors such as production
cost, capital cost, or owner structure. Table 3 (right side) shows the results, with
an R2 of 0.8517 (Model 7), 0.8518 (Model 8), and 0.7812 (Model 9).

The application of producer fixed effects generally leads to a higher explanatory
power of all models. The effect of Gault&Millau points is less strong than before
(10.7% instead of 13.1%), while age and trend have stronger effects. Only in
Model 7 do all weather variables show a significant and positive effect on wine
prices, while the inclusion of squared temperature effects still leads to insignificant
results. Similar to the previous explanation, this may be due to the majority of pro-
ducers in this sample (74.1%) are in regions with linear temperature effects according
to the regional subsamples.
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Table 3
Models for Riesling

ln price
Model (4)

ln price
Model (5)

ln price
Model (6)

ln price
Model (7)

ln price
Model (8)

ln price
Model (9)

Gault&Millau points 0.131***
(73.81)

0.131***
(73.78)

0.107***
(53.40)

0.107***
(53.35)

Age 0.0537*
(2.05)

0.0544*
(2.07)

0.109**
(2.94)

0.0716**
(2.85)

0.0728**
(2.89)

0.110***
(3.60)

Trend 0.0181***
(16.43)

0.0182***
(16.34)

0.0341***
(23.44)

0.0259***
(24.55)

0.0260***
(24.45)

0.0424***
(34.38)

Precipitation Growing Season (sum)b 0.000336***
(4.48)

0.000320***
(3.98)

0.000153
(1.54)

0.000247***
(3.72)

0.000218**
(3.06)

0.0000481
(0.61)

Precipitation Harvest Season (sum)b 0.000247***
(3.39)

0.000255***
(3.46)

–0.0000108
(–0.11)

0.000167**
(2.64)

0.000181**
(2.82)

–0.0000166
(–0.21)

Air Temperature Growing Season (avg.)b 0.0232***
(3.54)

–0.00865
(–0.07)

0.0170*
(1.98)

0.0178**
(3.06)

–0.0208
(–0.20)

0.0129
(1.87)

Air Temperature Growing Season (avg.) squaredb 0.000852
(0.26)

0.00101
(0.36)

Air Temperature Harvest Season (avg.)b 0.00868*
(2.05)

–0.0226
(–0.42)

0.0114
(0.20)

0.00827*
(2.24)

–0.0491
(–1.08)

0.00162
(0.37)

Air Temperature Harvest Season (avg.) squaredb 0.00145
(0.59)

0.00266
(1.26)

Kabinett –0.178***
(–18.05)

–0.178***
(–18.03)

–0.250***
(–18.66)

–0.168***
(–17.61)

–0.168***
(–17.61)

–0.205***
(–16.89)

Spätlese –0.0502***
(–5.22)

–0.0503***
(–5.23)

0.113***
(8.28)

0.0319***
(3.36)

0.0318***
(3.35)

0.209***
(18.39)

Auslese 0.461***
(25.24)

0.461***
(25.22)

0.976***
(42.39)

0.565***
(32.98)

0.565***
(32.95)

0.966***
(50.06)
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Table 3
Continued

ln price
Model (4)

ln price
Model (5)

ln price
Model (6)

ln price
Model (7)

ln price
Model (8)

ln price
Model (9)

Batbaicea 1.504***
(58.74)

1.504***
(58.75)

2.276***
(80.25)

1.673***
(67.29)

1.673***
(67.32)

2.303***
(94.73)

Regional fixed effects Yes Yes Yes Yes Yes Yes
Producer fixed effects No No No Yes Yes Yes
Constant –9.691***

(–45.07)
–9.225***
(–8.09)

1.265***
(6.18)

–8.116***
(–36.72)

–7.437***
(–7.65)

0.825***
(4.97)

Observations 8,335 8,335 8,335 8,335 8,335 8,335
R2 0.8020 0.8020 0.6348 0.8517 0.8518 0.7812

Note: Robust t statistics are in parentheses; significance levels are *p< 0.05, **p< 0.01, and ***p< 0.00.

aBatbaice: Beerenauslese/Trockenbeerenauslese/Eiswein

bWinter Season: 12/01–02/28; Growing Season: 03/01–09/15; Harvest Season: 09/16–10/31

Source: Authors’ calculations.
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Due to the high degree of skewness (5.74) and kurtosis (47.94) in the price data
(see Table 1), we assume that marginal effects might vary in different price brackets.
Therefore, we finally run a quantile regression forModel 4 (with regional fixed effects
without squared temperatures16) and report the results and the corresponding ordi-
nary least square (OLS) results in Table 4 (Column 1), allowing for a direct compar-
ison of results.

Similar to the OLS results, Gault&Millau points have a positive affect on the
price. The effect peaks in the 0.75 quantile and then decreases slightly afterwards.

The age of a wine bottle, which is statistically significant in the OLS regression,
only exerts a significantly positive price effect in the 0.5 quantile and remains insig-
nificant for all others.

The quantile regression shows significant trend effects like the OLS, but the trend
effect decreases with the price quantiles.

Like in the OLS results, wine prices in the growing season are significantly posi-
tively affected by precipitation, with a peak in the 0.25 quantile. Precipitation in
the harvest season only has a significant positive price effect in the 0.25 quantile
and then again in the 0.75 and 0.9 quantiles, the effect increasing with the price
quantiles.

The average temperature in the growing season shows a significantly positive price
effect only for the 0.25 and 0.5 quantiles, with a peak for the 0.25 quantile. The same
holds to the average temperature in the harvest season, which is significantly positive
for the 0.9 quantile.

The highest German quality categories, Auslese and Batbaice, show a highly sig-
nificant positive effect on wine prices. This effect increases with the price quantiles
and accounts for a price increase of up to 61% for Auslese and up to 171.1% for
Batbaice.

The Kabinett category shows no significant effect for the 0.25 quantile, but for all
other quantiles there is an increasing, significantly negative effect on wine prices. For
Spätlese, the effect is significantly positive for the 0.25 quantile, but significantly neg-
ative for the quantiles 0.5, 0.75, and 0.9.

(2) Machine Learning Approach

All available variables (see Table 1) can be used for the application of ANNs17

without a negative impact on the model accuracy, since ANN models are

16Quantile regressions for models with producer fixed effects cannot be run, since these are underdeter-
mined due to the large number of different producers (177).
17We use the “Orange: Data Mining Toolbox” version 3.13 for the model building and analyses process
(Demsar et al., 2013). Orange is developed by the Bioinformatics Laboratory at the University of

Britta Niklas and Wolfram Rinke 295

https://doi.org/10.1017/jw
e.2020.16  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/jwe.2020.16


Table 4
OLS vs. Quantile Regressions of Model 4 for Riesling

ln price
Model (4)

ln price
(Quantile 0.1)

ln price
(Quantile 0.25)

ln price
(Quantile 0.5)

ln price
(Quantile 0.75)

ln price
(Quantile 0.9)

Gault&Millau points 0.131***
(73.81)

0.111***
(35.78)

0.123***
(63.80)

0.129***
(69.82)

0.132***
(44.30)

0.126***
(34.82)

Age 0.0537*
(2.05)

0.0280
(0.93)

0.0495
(1.56)

0.0621**
(2.61)

0.0602
(1.59)

0.0339
(1.19)

Trend 0.0181***
(16.43)

0.0246***
(12.94)

0.0239***
(20.80)

0.0171***
(13.53)

0.0155***
(8.57)

0.0137***
(6.41)

Precipitation Growing Season (sum)b 0.000336***
(4.48)

0.000286*
(2.34)

0.000369***
(5.42)

0.000275*
(2.57)

0.000201*
(2.07)

0.000300*
(2.43)

Precipitation Harvest Season (sum)b 0.000247***
(3.39)

0.000123
(1.18)

0.000158*
(2.32)

0.000132
(1.53)

0.000240**
(2.58)

0.000402***
(4.00)

Air Temperature Growing Season (avg.)b 0.0232***
(3.54)

0.0126
(1.78)

0.0337***
(4.10)

0.0224***
(4.43)

0.0163
(1.82)

0.0131
(1.20)

Air Temperature Harvest Season (avg.)b 0.00868*
(2.05)

0.00127
(0.26)

0.00862*
(2.01)

0.0101*
(2.37)

0.00830
(1.76)

0.0122*
(1.97)

Kabinett –0.178***
(–18.05)

0.0211
(1.53)

–0.0961***
(–8.13)

–0.173***
(–15.359)

–0.264***
(–17.59)

–0.367***
(–15.40)

Spätlese –0.0502***
(–5.22)

0.104***
(6.38)

0.00846
(0.57)

–0.0541***
(–3.88)

–0.105***
(–6.83)

–0.171***
(–7.10)

Auslese 0.461***
(25.24)

0.460***
(19.96)

0.388***
(16.71)

0.403***
(18.06)

0.528***
(20.27)

0.610***
(23.32)

Batbaicea 1.504***
(58.74)

1.474***
(30.55)

1.450***
(41.56)

1.520***
(36.19)

1.610***
(43.09)

1.711***
(58.86)

Constant –9.691***
(–45.07)

–8.174***
(–24.19)

–9.457***
(–30.77)

–9.445***
(–43.11)

–9.398***
(–30.36)

–8.710***
(–21.58)
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Table 4
Continued

ln price
Model (4)

ln price
(Quantile 0.1)

ln price
(Quantile 0.25)

ln price
(Quantile 0.5)

ln price
(Quantile 0.75)

ln price
(Quantile 0.9)

Observations 8,335 8,335 8,335 8,335 8,335 8,335
R2 0.8020 0.4675 0.4872 0.5325 0.5888 0.6405

Note: All equations include a full set of regional fixed effects. Robust t statistics are in parentheses; significance levels are *p< 0.05, **p< 0.01, and ***p< 0.00.

aBatbaice: Beerenauslese/Trockenbeerenauslese/Eiswein

bWinter Season: 12/01–02/28; Growing Season: 03/01–09/15; Harvest Season: 09/16–10/31

Source: Authors’ calculations.
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robust with regard to multicollinearity (Dumancas and A Bello, 2015; Garg and
Tai, 2013).

First, we investigate a feasible architecture for the ANN model that matches the
Riesling dataset. As a result of several experiments with different architectures and
the intention to maximize the R2, to minimize root mean squared error (RMSE) and
to avoid overfitting, we found a four-layer architecture for the Riesling model. Thus,
all 44 input variables, including quality fixed effects and regional fixed effects and,
therefore, 44 nodes in the input-layer, 15 nodes in the first hidden layer and one
node in the second hidden layer, and finally one output node for our dependent var-
iable. In the next step, we train the Riesling model and calculate the dependency
matrix and the semi-elasticity, which gives a sextuple for each independent variable,
applying quality fixed effects.

We interpret a variable as important (significant) and influential if it has a high
dependency value and a high semi-elasticity value.18 Table 5 shows the significant
and influential variables for Riesling.19We additionally include Humidity as an inde-
pendent variable because it has rarely been used in the literature.

Table 5
Significant and Influential Variables for Riesling

Riesling (ANN) Dependency Factor Average Semi-Elasticity

Gault&Millau points 0.8941 0.0526
Alcohol 0.4703 0.0093
Trend 0.2285 0.0126
Air Temperature Growing Season (avg.)a 0.1886 0.0090
Minimum Air Temperature Growing Season(avg.)a 0.1409 0.0043
Minimum Air Temperature Harvest Season (avg.)a 0.2213 –0.0092
Maximum Air Temperature Winter Season (avg.)a 0.2874 –0.0170
Sunshine Hours Winter Season (sum)a 0.1751 0.0103
Humidity Winter Season (avg.)a 0.0790 0.0031
Humidity Growing Season (avg.)a 0.1002 –0.0054
Humidity Harvest Season (avg.)a 0.1845 0.0087
Observations 8,335
R2 0.870

aWinter Season: 12/01–02/28; Growing Season: 03/01–09/15; Harvest Season: 09/16–10/31

Source: Authors’ calculations.

Ljubljana, Slovenia, in collaboration with an open source community. Orange is implemented in the
Python programming language, with extra Python code developed by the authors to calculate the depend-
ency and semi-elasticity required for proper analysis.
18Here, variables with a dependency factor > 0.5 are kept independent of the respective semi-elasticity
values due to their importance for the whole model.
19Unless the variable is a fixed effects variable, as due to the definition of fixed effects, their semi-elasticity
equals zero.
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The ANN model is of higher explanatory power as it is possible to also capture
non-linear relationships,20 and the resulting R2 is now 0.876. Furthermore, the
RMSE with a value of 0.293 shows a better model accuracy (about 18.7% better)
than the log linear regression model.

Again, we identify Gault&Millau points as the most important (nonfixed
effect) variable with a dependency factor of 0.894, which also shows the highest
semi-elasticity, with a price increase of 5.26% for each additional
Gault&Millau point.

Like in the log linear regression model, there is a positive price trend, while the age
of the wine does not seem to be important for the Riesling prices. The average (and
also minimum) temperatures in the growing season again have a positive influence on
wine prices, while precipitation does not seem to be relevant.

Some additional variables exert a price effect. The alcohol level has a positive
effect on the price, while the rise in the maximum temperatures in the winter
season and the minimum temperatures in the harvest season have negative prices
effects, so that an increase in extreme weather conditions is, therefore, unfavorable
for Riesling.

The ANN model allows the semi-elasticity to be split for each independent vari-
able into a semi-elasticity per fixed effect (here the respective quality category), which
improves the interpretation of the results. Table 6 shows the splitting into these semi-
elasticities per quality category for Riesling.

The very left column of Table 6 shows the average coefficient (semi-elasticity),
while the other 5 columns show the semi-elasticity per quality category. Here, the
influence of additional Gault&Millau points on the price for QbA wines (+7.41%)
is very high, but only small for wines of the Kabinett quality (+2.67%) and
medium for Spätlese (+4.28%), Auslese (+5.85%), and Batbaice (+4.05%). Table 6
shows the positive influence of the alcohol level on the prices of QbA wines
(+3.68%), Kabinett (+0.17%), and Spätlese (+0.63%), while the impact is negative
regarding the prices of wines of the quality categories Auslese (–3.29%) and
Batbaice (–3.02%). A rise in maximum temperatures during the winter season is
not favorable for all quality categories of Riesling.

With the scatter plots in Figures 1 and 2, we further split the semi-elasticities and
distinguish between the influence on low- and high-priced wines within a single
quality category.

Figure 1 shows that wines with a lower QbA benefit from additional
Gault&Millau points, while wines with a higher price do not. This is the opposite

20Therefore we do not apply squared functions. The same holds to producer fixed effects that would lead
to an underdetermination of the equation system.
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Table 6
Average Semi-Elasticity of Significant and Influential Variables for Riesling by Quality Category

Average
Semi-

Elasticity
Semi-Elasticity

QbAb
Semi-Elasticity

Kabinett
Semi-Elasticity

Spätlese
Semi-Elasticity

Auslese

Semi-
Elasticity
Batbaicec

Gault&Millau points 0.0526 0.0741 0.0267 0.0428 0.0585 0.0405
Alcohol 0.0093 0.0368 0.0017 0.0063 –0.0329 –0.0302
Trend 0.0126 0.0169 0.0137 0.0100 0.0057 0.0102
Air Temperature Growing Season (avg.)a 0.0090 0.0051 0.0027 0.0079 0.0251 0.0238
Minimum Air Temperature Growing
Season (avg.)a

0.0043 0.0061 0.0077 0.0060 –0.0023 –0.0121

Minimum Air Temperature Harvest
Season (avg.)a

–0.0092 0.0012 –0.0090 –0.0137 –0.0282 –0.0123

Maximum Air Temperature Winter
Season (avg.)a

–0.0170 –0.0156 –0.0132 –0.0179 –0.0232 –0.0199

Sunshine Hours Winter Season (sum)a 0.0103 0.0091 0.0081 0.0097 0.0167 0.0139
Humidity Winter Season (avg.)a 0.0031 0.0028 0.0015 0.0014 0.0092 0.0050
Humidity Growing Season (avg.)a –0.0054 –0.0048 –0.0043 –0.0056 –0.0089 –0.0043
Humidity Harvest Season (avg.)a 0.0087 0.0061 0.0043 0.0086 0.0223 0.0111

aWinter Season: 12/01–02/28; Growing Season: 03/01–09/15; Harvest Season: 09/16–10/31

bQualitätswein

cBatbaice: Beerenauslese/Trockenbeerenauslese/Eiswein

Source: Authors’ calculations.
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Figure 1

Average Semi-Elasticity of Gault&Millau Points for Each Riesling Quality Category

Source: Authors’ calculations.

Figure 2

Average Semi-Elasticity of the Alcohol Level for Each Riesling Quality Category

Source: Authors’ calculations.
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for all other quality categories, since the higher the price, the more positive the price
effect.

Figure 2 shows that the influence of the alcohol level is higher for QbAwines with
lower prices than for QbA wines with higher prices, and that there is a slightly pos-
itive effect on higher-priced Kabinett wines. The scatterplot clearly confirms the neg-
ative influence of higher alcohol percentages on wine prices for the quality categories
Spätlese, Auslese, and Batbaice.

B. ANN Regression Models for Silvaner, Pinot Blanc, and Pinot Noir

We also conduct the analysis for the Silvaner, Pinot Blanc, and Pinot Noir grape
varieties, but as mentioned in Section III, we exclusively apply the machine
learning approach due to its better performance. We again build an ANN and
apply the same architecture as used for the Riesling model in order to
compare the results.

Table 7 shows the dependency matrix and average semi-elasticities for the most
important and influential variables for the other three grape varieties.21

Figure 3 (dependency factor) and Figure 4 (average semi-elasticity) visualize the
differences between grape varieties regarding dependency factors and average
semi-elasticities more easily for all grape varieties, including Riesling.

Regarding the dependency factors, Figure 3 clearly shows that the “Gault&Millau
points” is the most important independent variable for the prices of all grape varie-
ties and that the various weather variables have differing levels of importance for
these prices with the variable “maximum air temperature in the winter season”
being the most important one for Pinot Noir prices, and the variable “minimum
air temperature in the growing season” for Pinot Blanc prices.

The same applies to the average semi-elasticities (Figure 4) with
“Gault&Millau points” and on a lower level “Alcohol” as variables with a
highly positive influence on the prices of all grape varieties, the variable
“minimum air temperature in the growing season” having a highly positive
effect on Pinot Blanc prices, the “air temperature in the winter season” having
a highly negative effect on Silvaner prices, and “maximum air temperature in
the winter season” on Pinot Noir prices.

We calculate the semi-elasticities per quality category of important (significant)
and influential variables for Silvaner, Pinot Blanc, and Pinot Noir as we did for
Riesling. The respective scatter plots show whether there is a difference between

21Numbers in bold, we only include non-bold numbers to allow for comparisons.
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Table 7
Dependency Matrix and Average Semi-Elasticity for Silvaner, Pinot Blanc, and Pinot Noir

Silvaner Pinot Blanc Pinot Noir
Dependency

Factor
Average Semi-

Elasticity
Dependency

Factor
Average Semi-

Elasticity
Dependency

Factor
Average Semi-

Elasticity

Gault&Millau points 0.347 0.0506 1.000 0.0533 1.000 0.0519
Alcohol 0.355 0.0369 0.638 0.0125 0.585 0.0225
Trend 0.230 0.0386 0.473 0.0184 0.505 –0.0022
Precipitation Winter Season (sum)a 0.237 0.0308 0.548 –0.0166 0.386 –0.0045
Precipitation Growing Season (sum)a 0.121 –0.0009 0.402 0.0102 0.403 –0.0003
Precipitation Harvest Season (sum)a 0.148 –0.0051 0.375 0.0023 0.423 0.0190
Sunshine Hours Winter Season (sum)a 0.185 0.0266 0.358 –0.0140 0.439 0.0176
Air Temperature Winter Season (avg.)a 0.262 –0.0531 0.345 0.0070 0.413 0.0182
Air Temperature Growing Season
(avg.)a

0.076 –0.0028 0.457 –0.0273 0.319 –0.0126

Minimum Air Temperature Growing
Season (avg.)a

0.090 –0.0012 0.708 0.0361 0.182 0.0051

Minimum Air Temperature Harvest
Season (avg.)a

0.177 –0.0156 0.492 –0.0148 0.508 –0.0222

Maximum Air Temperature Winter
Season (avg.)a

0.097 –0.0055 0.359 –0.0210 0.872 –0.0489

Humidity Winter Season (avg.)a 0.241 –0.0377 0.401 0.0006 0.378 0.0066
Humidity Growing Season (avg.)a 0.159 –0.0109 0.382 –0.0024 0.402 –0.0027
Humidity Harvest Season (avg.)a 0.149 –0.0015 0.404 –0.0223 0.362 0.0066
Frostb 0.166 –0.0237 0.340 0.0074 0.463 0.0137
Observations 917 1,294 2,004
R2 0.943 0.895 0.825

Note: Significant and influential variables for each grape variety in bold letters.

aWinter Season: 12/01–02/28; Growing Season: 03/01–09/15; Harvest Season: 09/15–10/31

bFrost: Sum of days of frost, with soil temperatures < 0 during winter, growing, and harvest seasons.

Source: Authors’ calculations.
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lower- and higher-priced wines in each quality category for each independent
variable.

These results are only addressed in the online publication.

V. Conclusion

The results suggest that a simple hedonic price equation does not exist for all grape
varieties. It is more appropriate to use different price equations for each grape
variety. The log linear regression model for Riesling finds positive effects especially
of Gault&Millau points, but also of age, trend, and average temperatures as well as
precipitation on German wine prices. The quality categories Auslese and Batbaice
lead to very high-price premiums for Riesling. The non-linear regression using
ANNs performs slightly better than the log linear regression model because it deliv-
ers better results with respect to R2 and RMSE, suggests some additional explana-
tory variables (such as alcohol level or minimum and maximum temperatures), and
gives a more detailed insight into the interpretation of explanatory variables.

Figure 3

Dependency Factors for Riesling, Silvaner, Pinot Blanc, and Pinot Noir

Source: Authors’ calculations.

304 Pricing Models for German Wine

https://doi.org/10.1017/jw
e.2020.16  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/jwe.2020.16


Therefore, the results for Silvaner, Pinot Blanc, and Pinot Noir are based on the
machine learning approach. It is shown that the influence of an independent variable
on the wine price of a certain grape variety cannot be estimated by a single coeffi-
cient, since the influence clearly differs for each quality category (fixed effect) of
the respective wine.

The results of the machine learning model also suggest that Gault&Millau points
have a significant and high influence on German wine prices, as one additional point
increases wine prices by around 5% regarding the average coefficients, but with dif-
ferences between quality categories. The split analysis shows that the lowest German
quality category QbA has the highest premiums, while the highest quality category
Batbaice only has high premiums for Pinot Noir. Additional scatter plots show that
the higher-priced QbA wines benefit more from additional Gault&Millau points
than the lower-priced QbA wines.

The influence of the alcohol level on wine prices is positive with regard to the
average coefficient, but the split analysis shows that this influence holds especially
to the quality categories QbA, Kabinett, and Spätlese and that the influence is
even negative for the quality categories Auslese (except for Pinot Noir) and
Batbaice (except for Pinot Blanc).

Figure 4

Average Semi-Elasticity for Riesling, Silvaner, Pinot Blanc, and Pinot Noir

Source: Authors’ calculations.
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There are essential differences between grape varieties regarding influential weather
variables and their ability to cope with rising temperatures or extreme weather
(minimum and maximum temperatures) in different seasons of the ripening process.

Rising average air temperatures during the winter season lead to a decrease in
prices for Riesling and Silvaner, while Pinot Blanc copes better with rising winter
temperatures and Pinot Noir, the only red variety in the sample, even shows a pos-
itive effect of both the rising minimum and average temperatures, but all varieties
cannot cope with rising maximum temperatures in the winter season.

During the harvest season, especially higher minimum and maximum tempera-
tures lead to a negative price effect for wines of all grape varieties and quality cate-
gories, so that earlier harvest is recommended for all grape varieties in cases of
warmer harvest seasons, such as was the case in 2018.

Precipitation does not seem to have as high an impact but is different for each
grape variety and quality category.

In the analysis, ripeness levels are used as proxies for quality levels according to the
German classification system. Future research may include investigating the effects
of climate change on wine prices from regions with distinct quality levels, such as
Bordeaux.

Supplementary Material

To view supplementary material for this article, please visit https://doi.org/10.1017/
jwe.2020.16.
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Appendix

Table A1
Correlation Matrix Between Gault&Millau Points and German Quality Categories

Correlation
Coefficients QbAa Kabinett Spätlese Auslese Batbaiceb

G&Mc points Riesling –0.217 –0.262 0.020 0.324 0.379
G&Mc points Silvaner –0.133 –0.245 0.070 0.151 0.483
G&Mc points Pinot Blanc –0.164 –0.237 0.271 0.155 0.146
G&Mc points Pinot Noir 0.011 –0.148 –0.046 0.082 0.107

aQbA: Qualitätswein

bBatbaice: Beerenauslese/Trockenbeerenauslese/Eiswein

cGault&Millau

Table A2
Breusch–Pagan/Cook–Weisberg Test for Heteroskedasticity – Model 1, 2, and 3

Breusch–Pagan/Cook–Weisberg test for heteroskedasticity
Ho: Constant variance

Variables: fittes values of logprice075

Model 1 Model 2 Model 3

Chi2 (1) = 594.62 Chi2 (1) = 608.75 Chi2 (1) = 262.28
Prob > chi2 = 0.0000 Prob > chi2 = 0.0000 Prob > chi2 = 0.0000
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Table A3
Variance Inflation Tests for Multicollinearity for Model 1, 2, and 3

Variable VIF Model 1 VIF Model 2 VIF Model 3

Gault&Millau points 1.53 1.53
Age 1.01 1.02 1.01
Trend 1.21 1.24 1.17
Precipitation Growing Season (sum) 1.49 1.56 1.49
Precipitation Harvest Season (sum) 1.33 1.35 1.32
Air Temperature Growing Season (avg.) 1.35 642.44 1.35
Air Temperature Growing Season (avg.)b 640.46
Air Temperature Harvest Season (avg.) 1.08 170.15 1.08
Air Temperature Harvest Season (avg.)b 167.02
Kabinett 1.28 1.28 1.27
Spätlese 1.39 1.40 1.34
Auslese 1.47 1.47 1.22
Batbaicea 1.44 1.44 1.13
Mean VIF 1.33 125.57 1.24

aBatbaice: Beerenauslese/Trockenbeerenauslese/Eiswein

bGrowing Season: 03/01–09/15; Harvest Season: 09/16–10/31
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Table A4
Correlation Matrix for Model 1

Gault&Millau
Points Age Trend

Air Temp.
Growing
Season

Air
Temp.
Harvest
Season

Precip.
Growing
Season

Precip.
Harvest
Season QbAa Kabinett Spätlese Auslese Batbaicea

Gault&Millau points —
Age 0.0749 —
Trend 0.0885 0.0109 —
Air Temp. Growing
Seasonc

0.0003 0.0177 –0.2072 —

Air Temp. Harvest
Seasonc

–0.0011 –0.0024 –0.0875 0.2574 —

Precipitation
Growing Seasonc

–0.0375 0.0006 0.0535 –0.4285 –0.1227 —

Precipitation Harvest
Seasonc

–0.0656 –0.0515 –0.1819 –0.1740 –0.0651 0.4459 —

QbAa –0.2173 0.0059 0.2273 0.0110 –0.0160 0.0034 –0.0387 —
Kabinett –0.2617 –0.0527 –0.0477 –0.0435 –0.0246 0.0144 0.0298 –0.3489 —
Spätlese 0.0205 –0.0192 –0.0981 –0.0171 –0.0237 –0.0068 0.0124 –0.4658 –0.2976 —
Auslese 0.3242 0.0268 –0.0858 0.0360 0.0714 –0.0030 0.0132 –0.2724 –0.1740 –0.2323 —
Batbaiceb 0.3792 0.0734 –0.0760 0.0316 0.0194 –0.0132 –0.0121 –0.1877 –0.1199 –0.1601 –0.0936 —

aQbA: Qualitätswein

bBatbaice: Beerenauslese/Trockenbeerenauslese/Eiswein

cGrowing Season: 03/01–09/15; Harvest Season: 09/16–10/31

Source: Authors’ calculations.
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