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A body of salt-stratified fluid in a vertical slot can undergo double-diffusive
instabilities when laterally heated. A previous study has indicated the possibility
that vibrations could induce instabilities in the cases of a strong salinity gradient in
regimes that are not only linearly stable, but also nonlinearly stable. We investigate
this limit using the method of averaging and confirm that any level of high-frequency
vibrations will lead to a reduction in the heating required for instability for a
sufficiently strong salinity gradient, but that this is probably not of great importance
to terrestrial experimenters.

1. Introduction
When a fluid has gradients of both temperature and composition instabilities can

arise even though the fluid is gravitationally stable. The origin of the instabilities lies
in the difference between the diffusivities of these two components and so the effect
is often called double-diffusive convection (for an early review see Turner 1974). Such
temperature and compositional gradients can occur in many situations such as in the
oceans, magma chambers, and many industrial applications such as the growing of
crystals from a solution (Schmitt 1994; Brandt & Fernando 1996).

The stability of fluid in a laterally heated vertical slot with a mean compositional
gradient parallel to the walls was first examined by Thorpe, Hutt & Soulsby (1969)
both experimentally and, in the limit of a strong vertical compositional gradient,
theoretically. The full theoretical stability boundary was first examined by Thangam,
Zebib & Chen (1981), and later by Young & Rosner (1998) and Kerr & Tang (1999).
The last of these also identified further asymptotic regimes on the stability boundary
in addition to the strong compositional gradient limit found previously.

A desire to improve the understanding of the flow in the fluid surrounding
growing crystals has arisen in the context of experiments being conducted on the
International Space Station. In this environment there is a much reduced gravity or
mean acceleration; however there is often a significant degree of vibration from a
variety of sources (Ostrach 1982) which can have a significant impact on convection
(Wheeler et al. 1991; Gershuni et al. 1997). Motivated by this, Zebib (2001) repeated
the previous analysis of instabilities in a vertical slot but including the effect of
vibrations, or g-jitter, showing that it could significantly modify the stability boundary
of the system for parameters appropriate to space.

One region of the stability boundary of interest was the behaviour of the critical
thermal Rayleigh number, RaT , (a measure of the lateral temperature difference
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across the slot) as a function of the salt Rayleigh number, RaS , (a measure of the
compositional stratification along the slot, both defined in the next section) as RaS

becomes large. The boundaries on the log–log plot in figure 3 of Zebib (2001) seemed
to be asymptoting to a straight line of slope 2/3 indicating RaT ∝ Ra2/3

S for large
RaS . This gradient is less than the gradient of 5/6 found in the absence of vibration
(Thorpe et al. 1969; Kerr & Tang 1999). This 5/6 power law is also found for the
linear stability boundary in the case of heating a salinity gradient from a single
sidewall for strong stratification (Kerr 1989). In addition, for the single sidewall case,
a boundary for nonlinear disturbances has been found (Kerr 1990) and this too has a
slope of 5/6. A similar analysis for the case of a vertical slot with the same assumption
that the vertical scale of the instabilities is limited by the Chen scale (Chen, Briggs &
Wirtz 1971) yields the boundary for nonlinear stability of

RaT = (128π4 (1 − τ )3 τ )Ra5/6
S . (1.1)

Here τ is the ratio of the salt diffusivity to the thermal diffusivity, usually a small
number. Thus all the known stability boundaries for both a slot and a single sidewall
in the limit of strong stratification are of similar form to (1.1) but with different
factors. This leads to the possibility that if the apparent asymptotes of Zebib (2001)
are real and extend all the way to infinity then, for any level of vibration, linear
theory would predict instabilities in a region that in the absence of vibration would
be stable to both linear and nonlinear disturbances. It is this possibility that is the
focus of this paper.

Here we adapt the large-gradient asymptotics of double-diffusive instabilities of
a vertical slot to include the effect of vibration or g-jitter. We also investigate the
incursion of the stability boundary into the region in the RaT –RaS-plane where in
the absence of vibration the system is stable to all disturbances, and show that the
boundary does indeed cross into the region of linear and nonlinear stability for any
level of vibration for sufficiently strong salinity gradients. However, we conclude that
this is unlikely to be a major concern for terrestrial experimenters.

2. Problem formulation and results
In this analysis we will follow Zebib (2001) in considering the case where the

slot walls are parallel to the mean acceleration (i.e. vertical on Earth) of strength g,
and the vibration consists of oscillations perpendicular to the walls with acceleration
g1 cos ω1t . The governing equations for linear perturbations to an incompressible fluid
experiencing such accelerations are

∂u
∂t

+u · ∇(W (x) ẑ)+W (x)
∂u
∂z

= − 1

ρ0

∇p+(g ẑ+g1 cos ω1t x̂)(αT −βS)+ν∇2u, (2.1a)

∂T

∂t
+ uT x + W (x)

∂T

∂z
= κT ∇2T , (2.1b)

∂S

∂t
+ uSx + wSz + W (x)

∂S

∂z
= κS∇2S, (2.1c)

∇ · u = 0. (2.1d)

Here u = (u, v, w) is the velocity of the fluid, p, T and S the pressure, temperature
and salinity perturbations, ν the kinematic viscosity, κT and κS the heat and salt
diffusivities, α the coefficient of thermal expansion and β the coefficient of density
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increase with respect to the addition of salt. We assume that the density of the fluid
is given by a linear relation of the form

ρ = ρ0(1 − α(T − T0) + β(S − S0)), (2.2)

where T0 and S0 are some reference temperature and salinity, and ρ0 the corresponding
density of the fluid. We assume that the departures from this reference density are
small and so the Boussinesq approximation can be applied. The vertical background
salinity gradient, Sz, is taken to be constant. The horizontal temperature gradient,
T x , will be 	T/d where 	T is the temperature difference of the vertical walls, and
d is the slot width. The background horizontal salinity gradient, Sx , and vertical
velocity, W , are both functions of the horizontal coordinate, x. Because of the choice
of vibration direction, these last two are identical to those found in the vibration-free
slot (Thangam et al. 1981; Kerr & Tang 1999). This isolates the effect of the vibration
on the instabilities from possible modification of the background flow.

The analysis follows that of Gershuni et al. (1997) by assuming that the vibrations
are fast in comparison to the growth rate of the instabilities. This gives rise to a two-
time-scale approximation, where the various components can be split into a part that
oscillates with the vibration frequency, but has zero mean on the longer time scale,
and a part that evolves on the longer time scale but is steady on the fast time scale.
The vibrating components of the temperature and salinity do not, at leading order,
play a role in the subsequent evolution of the instabilities. The oscillating component
of the velocity is important, and we will require a disturbance streamfunction of the
form

ψ(x) exp{σ t + iαz} + f (x) exp{σ t + iω1t + iαz}, (2.3)

where σ is the growth rate of the disturbances. The temperature and salinity
perturbations take the form

T (x) exp{σ t + iαz} and S(x) exp{σ t + iαz}. (2.4)

The details of the derivation of the non-dimensional governing equations for these
instabilities to a salt-stratified fluid undergoing lateral heating in a slot with horizontal
vibration are omitted here. They can be found in some detail in Zebib (2001). His
four non-dimensional differential equations (his (11a)–(11d)), after a small amount of
simplification, are{

(D2 − α2)2 − iα

Pr
[W (D2 − α2) − W

′′
]

}
ψ + D(RaT T − RaSS)

+ Rj [iα(RaT + RaSF
′) + RaSD]f =

σ

Pr
(D2 − α2)ψ, (2.5a)

(D2 − α2)T − iαψ − iαWT = σT , (2.5b)

τ (D2 − α2)S + iαF ′ψ − iαWS + ψ ′ = σS, (2.5c)

(D2 − α2)f + α2(RaT T − RaSS) = 0, (2.5d)

where all the variables are now non-dimensional, and D indicates a derivative with
respect to x. The appropriate boundary conditions are

f = ψ = ψ ′ = T = S ′ = 0 at x = ± 1
2
. (2.6)

The fluid properties are given by the Prandtl number, Pr = ν/κT , and the salt/heat
diffusivity ratio, τ = κS/κT . The parameters describing the vertical salinity gradient
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and the lateral heating are the salt and thermal Rayleigh numbers

RaS =
gφ0d

4

νκT

, RaT =
gβ	T d3

νκT

. (2.7)

Here φ0 = −βSz/ρ0 is the magnitude of the ratio of the density gradient due to the salt
stratification to the reference density. The terms that are not present in the absence
of g-jitter are those involving Rj and f . The former is the non-dimensional jitter
parameter defined to be

Rj =
g2

1κ
2
T Pr

2g2d4ω2
1

. (2.8)

In these equations the background vertical velocity and horizontal salinity gradient
are given by W and F ′ respectively. This change of notation for the salinity gradient
is for comparability with Zebib (2001). In the limit of large RaS the background
velocity becomes exponentially small everywhere except in thin boundary layers of
width O(Ra−1/4

S ). The horizontal salinity gradient is also approximately constant,
deviating from the constant gradient −RaT /RaS by exponentially small amounts
except in these thin boundary layers. These thin boundary layers do not play any
part in the leading-order asymptotics and are ignored.

The instabilities were observed to grow monotonically by Zebib (2001), and so the
appropriate growth rate, σ , for marginal stability is σ = 0.

Examination of possible balances between terms shows that in the large-RaS limit
a possible set of scalings for the various variables is

ψ ∝ Ra0
S, T ∝ Ra−1/3

S , S ∝ Ra−2/3
S , f ∝ Ra1/3

S , α ∝ Ra1/3
S , RaT ∝ Ra2/3

S .

(2.9)

In this limit the vertical diffusion terms dominate the horizontal diffusion terms in
the bulk of the fluid. This will lead to the loss of all the boundary conditions except
ψ = 0 at x = ±1/2 for the solution in the core of the fluid. The flow will adjust to
the other boundary conditions in thin boundary layers at the wall in a similar way
to that found by Hart (1971) for a strong stratification in a vertical slot without
vibrations. The effect of these thin boundary layers on the flow in the core of the slot
is negligible at leading order, and can be ignored.

Setting

ψ = ψ∗, T = T ∗Ra−1/3
S , S = S∗Ra−2/3

S ,

f = f ∗Ra1/3
S , α = α∗Ra1/3

S , RaT = Ra∗
T Ra2/3

S ,

}
(2.10)

we derive the leading-order equations for the rescaled equations in the bulk of the
fluid for instabilities with zero growth rate:

α∗4
ψ∗ + Rjf

∗′
= 0, (2.11a)

−α∗2
T ∗ − iα∗ψ∗ = 0, (2.11b)

−τα∗2
S∗ − iα∗Ra∗

T ψ∗ + ψ∗′
= 0, (2.11c)

−α∗2
f ∗ + α∗2

(Ra∗
T T ∗ − S∗) = 0, (2.11d)

with boundary conditions

ψ∗ = 0 at x = ± 1
2
. (2.12)
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Figure 1. Comparison of the numerical results of Zebib (2001) (solid line) and the asymptotic
predictions (dashed line) of the thermal Rayleigh number, RaT , for marginal stability as a
function of the salt Rayleigh number, RaS . The upper pair of lines are for Rj = 1 and the
lower pair for Rj =5. In both cases Pr = 1 and τ = 0.0001. The dotted line shows the large-RaS

asymptotic behaviour for this case when vibration is absent.

These can be manipulated to give a second-order differential equation for ψ∗

ψ∗′′ − i(1 − τ )α∗Ra∗
T ψ∗′ − α∗6

τ

Rj

ψ∗ = 0. (2.13)

This equation allows non-trivial solutions if the following condition is met (see Kerr
1989):

2nπ =

(
(1 − τ )2 α∗2

Ra∗
T

2 − 4α∗6
τ

Rj

)1/2

, (2.14)

for n=1, 2, . . . , which is equivalent to

Ra∗
T = (1 − τ )−1

(
4n2π2 + 4α∗6

τ/Rj

α∗2

)1/2

, (2.15)

and is minimized when n= 1 with

α∗ =

(
π2Rj

2τ

)1/6

. (2.16)

This gives the leading-order asymptotics for the stability boundary for the large-RaS

g-jitter instability of

RaT =
61/2

(1 − τ )

(
2π4τ

Rj

)1/6

Ra2/3
S . (2.17)

The convergence of the stability boundary calculated from the numerical solutions
of Zebib (2001) to the asymptotic predictions for the cases of Rj = 1 and Rj = 5 are
shown in figure 1. This shows close agreement over the whole range which improves as
RaS increases. The asymptotic predictions follow the same variation as the numerical
solutions as Rj varies. Also shown is the large-RaS asymptotic behaviour for the case
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Figure 2. Comparison of the numerical results of Zebib (2001) (solid line) and the asymptotic
predictions (dashed line) of the vertical wavenumber, α, for marginal stability as a function of
the salt Rayleigh number, RaS . The lower pair of lines are for Rj = 1 and the upper pair for
Rj = 5. In both cases Pr = 1 and τ =0.0001. The dotted line shows the large-RaS asymptotic
behaviour for this case when vibration is absent.

with no vibration, showing the clear divergence of behaviour. The agreement between
the calculated and predicted vertical wavenumbers for the same two cases is shown
in figure 2. Again there is convergence of the two for larger values of RaS , but not as
good for smaller values. Since the lower end of this range of salt Rayleigh numbers
is close to the region where the α → 0 asymptotics dominate (Zebib 2001) this is not
surprising. Indeed it probably indicates that the agreement between the calculated
and asymptotic predictions for the Rayleigh number was fortuitous here. Again the
trends as Rj is varied are well reproduced.

3. Discussion
For many terrestrial applications the typical value of RaS is likely to be large and

the primary mode of instability in the absence of vibration will be that identified by
Thorpe et al. (1969). In this limit instability occurs when

RaT (τ−1 − 1) = 31/2(2π)2/3(RaS/τ )5/6. (3.1)

One way of estimating when the g-jitter mode could become important is to look for
the value of the salt Rayleigh number at which the two asymptotic predictions (2.17)
and (3.1) cross as a function of the jitter parameter, Rj . This crossing occurs when

8RaS = R−1
j . (3.2)

When considering the typical magnitude of RaS on Earth we can look at
experiments in slots and in tanks. The former can be easily evaluated, while the
latter need to be examined more closely. The value of RaS can be made ever larger
for a given salinity gradient by using a wider tank. Instabilities in laterally heated
wide tanks with salinity gradients are observed, but for times well short of that
required for a linear temperature gradient to establish itself across the tank, or even
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for the effects of the heating to have propagated to the far wall. In such cases the
salinity gradients have been heated from what is effectively an isolated wall (Thorpe
et al. 1969; Chen et al. 1971; Narusawa & Suzukawa 1981; Tanny & Tsinober 1988).
Tanny & Tsinober noted the instantaneous values of the salt and thermal Rayleigh
numbers based on the length scale of the instantaneous thermal boundary layer. This
is closely related to the thermal Rayleigh number used here, and instabilities occur
at comparable values in the two situations (Kerr 1989). The largest salt Rayleigh
number that they observed when one of their experiments became unstable was just
under 108, which is the largest of any of these experiments.

A vertical slot on Earth of width of order 1 cm containing, say, water, and
experiencing horizontal vibrations with a typical maximum velocity of v ms−1, will
have a jitter parameter of approximately Rj ∼ v2/107 m2 s−2. The levels of ambient
vibration can vary greatly with location. According to Steffens (1966) people’s
perceptions of vibrations is related to the maximum velocity over a broad range
of frequencies. Ambient vibrations are perceived by people to be ‘annoying’ when
these velocities are of the order 2.2 × 10−3 m s−1 to 6.3 × 10−3 m s−1, and much above
this to be ‘painful’. Thus we can take these to be an upper limit for vibrations
experienced in typical experiments, unless there is some local source of vibration.
Hence we can see that on Earth the jitter parameter is typically very small – less
than 4 × 10−12. From (3.2) the g-jitter mode would only become important if the salt
Rayleigh number were greater than around 3 × 1011. This condition has not been met
by past experiments. Even though the theory predicts that for any level of vibration
the instability caused by the lateral heating of a slot will be further destabilized for
sufficiently large salt Rayleigh numbers, on Earth-bound experiments this is unlikely
to be important. However, in reduced gravity, or in cases where there is a local
source of vibration, the instabilities identified in this asymptotic analysis could be
encountered.
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