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Let (M, g) be a compact smooth N-dimensional Riemannian manifold without
boundary. We consider the multiple existence of positive solutions of the problem

—e2Agu4u = f(u) in M,

where Ay stands for the Laplacian in M and f € C%(M).

1. Introduction

Let 2 < N < 4 and let (M, g) be a compact smooth N-dimensional Riemannian
manifold without boundary. We consider the multiple existence of positive solutions
of problem

—e?Agu+u= f(u) in M, (P)

where f: R — R is a continuous mapping and A, denotes the Laplacian in M.
Let 2 C RN be a domain. The existence and multiplicity of positive solutions of
the problem

—2Au+u=uP"! in 0, } (11)

Bu=0 on 0f2,

has been investigated by many authors in the case that p is subcritical, i.e. 1 <
p < 2%, where 2* = 2N/(N — 2) and B is the Dirichlet or Neumann boundary
operator. It is known the multiplicity of the solution depends on the geometry
and topology of 2 (cf. [1,2,4-6] and references therein). For the problem (P) with
f(t) = t*~1 Benci et al. [3] established multiple existence results for (P). They
showed that if M has a rich topology, problem (P) has multiple solutions using
Lyusternik—Schnirelman category. As far as we know, their results are the first
multiple existence results for (P) on a Riemannian manifold. In [7], Hirano showed
that the number of solutions of (P) is affected by the topology of suitable subset of
M. More recently, Micheletti and Pistoia [8] studied the role of the scalar curvature
for the multiple existence of positive solutions of (P) with f(t) = tP~. They showed
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that, for each C'-suitable critical set K, there exists a solution u. of (P) under the
assumption that the limiting problem

~AU +U = f(U), UecHYR"Y) (1.2)

has a unique least energy solution U up to translations and which is non-degenerate,
i.e. the solutions of the linearized problem

—Ap+o=f(U)p, ¢eHRY) (1.3)

consist only of translations of U. Their argument is based on Lyapunov-Schmidt
reduction procedure. That is, they reduce the problem to finding the critical point
of a functional on the finite-dimensional manifold M. Our purpose in this paper is
to obtain an analogous result to the result obtained in [8] for a more general class of
functions f. In case that f(t) = t?~!, the uniqueness of the least energy solution of
problem (1.2) up to translations plays a crucial role. In general, we cannot expect
such uniqueness. Moreover, the Lyapunov—Schmidt reduction procedure is involved
and it is not clear if the procedure works for general cases such that the set of the
positive solutions of (1.2) is degenerate [8]. In this paper, we will show the multiple
existence of positive solutions of (P) under some assumptions on f using homology
group arguments.

To state our main result, we need some notation. We denote by 7: M — R the
scalar curvature of M. Let K(7) ={z € M: V7(x) =0} and

K(r) = {Lis a connected subset of K(7)}.

For each L € K(7), we set ¢, = —7(x), where x € L. We denote by Kc(7) the
subset of K(7) such that each L € K¢ (7) satisfies

Ho((=7)* U, (=n)* \ L)nU) # {0}

for an open neighbourhood U of L such that U N K(7) = L. We denote by #Kc(7)
the number of elements of K¢ (7). We assume that the function f: R — R satisfies
the following conditions.

(f1) There exists p > 1 such that f/(t)t > pf(t) > 0 for all ¢t € RT.

(f2) There exists My > 0 such that |f(t)] < Mo([t|7~1 + |t|P~1) for t € R, where
l<g<2<p<3.

(f3) f"” € C(R) is bounded and f"'(t) < 0 for t € R*.
‘We can now state our main results.

THEOREM 1.1. There exists €1 > 0 such that problem (P) has at least #Kc(T)
positive solutions for each € € (0,e1).

REMARK 1.2. Through the argument below, we can see that, for each L € K (1),
there exists solutions u. of (P) such that u. concentrate at a point of L as € — 0.

REMARK 1.3. We do not need condition (f3) in the case that the non-degeneracy of
problem (1.3) is guaranteed. That is, theorem 1.1 covers the case that f(t) = tP~1,
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t > 0. Conditions (f1)—(f3) are satisfied by a broad class of functions, e.g. f(t) =
tlog(t+1) and f(t) = (1+¢)t?/(142t), t > 0. We conjecture whether the condition
" (t) < 0 can be removed.

The text is organized as follows: the next section is devoted to preliminaries. In
§ 3, we give a few lemmas that are crucial for our argument. Section 4 is devoted to
the proof of theorem 1.1. In Appendix A, we give a few estimates which are needed
for our computation.

2. Preliminaries

Let (X,Y) be a pair of topological space with Y C X. We denote by H.(X,Y) the
singular relative homology group. For each ¢ € NU {0} and a g¢-singular chain «,
[a] stands for the element of Hy(X,Y") induced from « [13]. Let E be a real Hilbert
manifold and F': E — R be a functional. Then, for each ¢ € R, we denote by F*
the level set with respect to F, i.e. F¢ = {v € E: F(v) < c}. For each C'-Hilbert
manifold F, we denote by T, FE the tangent space of E at v € H and T'E the tangent
space, respectively. Let ¢ € RT. We denote by || - ||z~ . the norm of H*(R") defined
by

1
||U||]§N7E = /RN (e2|Vo|* + [v]?)dp  for all v € HY(RY),

where du stands for the Euclidian measure. The inner product of H*(RY) corre-
sponding to the norm || - ||g~ . is denoted by ((,-))g~ .. In addition, we denote by
| - |z~ pe the norm of LP(RY) defined by

1
p _ = P (RN
|v|RN)p’€ =N /RN [vfPdup  for v € LP(R™).
We set
1
(U, V)gy - = —N/ uwody  for u,v € HY(RY).
3 RN

We denote by exp the exponential mapping exp: TM — M (cf. [10]). We denote by
B,(x) the open ball in RV centred at  with radius 7. Then, for ¢ > 0 sufficiently
small, the Riemannian manifold M has the special set of charts {exp,: B.(0) —
M: xz € M}. Corresponding to this chart, by choosing a orthogonal coordinate
system (2!, ...,2") of RN and identifying T, M with RY for x € M, we can define
a coordinates called Riemannian normal coordinates. Let C be an atlas of M whose
charts are given by the exponential map. For each R > 0 and x € M, we denote by
By(z, R) the ball in M centred at = with radius R with respect to metric induced
by g. Let € > 0. We denote by || - || the norm of H = H'(M) given by

1
Jull2 = o [ @190l + ) duy for ue B
M

where V, denotes the gradient and p4 is the volume form on M associated to the
metric tensor g. We omit dy and dpg when there is no fear of confusion. We denote
by (-, )< the inner product of H corresponding to the norm || - ||.. We also define
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an inner product of L?(M) and a norm of L"(M), 1 < r < 2*, by

1
(u,v)e = o~ /M uvdy, for u,v € L*(M)
and

r,e

1
[w]’. :E—N/ |w|" duy for w e L"(M).
M

For each w € H, we set
lw(z)|2 = 2|V w(2)]* + [w(2)|* for z € M.

By Sobolev’s embedding theorem, we have that there exists ¢, > 0, independent of
g, such that |v|,. < ¢p||v]|e for all v € H and

1 2/p 1
<N/ |w|? d,ug> < CP(N/ Jw|? dug> for w € H and a € (0,1].
€ By (xz,a) € By (z,a)
(2.1)

For each © € M, H'(B,(x,1)) stands for the restriction of H on By(x,1) and
H{(By(x,1)) denotes the closure of C§°(B,(x,1)) in H'(B,y(z,1)). For each func-
tion u € H, we have

[ Vo an = ¥ [ eo@ivub e,
ceC

If C = By(z,1) € C for some z € M and suppu € C, then

n

i oulexp,(z auexw
/ |vgu|2d/‘g :/ (Z 97 ( ap (=) P )\/ |z dz1 -+ - dzn,
C B(0,1) Zq

ij=1

where |g,| denotes the determinant of the metric matrix {(g;):;} for each x € M
and {g¥} is the inverse matrix of {(g;);;}. The Laplacian A, on M is given by

Agv = :(99\/|gz|0jv) for v e H. (2.2)

Dyl

For each © € M, there exists ¢ > 0 such that exp,: B:(0) = Bgy(z,¢) is a dif-
feomorphism for all z € M. We may assume, for simplicity, that ¢ = 1 for each
x € M and each C € C has the form C' = By(z,1) for some z € M. For x € M and
(r,¢) €0,1) x SN~ we have

|92 (exp(rQ))[ = r™ = = Gpa (Qr™ T + OV, (2.3)
where p, stands for the Ricci curvature [12]. It is known that
| pel0d = (o) (24)
SN-1
where @ is the volume of unit ball B;(0) in RY [12]. We set

(7, ¢) = V/1gz(exp(r())|
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for (r,¢) € [0,1) x S¥~1. Then we have
/ udpg = / dC/ u(r,O)nerN"tdr  for u € LY (By(z,1)). (2.5)
M SN-1 B1(0)

By (2.3), we also have that
e (r.Q) =1 = §pa(Q)r? + O(r%) for (r,¢) € RY x SV (2.6)

We simply write g and g;; instead of g, and (g ):;, respectively, when there is no fear
of confusion. For z € M, each function u € H}(B,(z,1)) is regarded as an element
of H by putting u = 0 on M \ By(z,1), that is, we have H}(By(z,1)) C H*(M).
Set

H, vad = {u € H}(B,(x,1)): u is radial with respect to z} for z € M.

Then for each u € H a4, we have that

190k du, = [
M B(0,1)

We also recall [11, ch. 2.4] that for u € Hy yaq,

1 0 ( y_10u 1 On, Ou

dulexp, () |* o
o Mol dr. (2.7)

Aju= —
g TN-1 9y

Since our purpose is to find positive solutions, we may assume without any loss of
generality that f(t) =0 for ¢ < 0. We set

F(t) = /Otf(T)dT for t € R.

From (f1), it is easy to verify that
f@Ot > (p+1)F(t) forallteRR. (2.9)

Next we retrieve some known facts related to problem (P). It is known that
problem (1.2) has a radial positive solution Uy € C*°(RY) N H?(R") such that

Co = IRNJ(U()) = min{IRN)l(v): v E NRN,I}a (210)

where

1 /1
e = o (3 [ @veprutan- [ Foan) e
S RN RN
for (e,v) € R x HY(RY), and
Ngw o = {v € H'(RV): / (3 Vol* + [v]?) du = / f(v)vdu} for e € RT.
RN RN

We also have by (f1) that

Ign 1(v) > Ign 1 (tv) for all v € Ngn 5 and t € R.
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Since Uy is radial, Uy(r) is a solution of the following problem:

_oU _
or?
Since lim¢_,of(t)/t = 0 by (£2)
dUp/dr < 0 on (0, c0),

(N

limsup Up(r)e! =" < 0o and

r—00

for each 6 € (0,1) [9]. Let a € (

1)U

r

or

, we have that Uj satisfies the condition that, for

+U=fU) forrz=0. (2.12)

lim sup e(1=9)r

T—00

<0

dUp(r)
—%5 (2.13)

3.1) be a constant. From the inequality above, we

have that there exists lp > 0 and g > 0 such that

[Uo(r)] < loe™™/?  and
Combining (2.12) and (2.13) wi

lim sup
r—00

82U,
Oor?

It is obvious that each element

dUo(’l“)

P <lpe ™2 forallr> 46(1]_a (2.14)
th (f2), we find that
=97 < 50 for each § € (0,1). (2.15)

of the set S = {Uy(- — x): x € RV} is a solution of

problem (1.2). Let ¢ € R*. We put U.(z) = Up(z/¢) on RY. Then U. € H(RY) is
a positive radial solution of problem

—?AU+U = f(U) onRY,

and each U; is a critical point

(2.16)

of Ign . with Ign (U.) = co. Since U, is radial,

ie. U.(x) = U:(|z|), it follows from (1.2) that

9 1

0

P
rN=109r

A

o (2.17)

(r

)+m=ﬂ%)

It is obvious that for each z € RY, U.(- — ) is a solution of (2.16). We put

Se

By multiplying (2.16) by U, we

1
||U€||D2QN75 = sT\f/ F(U)U dp.
RN

Then it follows that

co = Ign (Ue) = %HUEHJ?{N,E -

{U.(-—2):2€RY} and TpS. = Ty.S: = span{a

U
01
8xi

<i<

v},

(2.18)

have that

1
eN

1
=¥

JRaC

/RN(%f(UE)Ue - F(Ue)) dp.
(2.19)

The functional I. € C?(H,R) associated with the problem (P) is given by

1

Ie(u) = N

[

Vgu|2 + %\UF — F(u))du, forue€ H.
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We denote by N, the Nehari manifold defined by

N={o e 0z 1ol = 7 [ fodn, )

From (fl), we can see that for each v € H \ {0}, there exists a unique positive
number ¢ such that tv € N, [14]. We set N;(v) = tv. Then N:(-): H \ {0} — N
is a continuous mapping and N is a submanifold of H with codimension 1. It
is clear that N (v) is transversal to N;. It is easy to see that each critical point
u € HY(M)\ {0} of I. is contained in A. By the definition of A and (f1), we have
that, for each v € N,

1) = ¢ [ G0 =Fw)dn, >0

We next consider the eigenvalue problem of the linearized problem of (1.2)
—Aw+w — pf' (Up)w = 0. (2.20)

From the definition of Uy, we have that the first eigenvalue uq of (2.20) is less
than 1. We also have us = 1 and the eigenspace N(Up) corresponding to ps is a
space whose dimension is at most NV + 1 and contains the tangent space Ty, S. For
simplicity, we write Tp.S instead of Ty, S, i.e. TpS = span{dUy/0z;: 1 < i < N}
of §.

If dim N (Up) = N, the reduction method employed in [8] is valid and condition
(f3) is not needed. Then, in the following, we assume that dim N(Uy) = N + 1 and
give the proof of theorem 1.1 under this assumption. Our argument is valid for the
case that dim N (Up) = N. Let v; € H'(RY) be a normalized eigenfunction corre-
sponding to the first eigenvalue p; and vg € HY(RY) N (TpS)+ be an normalized
eigenfunction corresponding to py = 1.

3. Lemmas

Henceforth, we fix a € (0,1) such that 3 < o« and 10(1 — a) > 4. Let ¢ €

o
C*°(R, [0,1]) be a monotone decreasing function such that ¢(z) = 1 on (—oc, 3],
@(z) =0 on [1,00) and |p|cr < 2. For each € € (0,1), we set

2
pe(x) = @(E) for z € RV,
and define a function W, € H}(B1(0)) by
We(2) = pe(2)Uc(2) for z € RV,

From the definition of ¢, we have that W.(z) = 0 for z € RN \ B.a/5(0) and
We(z) = U(2) for z € Bea4(0). For each (¢,2) € R x M, we define a function
W.., € H by

| We(exp;t(2)) for z € By(x,1),
Weal2) {O for z € M\ By(x,1).
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We put S, = {We: z € M} and define a neighbourhood D5(§5) C HY(M) of S.
by

Ds(S.) = {We.p +w: z € M, we H' (M) with ||w|. <8} for each § > 0.

LEMMA 3.1. There exists 5o € (0,1) such that, for each € € (0,e0), there exists a
metric projection P. from D, (S:) onto S..

Proof. We identify B, (z,1) with B;(0) for each x € M. Then, from the definition
of Wy ,, we have that there exists C' > 0 such that

W,
8%‘1‘8%‘]‘

HaWLI <C forallz € M and 1<14,j <N.

8%‘1‘

<C and ‘

1

For each e € (0,¢¢) and (z,y) € M x By(z, 1), we define a curve p, 5 o (t) = W zy1y,
for |t| sufficiently small. Let 7.(x,y) be the curvature of the curve at t = 0. Then,
to prove the assertion, it is sufficient to show that {7.(z,y): ¢ € (0,e9), (z,y) €
M x By(x,1)} is bounded. From the definition,

Wea |7 /) Wew P*Wew\\ OWea
TE('ra y) = ’ 2
9 . gy ~ 9y* /). Oy
[ Wei || *We (|| 0Wes [P
dy . 9y? Ay ||,
for e € (0,e0) and (z,y) € M x By(x,1). Then noting that
8WE . 1 oWy H O*W, || 0*W
= — and = 2\
. 9y I, oy . oy |y

one can see that {7.(z,y): € € (0,e0), x € M, y € By(z,1)} is bounded. Then the
assertion holds. O

In the following, we will find solutions of (P) in Ds, (S.). By the definition of
D5, (Se), we have that My = sup{||v||c: € € (0,&0) and v € Ds,(S:)} < co. Then
we have

mys = inf {;\/ /M fv)vdpg: e € (0,e0),v € D(;O(S'E)} > 0. (3.1)
From (f1) and (f3), we have that there exists My > 0 such that
0< f/(t) < Ms(1+t) forteRT and sup{|f’(t)|:t € R} < c0. (3.2)
LEMMA 3.2. For each € € (0,¢9) and x € M,
I.(We ) = co — Ae?7(z) + O(€°),
where A = tw(Ag+ NAy),

Ay = /N dg/ (L f(Uo)Uo — F(Up))rN+tdr
S 1
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Ay :/ d(/ UgrN—tdr.
SN-1 0

Proof. Let (g,x) € (0,e9) x M. For simplicity, we set n(z) = n,(2), U(z) = Ue(2),
Y(2) = pe(2) for z € By(0) and U = U.(exp;'(2)) and (z) = (exp; ' (2)) for
z € M. Then, by definition, W, = ¢U and W, , = 1/3[7 Since ¥ and U are radial
with respect to the origin, we have by (2.8), (2.17) and (A 8) that, for each w € H,

and

<7€2A9W5,z + Ws,aca w>s
= 52<—1EA9[7 - 2ng/~JVgU — UAgz/;,w% + (We p, w)e

e? Y1 9 Ny 0U N1
**TV/SN ) dC/ ¢7"N—18r(r &“)w(eXpm(TO)m dr
S o [0 M enp () a4 (Ve
SN 1

— 22V, - VU + UA @, w).

STV d§/ Y f(U)w(exp, (r¢))n rNldr

o /S o / L

+0 (e (e )l ). (33)

Then setting w = W, , = (¥U)(exp, *(2)) for z € M, we have by (3.3) that

/ (52|ng€,m|2 + |We,z|2) dpg
M

= /N 1 dg/lz/}Qf(U)UnrN_ldr

on 1
—EQ/SN 1d§/ W( r)(% N- 1dr—|—0(exp( =ia _Q>)

(3.4)
Therefore, we have that
_ (L[ 2 2 _
I.(Wey) = N\3g (€| VgWea|” + We,x) dug F(We ) dpg
€ M M

1 ! 1,./,2 N-1
= [ 4 [ Gerrow - Femymtar

52 oU\ On 1
_ = . ldc/ (1/’2< 5r)3r) N-— 1dr+0<exp< Rl _a)>-

Then, by (A7) and (A 11), the assertion follows. O
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LEMMA 3.3. For each (g,2) € (0,&0) X M,

||N5(We,w) - We,zHa = O(€1+a) and |Ie(Ne(We,z)) - IE(WE,J;)‘ = 0(52(1+a))-
(3.5)

Proof. Let (e,x) € (0,e0) x M. We set W = W, ,. Let 7 € R such that (1+7)W =
N-(W). That is

A+ PRIV = = [ FQ+ W)+ .
It then follows that
IWIE+ 21 WIE = S5 [ (10V)+ 7(F0V) 4+ (W)W)W) iy +O(2)
Then we have

1
W= [ s,

1 1 , !
< (2w - o [ romwan)+ o [ on - onwwa,
+O(1). (3.6)

We can see from (f1) that

Lo= [ (PG~ O du> [ (u-DiCTadu>0. ()
R M
Then since lim._,o(We,, — U-(exp;*(+))) = 0 on By(z,1), we have that
1 L
= [ W = W d, > 2. (38)
& M 2
for € > 0 sufficiently small. On the other hand, from lemma A.4 with w = W, ,, we

have that )
IWIE =S¢ [ FOVIW diy = 0(e+)

and then 7 = O(e'T%). Therefore, [|N-(W) — W|. = O(g!T%). Since

vy = S - 5 [ renw)a,
oo (W2 - oy [ W) 1o, 69)

we obtain that
IS(NS(W)) =IL.(W)+ 0(52(1+a))~

LEMMA 3.4. There exist 01 € (0,00) and my > 0 such that
Ien 1 (Uo +w) = Ipn 1 (Uo) + ma|jw|gw 4

for allw € HY(RYN) with w € (TpS)* NN~ 1 and ||w|gy 1 < 6.
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Proof. For simplicity, we write || - || and (-,-) instead of |- ||g~v 1 and (-,-)g~ 1,
respectively. The Nehari manifold N'= N~ ; is a C'-submanifold of H*(RY)
with codimension 1. That is, there exists 9 € C1(HY(RY)\ {~Up},R) such that
(1 + 79(w))(Up + w) € N for each w € HY(RN)\ {-Up} [14]. By lemma A.1,
|70(w)| < Li|lw||g~ 1 for w with [Jw||g~ ; sufficiently small. From the property of
o, it is easy to see that (7p9)* NN is a C'-submanifold of (TpS)* with codi-
mension 1. Let E be a subspace of (Tp9)+ such that codimension of E is 1 and
En{tUy: t € R} ={0}. Then, for § > 0 small,

{1+ 710(w))(Up +w): w e E with |lw|jgyy <0}

form a neighbourhood of U in (TpS8)+ N N. To show the assertion, it is sufficient
to show that there exists m > 0 such that

T 1 (1 + 70(w)) (U + w)) = Ty ,1(Uo) + m|wl|* (3.10)
for each w € E with ||w]| sufficiently small. In fact, setting
w' = 7o(w)Uo + (1 + 70(w))w,

we can rewrite the inequality above as

Ipn 1 (Uo + w') = Ien 1 (Uo) + mf|wl|*.
Since

[w'l = lImo(w)Uo + (1 + 7o(w))wl < (Lal|Uoll + (1 + La[lw]}))llwl],

we have that there exists m; > 0, independent of w, such that

Ign 1 (Up + w') = Ign 1 (Up) + ma||w'||*

for ||w’|| sufficiently small. Since w’ € (TpS)*, we have the assertion.
Next we shall show that (3.10) holds for some m > 0. We set

E={ve H'RY): (~AUy + Uy — f'(Uy)Up,v) = 0} N (TpS)™*.

Then FE is a subspace of (TpS)t with codimension 1, and E N {tUy: t € R} = {0}.
We also have that there exists ¢; > 0 such that

(—Aw 4w — f'(Up)w,w) = c1||lw||®> for we EN{tvy: t € R}*. (3.11)

Let w € E. In the following, we decompose w into the form w = w; + wy, where
wo € Vo = {tvg: t € R} and wy € Vi-. Noting that Ig~ 1((1 + 7o(w))(Up + w)) >
Ign 1(Up + w), we find from (A 5) that

IRN,l(UO + w) > IRNJ(U()) =+ %<—A’LU1 + wy — f’(Uo)wl,w1>
_ / <?:)l'f”(U0)(w0 + w1)3 + %f///(UO + aw)(wo + ’LU1)4>
RN . .
(3.12)

for some 6 € (0,1). In case that w; = 0 in (3.12), one can see from lemma A.1(ii)
and (f3) that if ||w|| = ||wo]| is sufficiently small, the assertion holds. We note that
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since N = 2,3,4, condition (3.2) implies that there exists L > 0 such that, for
w = wy +wy € HY(RY),

‘/ £ (Uo + gwywguwi ™| < Loflwo*lwn|"7 7, 2<n <3, 0<k<nt1.
RN

Then from (3.11), lemma A.1(ii) and (3.12), we can see that there exist Lz > 0,
d; > 0 and I; > 0 such that, for each w € E with ||w| < dy and |jw: || > L3|lwol?,

Ign 1 (U +w) = Inn 1 (Up) + Ui [Jw]|*. (3.13)
We next claim that
!/ 1 1 1 2 ’
(—Aw +w — f(({Uy)w,w) — — | = F"(Ug)wvg ) =0 (3.14)
2C 3' RN
for w € E with |Jw|| = 1, where

1 " — 1
c=—g [ @i ([ wn)

Here Ly is the constant defined in (3.7). Moreover, we will show that there exists at
most one pair +v € ENV = such that ||v]| = 1 and the equality holds with w = +v
in (3.14).

We note that condition (£3) implies that ¢ > 0. We prove (3.14) by contradiction.
Suppose that there exists v € E such that ||v|]| = 1 and

2
(—Av+v— f'(Up)v,v) — 21c<31' . f”(Uo)vv(%) < 0. (3.15)

Let w € E with ||w1] < Ls|jwo||?. Put 7 = 79(w). Since
<—AUO + Uy — fl(Uo)Uo,w> =0,
we have by (A 2) that

[Uo+wol|*—{f (Up+w), Up+w) = (—Aw—f(Up)w, wy— (% f" (Uo)w?, U0>+O(||w||3))-
(3.16
Since

7| = Lo |1Uo + w|* — /RN f(Uo 4+ w)(Uo + w)[(1+ O([[w]))
by (A 3), we have from the quality above that
2
_1(1
r(1orol - [ st o) =5t (5 [ @) +odul)
RN RN
On the other hand, we have by (A 5) that
Ign 1 (14 7)(Uo + w))

= Ign 1 (Up +w) + T(HUQ + w|? - /RN F Uy +w)(Ug + w))
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= Ign 1(Uo) + 3(—Aw +w — f'(Up), w)
— /RN <?}!f”(UO)w3 + %f’"(U@ + 0w)w4>
+7'<||U0—|—w|2_/ f(U0+w)(U0+w)).
RN

Then, combining the equalities above, we have

IRN’l((]. + T)(Uo + ’LU)) - I]RN’E(UO)

1 1
= 3{(—Aw; + w1 — f'(Uo), wr) —/ (?),f"(Uo)ng + 4,J””’(Uo)wg)
RN . .
L 2
15 (3 [ 10003 ) + Olfuol) (31)
R
Here we set ¢t = ||wo|, 2w = ||w1||/¢,
a :#<—Aw +wy — f'(Up)wy,wy) and b :l/ 1 (Uy) L2
w 2le||2 1 1 0 1, w1 w 3l RN 0 ||w1|| 0-
Then (3.17) is rewritten as
IRN’l(l + T)(UO + w) — I]RN,l(UO)
= (awxi)t2 — (bwa?w)t3 +tt + o(t%)
botw ¥ 22 (dawc — b2)
_ 42 _ wrw w w w 5 1
' (c(t o ) + i )+O(t ), (3.18)

where c is the constant defined above. We note that a,, = 0 if and only if w; = 0,
and then we have by of lemma A.1(ii) that if w; =0,

Ign 1 (1+ 7)(Up + w) = Ign 1 (Uo) + ct* = Iz~ 1 (Up) + cfjw]|*. (3.19)

Now we suppose that w; = sv for s > 0. Then. by (3.15), it follows that (b, )? —
ayex? = 22 (b2 —4ay,c) > 0. Then setting t = b, /2c with ¢ sufficiently small, we
have from (3.18) that Ig~x 1 ((1 4+ 7)(Up +w)) < Ig~ 1(Up). This contradicts (2.10).
Then we find (3.14) holds as claimed. Next we assume that there exists v € EN Vg

such that

2
(—Av+v— f'(Up)v,v) — 21(;<; " f”(Uo)vvg) =0. (3.20)

That is v € E is the minimizer of the minimization problem

2
min {(—Aw +w — f'(Up)w,w) — 21€<; f'(U@wv%) cw € E with [|w]| = 1}.
. RN

Noting that (—Aw + w — f'(Ug)w,Uy) = 0 for w € E, we have that

—Avtv— f (U)o = 210(31' /RN f’(UO)vv§> (f/(UO)vg _ <W>UO)
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Then, from the definitions of £ and Vj, we find +v € E N V- is the unique pair
satisfying (3.20), as claimed.

Thus we find that there exists m > 0 such that

2
(—Aw +w — f'(Up)w, w) — 2lc< f”(UO)wvg) >m

RN
for all w € E N span{v,vp}* with ||w|| = 1. That is (4a,c — b2)/4c > m for all
w € EN{tv: t € R}t with ||w|| = 1. Therefore, we find from (3.18) that there exist
dy > 0 and l5 > 0 such that

Ign 1 (U + w) = Ign 1 (Ug) + lofw||* (3.21)

for all w € E Nspan{v,vo}+ such that |w|| < d2 and ||wy|| < Ls||wo||?.
It follows from (3.18) and the definitions of v and vy that there exist dz > 0 and
I3 > 0 such that
I 1 (Uo +w) = Ipv 1 (Uo) + ls[|w]* (3.22)

for w € span{v,vp} such that ||w| < ds and |lwi|| < Ls|wo|. From (3.21) and
(3.22), it is easy to see, using (3.18) again, that there exists dy > 0 and Iy > 0 such

that

gy 1 (Uo +w) = Ign 1 (Uo) + Lafjwl|* (3.23)
for w € E such that ||w|| < ds and |lwi|| < Ls|lwo||*>. Then, combining (3.13)
and (3.23), we obtain the assertion. O

Here we put

ow,
EE@:span{aE’x: 1<1<N} for each = € M.
£

Then we have the following.

LEMMA 3.5. There exists 02 € (0,01) and mg > 0 such that for (e,x) € (0,e0) x M
and w € E, NNz with ||w||. < 02, there exists w' € (EX, NNZ) N H} (By(x,e%))
such that

[w'[2 < melwllZ, (3.24)

and satisfies one of the following conditions:
(1) I.(We g +w') < IL(We p +w);
(i) Jlw—w'|le < moe?|wle and I.(We , + w') < L(We x + w) + mae?||w)..

Proof. Let (g,z) € (0,e9) x M. By (f2) and Sobolev’s embedding theorem, we can
(

choose 02 € (0, d1) sufficiently small that
1 1 )
[ fwwdn, < — [ w2dp, (3.25)
5 M 4e M
and
5[ flwpdu, < o [ w2d (3.26)
— wwdp, < — w|Zdp .
N JanB, @0 4N g a
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foralla € (¢, 3) and w € H with ||Jw||. < 2. Recall that We , = 0 on M\By(z, 36).
Let w € EX, NN, with [|wl|. < J2. We set

_ 1
"= 90eta |

Here [t] denotes the minimal natural number greater than or equals to t € R*.
Then, noting that

[ e < Aol

M

there exists k1 € N such that 10n < k1 < 11ln —1 and

(lwl2 + fw)w) dpg < § - 206" [|w||2 = 25!~ ||w2.

(3.27)

v/
N By (o (b +1))\ By (2ck)

Let ¢ be the function defined at the beginning of this section. We set
01(2) = p(e7t - dist(By(z, k1), 2)) for z € M.

where dist(A, z) stands for the distance of x € M from A C M with respect to
the Riemannian metric g. Then ¢;(2) = 0 on M \ By(z,e(k1 + 1)), ¢1(2) =1 on
By(z,eky) and |V ;] < Coe™* on M for some Cy > 0. We also set

wy(z) = v1(2)w(z) on M. (3.28)

Then since wy = w on supp OW, ,,/0x; for 1 < i < N, we find that wy € EELI On
the other hand, we have

/ |vg(Ws,x + w1)|2 d,ug
By (w,e(k1+1))

/ IV (Wea +w) + (Vgo1)w + (01 — )Vyw|>dug
By (x,e(k1+1))

/ ¥y (We o+ w)? ditg
By (z,e(k1+1))

+ (Vapr)uw + (o1 = D gul? s,
By (z,e(k1+1))\By(z,ck1)

vz Vyw - (Vop0)w + (o1 — 1)Vg) diy.
By (z,e(k14+1))\By(x,ek1)
Noting that

= [(Vyipr)ul? duy < 2561=C2 o2
By (z,e(k14+1))\By(x,ek1)

and |V 1] < Coe™!, we have that, for some C > 0,

62

o~ Vow - (Vgpr)w + (01 — 1)Vyw)| < Ce' w2

/Bg<m,e<k1+1>>\Bg (k1)
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and

52

-~ [(Vgp1)w + (g1 — DVw|* < Ce'~||lwlf2.
g

By (z,e(k14+1))\Bg(z,ek1)

Then we find that there exists C; > 0 such that

1 / 2 1 2
— [We o +wi|2dpu ——/ [Wep +w|Zdu
eN By(z,e(k1+1)) =t Y eN By(z,e(k1+1)) of =

< Cret w2 (3.29)

Similarly, we have from (3.27) and (f1) that, by choosing C; sufficiently large,

v/
— F(We g 4+ w1)dp
eV JB, (@b +1)) !
1 —a
> F(Wero 4 w)dpy — 3112 ]2

By(@,e(k1+1))

Then we obtain

1
N (%|W€7z+w1|g —F(Wam—kwl)) dﬂg
€7 JBg(z,e(k1+1))
]' -
< o~ (3Weo + 0|2 = F(Wep + w)) dpg + Cre'~[lw]|2. (3.30)

By (xz,e(k1+1))

Then, since W, , = 0 on M \ By(x,eki) and F(t) < f(¢)t for t € R, we obtain
from (3.26) and (3.30) that

Is(Wa7w + wl)

1 —«
< L(We +w) (N / (Al — F(w)) dptg — Cré? ||w||z)
€ M\B, (z,&(k1+1))
1 —a
< I(Wep+w) — (4]\,/ |w|§ dpg — Ciet ||w||§) (3.31)
€ M\ By (x,e(k1+1))

Here we consider two cases.

CASE 1. Suppose that
=),
4eN B, (2.2 (ke +1))

For simplicity of notation, we set W = W, ;+w;. Then we have, from the inequality
above, that

wlZ g > 2C1" % |wl|*.

I.W) = L(Wep+w) < I.(Wep +w) — |w|2 dpg.  (3.32)

8eN /M\Bg(m,e(kl—i-l))
On the other hand, noting that

1
[We o + ng - °N fWez +w)(Wep +w) dpg =0,
& Jm
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we have by (3.29) that

1
w1~ 5 [ s,

1
= Il 102 = Sy [ GOVt )W) = SOV
M

1
< HIWE,erwH?—IIWs,m+w1||§|+;N/ f(w)(w) dpg
M\By (k1)

. 1
< Cret o w2 + — / F(w)(w) dprg.
€ M\B, (x,ek1)

Then, again by (3.26) and (3.27), we have that there exists C' > 0 such that

w2 dpg + Ce' =" |lw] |2

1
Wg_f/ FOV)W dp <—/
‘| [ eN g 4eN M\By (x,e(k1+1))

200 +C\ 1
<<1+>N/ w2 (3.33)
8C1 € JM\By(z,e(k1+1))

Now let 7 € R such that (147) (W z+w1) € N-. Note that (14+7)(We o +w1) € EZX,.
We shall see that I.((1 + 7)(We » +w1)) < I.(We, + w). That is, we claim that
(i) holds with w’ = 7W, , + (1 + 7)w;. From the definition of 7, we have, by (3.6)
and (3.8) with W = W, , 4+ wy, that

2 1
<= (W] - = WHYW
IT] < I (I = sN/Mf( ) dug)

2C1 + C) 2 / 2
D it S |w]Z dpsg. (3.34)
( 8C, LoeN M\By(z,e(k1+1)) Y

Then by (3.32) and (3.9) with W = W, , + w1, we have
(14 7)(We g +01)
1
=)+ (1w - 5 [ 5w aw,) + o)

7
8N Jan\By (@ e (ki +1))

2 [/20) + O) 1 / 5. TP )
+— === |w|Zdug| +O(7%).
Lo [( 8C1 ) &N JanB, ety

Since ||wq||c¢ — 0 as € — 0, we find that, for £ > 0 sufficiently small,

L(A+7)(Weg+wi)) < IL(Wep+w)

< IE(WE,a: +w) — |w\§ dug

holds, as claimed.

CASE 2. We next assume that
1

1 V|2 dpy < 2011 |wl|?.
4€N /M\Bg(a:,a“(lﬁ'l‘l)) e ! )
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Then we can find ko € N such that 11n < k < 12n — 1 and

1

— (Vw2 + F(w)w) dpzy < 2000120 ]2,

By (z,e(k2+1))\Bg(x,ek2)
We set

©a2(2) = p(e ! - dist(By(z,ek2),2)) and wa(z) = p2(2)w(z) on M.
Then, by the same argument as above, we have that there exists Co > 0 such that

1

LWy +ws) < I(We o +w) — (/
AN i\ B, (2, (k2 +1))

|w|§dug—czam-a>||wz).

If
1

/ Vi diy > 2020 2
4 JM\B, (2.e(kat1))

then we find, for 7 € R such that (1 + 7)(W. , + w2) € N, that
IE((I + T)(Ws,x + wZ)) < Ie(We,x + w),

and then (i) holds with w' = 7W, , 4+ (1 + 7)wa.

Repeating this procedure, we can define positive integers k; and functions w; for
¢ > 3. That is, if (i) does not hold, then there exist Cjp > 0 and k19 € N with
19n < k19 < 20n — 1 such that

1

i/ Vw2 djty < 20102100 w2
M\BQ(I7E(]€10+1))
We set
©10(2) = @(e ! - dist(By(x,k10),2)) and  wig(z) = 10(2)w(z) on M.
Then since 10(1 — «) > 4 by the assumption, we find that

lw —wiol|2 = O |w|2) = o(e*[[w]l?),

and then by a parallel argument as above we find that || = O(e?||w||?). That is,
by setting w’ = 7W , + (1 4+ T)wig, we have that ||w—w'[|. = o(e?||w||:) and then,
by the definition of I, we can deduce that

I(Wep +w') < I(We g + w) + O |w]|2).
This completes the proof. O
LEMMA 3.6. There exists 63 € (0,02) such that
L(Weo +w) 2 I(We o) + mafw2 — ma(e'™*lw]le + & [|w]]?) (3.35)

for all (£,2) € (0,60) x M and w € E=

€,x

such that W, , +w € Nz and ||w||. < d3.
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Proof. We first note that we can choose d3 € (0,02) sufficiently small that, for

w € H with
/ \w|§ dpg < 3,
Bgy(w,e~/2)

1/ 2 3 2 2
— (w* + |w]?) dpy < — |w|Z dp
N By (@ee/2) TN Upywensy

we have

for all (e,z) € (0,&9) x M. On the other hand, we have from (3.2) that, for some
m > 0,
1 / 2 m 2 3
-~ f'Wea + 0w)w”dpy < - (w” + [w]”) dpg
€7 JBy(z,e/2) €7 JBy(z,e2/2)
for 6 € [0,1] and w € H. Therefore, combining the inequalities above, we have that
1 2
— / F'(Wez + 0w)w? dpy < —ZL lw|2 dpg (3.36)
€ JBy(z,e/2) €7 JBy(x,e2/2)

for all (e,x) € (0,e9) x M and w € H with

/ lw|2 dpg < .
Bg(z,e%/2)

Now let (e,z) € (0,e9) x M. From lemma A.4 and the inequality above, we have
that

2 - F(ch))] dpg

Lo W+ 0l = POV +w) — (W
By (e /2)

2 / (—AgWE,w +Weu — f(Ws,m))Wdlug
Bgy(x,e~/2)

1
by (el P W+ 00 d
Bg(z,e>/2)

_ 1« 2m
> —me' . - S [wl? dag. (3.37)
€7 JBy(z.e2/2)

On the other hand, we have by (3.26) that

/ (BIWe + 0l = (W +0)) = GIWesl? = FOVeo)] dit
M\By(,e%/2)

- / (Jfwf2 — F(w)) du,
M\Bg(m,€“/2)
1
i/ wf2 dpy. (3.39)
M\Bgy(z,e~/2)

WV

Now suppose that

1
2m [ wlzdu, < § | jwf? duy.
By (z,e%/2) M\Bg(x,e>/2)
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Then from (3.37) and (3.38), we have

1 _
L(We +0) > LOVo) + 5 [ wl2 dpy - me+ .
M\Bg(z,6%/2)
> L. (We ) +m'[|wl]| — me*Jw].
2 I.(Wee) + m/|lw|[2 = met** |wle,
where m’ = 2m/(16m + 1). That is (3.35) holds for some m3 and my.
We next assume that

1
om [ wldu, > § [ wf? duy. (3.39)
By (x,e*/2) M\Bg(x,e*/2)

Then, by lemma 3.5, there exists w’ € (EX, N N;) N Hy (By(x,e%)) such that (i) or
(ii) of lemma 3.5 is satisfied.

We first consider the case that (i) holds. From the proof of lemma 3.5, we have
that w’ has the form w’ = 7W, ,+(14+7)w;, 1 < i < 10, where w; = w on By(z, £%)
and 7 € R. From (3.34) with k; replaced by k;, we have that |7| = O(||w||?). Then
from (3.39), by choosing d3 sufficiently small, we have that there exists d; > 0 such
that ||w'||s > di||wl||c. Here we set

1

H(v) = ;(F(Wsz +v) = F(W.z)) — f(We.y) for (e,z) € (0,609) x M and v € H.

We also set

Av) = %(F(Wg + o) — F(W.)) — f(W.) for v e H(RN).

Then we have H(v) = H(?) for v € Hy(B,(z,1)), where 9(z) = v(exp;*(2)) for
z € B1(0). For each v € H with ||v||. sufficiently small, we have that there exists
6 € (0,1) such that

<H(w)’ U>€ = <f/(W€7w + 9w)w, U>E~

Then noting that (3.36) holds with M \ By(z,e*/2) replaced by M, we find that
there exists Cj, > 0 such that

(H(w),v)e < Cp|wlz,e + w3 )|vls,e  for v,w € H. (3.40)

That is H(w) € L¥?(By(z,%/2)) and |H(w)|3/2 < Cp(|wl2,e +|w[3 ). Then noting
that ||w]| is small, we have by lemma A.5 that

(H(w'),w')e = (Hw'),w')pn o = O (|wlae + [w]3 )wls.) = O w]]2).
(3.41)
From the definition of H and I., we have

I (Wep + ') = L(Wep) = (=AgWe o + We o — f(Weo), w')e + (H(w'),w').
= O(e"|wlle) + (H(w'),w')e.
Then by (3.41), we have
L(Wep + ') = I.(We i) = O |w]|e) + O [w'||2) + (H (w), w)gx , (3.42)
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where we identify w’ with the function w’(exp;!(+)) on B.a(0). By lemma A.5, we
have that there exists v’ € Hj(Bzo(0)) NNgn . and [[v/ — w/'||gy o = O(2*||w']]:).
Then we have
{H @), 0" aw o = (H(w'),w)zn o] = O™ [w'2), (3.43)
On the other hand, we have, by lemma 3.4,
ma 'l o < Trw c(We +0') = Ten (W)
= J(—AW. + We — f(Wo), v )en o + (H'), 0 )gw .
1
= O(exp (—861(1) |'U/|]RN,E> + (H(V'),v")gw .. (3.44)

Then combining (3.42)—(3.44), assuming that ¢ is sufficiently small, we obtain that
Le(We + ') = IL(Weiz) > mallv[[gw o + O [lwllc) + O(e™*[|w[]2).

Therefore,

I (Weptw) 2 I(We ptw') > IE(WE@)—i—ml||v/||f§N)E+O(El+a||w||5)+0(52a||w'||§).

Recalling that ||w'||. = di|w|. and [|w’ — v'||gy o = O(e2¥||w']|.), we have

L(Weo +w) 2 L(We ) + mudilJwllgn . + O™ w]l) + O(**Jw]2).
That is (3.35) holds for some mg and my. By a parallel argument as above, we
find that there exist m3 and my4 such that (3.35) holds for w satisfying (3.39) and
lemma 3.5(ii). This completes the proof. O
4. Proof of theorem 1.1

For each L € K(7), we choose open neighbourhoods U g), U f) and V, of L satisfying
the following conditions:

VocuP cuVcu? and UPnUP =0 itL, L' ek(r) and L#£L.
Then for L € Ke(7),

Ho((=7) NV, (=71)* \L)NVL) =2 H,((-1)* N0, (=7)* \L)nU;?) # {0},
Since M is compact, we have that

oT(x)
8(Ei

where Vi = J{VL: L € K(7)}. Then we have the following lemma.

mg = min {max

:1<z‘<N}>0, (4.1)
z€EM\ Vi

LEMMA 4.1. There exist ag € (0,1) and 4 € (0,d3) such that, for each e € (0,¢q),
r €M and w € EX, with W, +w € N: and |w|. < 44,

e,z

‘lQW5,m+MVIs(Ws,x + w)”s 2 aOHVIs(Ws,m + w)”sa
where Q, s the projection from H to T,N. for each v € N.
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Proof. Since Up is transversal to Ng~ 1, we have that there exists a € (0,1) such
that

(Uo, v)r~ 1 < al|Usllr~ 1l|vllrn 1 for all v € Ty, Ne~ ;. (4.2)
Then, for any € > 0,
<<U5,’U>>RN7€ < G/HUEHRN)EH’UHRN,E for all v € TUENRN’E.

Let ay,as € (0,1) such that a < a; < ag. Since (2.14) holds, by the definition of
We, assuming ¢ is sufficiently small, we have that

<<W€a U>>RN,€ <@ ”WEHRN,5|

U”RN’s for all v € TN(WE)NRN7E.

Then recalling that supp W, , C By(z,e%/2) for v € M and (g5)i;(e%2) — 1, as
¢ — 0 uniformly on B;(0), again assuming that ¢ is sufficiently small, for each
e € (0,e0) and € M, we have that

(We,v)e < az||Weallcllvlle  for all v € Ty w. ,)Ne. (4.3)

Then it is easy to verify that there exists d4 € (0,03) and ag € (as, 1) such that for
each € € (0,e0) and w € H such that ||w|. < 64 and W, , +w € N,

(We o + w,v)e < a3l|We o + wle||v|le forall v e TNE(WEYm_,_w)./\/'g. (4.4)

By definition,
<<VI6(N6(Ws,r + w))a Ws,fc + w>>e =0

for each w € H, that is VI, (N:(W. , + w)) is orthogonal to W, , + w for (¢,z) €
(0,e0) x M and w € H. Then the assertion follows from (4.4). O

LEMMA 4.2. There exists ms > 0 such that for (e,x) € (0,e9) X (M \ Vg) and
w € EX, with ||w|. < 44,

€,x
”Qs,m,SVIS(WE,z)HE P> ’ITL5€2,

where Q¢ 5 s 15 the projection from H to Twmga for each x € M.

Proof. Let (g,x) € (0,&9) X (M \ Vg ). Then noting that

oW., d

3 = £W€,m+m forx e M and 1 <i <N,
i

t=0
we have by (2.4), (2.6) and (2.14) that
9
61'7;

oW
_/_ 2 _ e
= < AW + W — f(W), s >€

Ie(We,x)

1 1 e ~_
- L / i / (LWL + WL ) — FW2) 20N =1 gy
15 SN-1 0 8:51-
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i or

1/e
= W/O (3(IV(21U0)* + #31Uol*) — F(i/on))< + 0(521/2)) yV Tl dy

2w [ or
=57 [ GO + [06f) - F(U) v dy
0 €Lq
2w [*
+t3 ) (3(IV(p1Uo)|* = [V Uo|?
1/4et—
or .
+ (9T = DIU|*) = F(¥Uo) + F(Up)) 5—y™ dy + O(c?)
2w  Or(x)
=——A 3
3 2 al’z +O(€ )
where -
A2 = [ GITUE + [0 = F(To))r™
Then by (4.1), the assertion follows. O

Here we define a semiflow on N associated with the functional I.. For each
e € (0,e9), we can define, by a standard argument, a pseudo-gradient vector field
V.: N. — TN, satisfying the following conditions:

(i) for each v € N, Vz(v) € T,N¢;

(i) [Va()lle < 2[QuVIc(v)l|c for v € N;

(iii) (Ve(v), VI(v))e > 3[QuVI(v)|2 for v € N
We define a semiflow p.: [0,00) x Nz — N by

dp.(t
$:7v€(ps(t7v)) for ¢ > 0,

p=(0,v) =v € AL.
Similarly, we can construct a pseudo-gradient vector field V; g: S. — TS. satisfying
(i)-(iii) with @, replaced by Qc . s. Then we define a semiflow p s: [0,00) x S —
S in the same way as above, with V, replaced by V; g.
Let lp > 0 such that

ot (x)

Lq

malg > 4A max{‘

rx €M, 1<i<N},
where A is the constant defined in lemma 3.2. By lemmas 3.2 and 3.3 we can choose
g1 € (0,€0) so small that
L.N:(W..)) < co +24%7(2)| foralle € (0,6;) and =€ M. (4.5)
We may assume ¢; is so small that
malw]2 —ma(eF|wlle + 2 [w]2) = gms|w] (4.6)

for e € (0,¢1) and w € H with |Jw| . = lo\/e, where ms and my4 are constants given
in lemma 3.6. Then, from lemma 3.6 and the inequalities above, we have that

LN.(We.2)) < o+ 24%7(z)| < I.(Wep + w) (4.7)
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for (e,z) € (0,e7) x M and w € 8Dlo\/g(g8) N MN.. By the definition of semiflows
pe, we have I (p:(t, Ne(We »))) < I.(N:(We)) for all (¢,z) € [0,00) x M. Then

we find that
pe(t,5.) C Ddo\/g(gg) for all (g,t) € (0,e1) x [0, 00). (4.8)
We set
02.(L) = {v € Dy, e(5.): PveVi}
and

Qi-(L) = {v e Dy, z(5.): Pve UM}
for (¢,L) € (0,e1) x K(7) and i = 1,2. For each L € K¢(7) and € € (0,¢1), we set

. . 1 2
dy = LeK(:)r}gfe(O’El)1nf{\|WE7x —Weylle: 2 € 0UY and y € OV, UOUPY.

Then by the definition (2; ., assuming that Jy is sufficiently small, we find that
dy > 0.

LEMMA 4.3. Let € € (0,e1) and L € K¢c(1). Suppose that there exists no critical
point of I in I$N 2y (L), where d = sup{I.(N(W..)): z € U£2)}. Then, for x €
2. (L), there exist t,, € [0,00) and a semiflow p.: {(t,z): t € [0,1,), * € VL.} —
25 (L) such that, for each v € Vi:

(a) Pepe(t,z) € UP fort e [0,i,) and Pepe(ly, ) € U ;

(b) I.(pe(ts, 7)) < I.(We ) — mee?, where mg is a positive number independent
of L and x.

Proof. Let € € (0,e1) and L € K¢ (7). Assume that there exists no critical point of
I.in I8N 25 (L). Let @ € VL. If p-(t, Ne(We2)) € 21(L) for all t > 0, then we
have

tlggo L (pe(t, Ne(We z))) = —o0

by assumption. Since inf{l.(N:(W.,)): © € M} > 0, we find that there exists
t1, = 0 such that

pe(t, No(We)) € 21 o(L) for t € (0,t1.4)

and 1
Pspa(tl,vaE(WE,w)) € 6U£ )'

Set y = P-pe(t1,,Ne(We2)). Noting that inf{I.(N:(W.,)): z € M} > —oo, we
have, by lemma 4.2 and the definition of p. g, that there exists t5 ; > 0 such that
Pepes(tam, Wey) € 0U UOVL.

From the definition of p. g, we have

t
d 147
Hpa,s(t,We,y)—Ws,ylla</ HPE’SZ’ =)
0

T

t
dr < / Ves(pe (. Wey )l .
£ 0
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Since Pepe s(too, We,s) € 3U£2) U OVL, we have, by the definition of dy, that

HPE,S(tZ,xv Way) —Wey

‘e >d1

It then follows from lemma 4.2 and the definition of p. g that

foe dpe.s (7, We
L—:(ps,S(tQ,ma Ws,y)) < Is(Ws,y) - /0 <<VI5(PE,S(7'7 Ws,y)), p’S(dt’y)>> dr

to x
1 f
L0V =5 [ 1 s Ve Wy DI

N

t2,z
I.(Wey) — bmge? / Ve (pe.s(r, We o dt
< L(Wey) — tmse?ds.

Since
z = PEPE,S(tQ,my Ws,a:) € aVYL U 8U£2)7

we have that there exists t3, > 0 such that P.p.(t3,, N:(We ) € 8U£2). Clearly,
t3, =01if z € 3U£2). We now define a semiflow as follows: let z € V. We set
tl,m = tl,z + ]., t2,z = tl,x + tg’x + 1 and tx = tl,x + tgym + t37m + 2. Then we set

pe<t7Ns(W6,w)) for 0 <t < tl,a:a

(tl,z +1- t)pa(tl,wv We,w) + (t - tl,w)WE,y for tl,w <t< El,a;a
pe(t,x) = pes(t — 1,2, Wey) for t1 , <t <tog,

({Q,x +1-— t)Ws,z + (t - £Z,x)Ns(Ws,z) for t~2,m <t< {2@ + 1,

pe(t - 52,:1’ - 17N5(W5,z)) for 7?2,35 +1<t< gzr:

From the definition of p., we have
I (pe(tr,2,2)) < Le(Ne(We o). (4.9)
Then, by lemma 3.3, it follows that
L (e (e, 7)) < LLNL(We0)) + O(24)), (4.10)

Similarly, we have

L(pe(fae + 1)) < L(pe(fars ) + O+
< L(pe(fra @) = §mse®dy + O ).

Finally, combining the above inequality with (4.10), we find that
Ie(ﬁs(ga:; :E)) < Is(ﬁs(flz + 1>$)) < IS(A/’E(WE,JE)) - im552d1 + 0(52(1+a))~
Then by assuming 1 is sufficiently small, we obtain assertion (b). O

We can now complete the proof of theorem 1.1.
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Proof of theorem 1.1. Since (Ur \ L) N K(7) = 0 for each L € K(7), we can choose
d > 0 so small that d < mg/4A and

Ho((=m) OV, (1) \ L) N VL)
= H.((—7)" NV, (-1)* 2 np)
> H,((—7) NUpL, (-7)*~4NUL) for each L € Kc(7).
Now fix € € (0,e1) and L € K¢(7) and set
d = sup{I.(N-(W..)): w € U}

We prove the assertion by contradiction. That is, we assume that there exists no
critical point of I. in 25 (L) N I¢. We define a homotopy of mappings o: [0, 1] x
Vi, = Ug by

t.2) P.(2N:(Wep) + (1 —26)W. ) ift €[0,3],
o(t,z) = -
Pope(ts(2t — 1), No(We 2)) if t € (3,1],
for x € V7, where ¢, € [0,00) defined in lemma 4.3. Then by lemma 4.3, we have
Is(,as(fza-/v.e(ws,z))) < Is(Ws,z) - m652~

Let 2 = P.pe(ty, No(We ). Then p.(te, Ne(Wez)) = We, +w and w € EEJ-Z with
|lwlle < loy/e. Then, by lemma 3.6,

L(We ) < L(We 2 +w) +ma(e ™ wl|e + 2 w||2)
< L(Wep) + (loe/#Fe 4 12e12%) — mge?.
From the inequality above, by choosing ¢; sufficiently small, we have that
I.(We2) < I(Wep) — 3mee”.
Then we have by lemma 3.2 that

~7(0(1L,2)) = =7(2) < (&) = 53 + O(e).
Then again assuming that e; is sufficiently small, we have
me
-1
On the other hand, it also follows from lemma 3.3 and the definition of p. that
there exists m7 > 0 such that

—7(0(1, 7)) < =7(2)

L. (Weay) < L(Wez) +mze?T) for all ¢ € [0,1,], (4.11)

where z(t) = P.p.(t,x) for t € [0,f,]. Then, assuming &; is sufficiently small, we
have
—7(o(t,z)) < —7(x) + 3d for t € [0,1] and x € V. (4.12)

From the assumption, there exist ¢ € N and a ¢g-singular chain « such that [a] is a
non-trivial element of Hy((—7) NV, (—7)°¢ =240 V}). For simplicity, we assume
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that « is a g-singular simplex, i.e. a: A, — (—7)°0 NV}, is a continuous mapping.
Then [«] is considered as a non-trivial element of

Hy((—7)* N UL, (—7)* 724N UL).

We set m = sup{—7(c(t,z)): (t,xz) € [0,1] x a}. Since there is no critical point of
—7in{z € UL: —7(x) > cL}, we have

Hy((=7) =™ N UL, (=)~ N UL) = Hy((=7)* N UL, (=7)* = NUL)

and [a] is a non-trivial element of H,((—7)t*™ N Uy, (—7)¢=% N UL). The homo-
topy of mappings o(-, a(-)): [0,1] x A, — M satisfies

o(t,a(z)) € (—7)*T™NUL for each (t,x) € [0,1] x A,
and
o(t,a(z)) € (=)=~ 4nUL for (t,x) € [0,1] x DA,

by (4.12). That is [a] = [o(t,@)] in Hy((—7)= ™ N UL, (—7)c~4NUL) for each
€ [0, 1]. On the other hand, we have

o(l,a(x)) € (~1)=4NUL forallz € A,.

That is [0(1,a)] = {0} in Hy((—7)cT™ N UL, (=)= N UL). This is a contradic-
tion. Therefore, we have that there exists a critical point of I. in 25 .(L)NIZ. Since
29 (L)N 2y (L") =0 for L # L', the assertion of theorem 1.1 holds. O
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Appendix A.

Let 79: H'(RY)\ {~Uo} — R such that (1 + 7o(w))(Up + w) € Ngw~; for w €
HY(RM)\ {~Up}. Then we have the following.

LEMMA A1
(i) There exists L1 > 0 and dy1 > 0 such that
ITo(w)| < Li|jw|lgv 1 for w e HY(RY) with ||w||gy 1 < di.
G) [ (Ui du=o.
RN

Proof. For simplicity, we write ||-|| and (-, -) instead of || - ||z~ ; and (-, -)gw~ 1, respec-
tively. Let w € H*(R"). From the definition of 7 = 7o (w), (1 4+ 7)(Up + w) € Ng~ 1,
ie.

(1 +7)?(1Uo +w|® :/RN F((L+7) (U + w))((1+7)(Uo + w))
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holds. Then, by the same computation as in the proof of lemma 3.3, we find

= o+ ult = [ U+ )T +w)
< (2ol = [ 100+ )0 +w)

+f (f(Uo+w)(Uo+w)—f’(Uo+w)(Uo+w)2)>_ (@A)
RN

On the other hand, we have by the Taylor expansion that, for some 6 € (0,1),
(10 + wlf* = {f(Uo + w), Ug + w))
= [|Uo|1* + 2(Uo, whrn 1 + [[w]|?
1
= () + £ (Ot U0 + 37" (o + ), Vo + )

= (=AU + Uo — f'(Uo)Up, w) + (—Aw +w — f(Up)w, w)
— (31" (Uo)w?,Ug) + O(||w]|*). (A2)

We note that condition (3.2) ensure that f() (U 4 0w)w™+' € L3(RN) for n > 1.
Then we can see that

U+l = [ FW -+ w)(Uo +w) = O]

Then by (3.7) and (A1), we find
= {100+l = [ 10+ )T+ w1+ 0Glh) = Ol (43

for |w|| sufficiently small. This completes the proof of (i).

(i) Let w € HY(RY) with ||w]|| small. Then recalling that —Awvg+vo — f'(Up)ve = 0,
we have from A 2 with w = avg, a € R that

O+l = [ 5@+ ) O+ w) == [ Ut + o). (44)

Again by the Taylor expansion, we have that
Ign 1 (Up + w)
= BVl + 2o, v + ol = [ P +w)
= L 1 (U0) + (Uo wh s + o
= [ (1@ + 37 @y + @0 + 0+ 0wyt
= Ign 1(Uo) + 3(—Aw + w — f'(Up)w, w)

- /RN (;!f”(Uo)w?’ + %f”l(Uo + 9w)w4>. (A5)
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q= /R U £

Then by setting w = awp in (A 5) with ad < 0, we have
Iy~ 1 (U + avg) = Ign 1 (Up) + %doz3 +0(a?). (A6)
By (A1) and (A 4), we have 7 = O(a?) and

Here we assume that

[+l = [ W0+ w)Uh+w) = O(a?).
RN
Then
]RN}l((l + T)(Uo + Oﬂ]o))
= L1+ 1)?||Uo + ol / F((1 4+ 7)(Us + avo))
RN
= 1(1+20)|[Us + avol?
- /RN (F(Uy + avg) + 7f(Uy + avy) (U + awp)) + O(7%)

= Ign 1 (U + avg) — 7'(|U0 + ow0||2 — / F(Uy + avg) (U + avo)) + O(a4)
RN
= IRNJ(UO) + %da?’ + O(Oé4)

Therefore, we have that Ig~y 1((1+ 7)(Uo + avg)) < Ign 1(Up) for o sufficiently
small with ad < 0. This contradicts (2.10). O

LEMMA A.2. For each (¢,z) € (0,e0) x M,

o foae (0

1 - ~ 1
TV/ |V9‘P'V9U|2dﬂgzo(exp <_4 1a>>’
M 3
1 o 1
57N ' |UA9§0| dﬂg =0 exp *4517_(1 5

where U(2) = U.(exp; '(2)) and $(2) = ¢.(exp; ' (2)) for z € By(x, 1),

Proof. Let (g,2) € RT x M. We put U = U, v = 1 and 5 = 7,. Then ¢ and
U are radial, i.e. ¥(x) = ¥(|z|) and U(z) = U(|z|) for = € RY. Integrating the
left-hand side of (A7) by parts, we have

frac | (o) g
__i/sN 1d§

1

0 Ope O N_ 0

x/ UQ(gosaTZrN 420, 1k —ZTN L (N —1)rN 722 77) dr.
0

)%773” N-14y = 1N’W7‘( JA1 + O(e), (AT)
"

and
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Noting that

> Pz (C) N-1
52 =3 (r) for [r,{) € (0,1) x S¥ 77,
we find by setting y = e~ !r that

1 ! 9%n
= d 2U27 N-—-1 d
€N /SN—I CA ve 6’/’2r "

1/e
[ 8 [ w3300 + Oleny™ dy
[ / V() (= 1pa(C) + O(ey)y™ L dy
SN-1

0?
+ dc/ U2 = U)o dy
SN-1 1/4el-a
1
Asl—a

= —Lwr(x)A +O0() + O(exp ( e ) (A9)

Similarly, we find

1 ! on
- d 2U27 N72d
eN SN—1 C/o Ve aTr "

1/e
N /SN A VUG (—=5p2(¢) + O(ey))y™ " dy
= —zwr(z >A1 +0(e).

(A10)
Noting that 9y /0r = 0 on [0, %], we also have, by (2.14)
1 ! &pE 920N N_q
— d B U — d
€N SN-—1 C/ ¥ or " "
1 8770 200 N1 1
d dr = — .
EN /SN 1 C//451 a U or r=0 <P 4el-a

Then combining (A 9) and (A 10) with the equality above, we find that (A 7) holds

Next we see that (A 8) holds. Again noting that 9v/0r = 0 on [0, 7¢*] and that
(2.14) holds, by setting r = ey, we have that

iN /M |vg‘»5 ) VgU|2 dpg
AL (e
:/S,H dc/lj:;a (Zf@ - “y))2(8a(f)(y)>2ny1v‘ldy
= O(exp (—4611_(1)>
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By a parallel argument, we have

1 ~ 2 1
gTv/M [UAGQ|" dpg = O(exp (—451&>)

O
LEMMA A.3. For each (¢,z) € (0,e0) x M,
€N dC/ DU — F(pU))ner™~dr = o — s 2r(x)Ag + O(%).
SN 1
(A11)

Proof. Let (g,z) € (0,&9) x M. We put ¢ = ¢1, U = U, and n = 1,,.. Then
o~ /N 1d</ (392 f(peU)U = F(peU))yr™ " dr
— [« / F(U0)Uo — F(Uo))y™ dy
SN 1

+/1/4 H(W Df(U0)Uo + 02(f(YUo) — £(Up))
— (F(yUy) — F(Uo)))ny™ 1 dy.
From (f2) and (2.13), noting p > 2, one can see that

[ @ = s,

1/4el—«
+9*(f(WUo) = f(Uo)) — (F(Uo) — F(Uo))ny™ " dy

~of(ew(-))

dC/ U)U — F(pU))nprN =t dr

:/SNldC/ (1) ~ F@ " ay+ O exp (- i ) ).

From (2.6) and (2.19), we have

Then we have

EN SN-1

5 [ [ et - Feamtar

=« / (31(00)Uy — F(U0))(1 = =2p (O + O3y~ dr

ofon( k)
= co — L2mr(2) Ay + O(H).

This completes the proof. O
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LEMMA A.4. There exists m > 0 such that for each (e,x) € (0,e0) x M and w € H,

|<—€2A9W5’m +Wea = f(Wea),w)e| < m€1+an”€.

Proof. Let (e,x) € (0,e0) x M and w € H. Setting W = W, ,,¢ = 1 and U = U,
we have by (3.3) that

(=2 AW + W — f(W),w).
= <‘P€f(U> - f(‘PEU)aw>a

g2 L ouon N 1
- — — —d —_ e .
N /SN?1 dC/O Yo 8rwr T+O(exp< 851—“)|w” >

By the definition of . and (2.13), we have

o [ leat @)= Fle0) P

1/e
< /S L )~ FWUL) Py dy

1/4et—«

~ofen (- 12)) a1

and

g / / a—U@wrN_ldr
6 SN-1 8(1/4 T

e /4
< / / aU an wrN =t dr 4 O(e?|lwl.)
SN 1

</ ron V2 - 1/2
<el = — —d U c
a(gN [ (aﬂ)T ) 10

< et wlpy o [|U]|gw e
Therefore, the assertion follows. O
LEMMA A.5. Let (g,z) € (0,e9) x M.
(i) Forwv € L3?(B,(x,e%)) and w € L*(By(z,e)),
(v, w)e — (B, D)w | = O V]2, |wls.e)- (A13)
(ii) Forv,w € H}(By(z,%)),
[(—2Agv, w)e — (—e2 A0, D)rw | = O |v]|c[|w]|.), (A14)

where ¥(z) = v(exp,(z)) and w(z) = w(exp,(2)) for z € B1(0).
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(ili) Forv € H}(By(x,e%)) N EL, NN; with ||v]| < do, there exists v’ € H'(RV)N
(ToS)*: NN such that
o = Ollew = O™ |l0]l.),
where dy > 0 is a constant independent of .

Proof. Let (g,2) € (0,e0) x M, v € L32(By(z,e%)) and w € L*(B,(x,£%)). Since
|g2%(2) — 8| = O(|2|?) for 1 < j,k < N and 2z € RY with |z| sufficiently small, we
have

[ o) D -y
B1(0)

= O(EQa|1‘}|7RN’3/2’E|1I}|RN,3’5)
= 0(*[v]3/2,|wls.)-

On the other hand, recalling that A — A, = §;;0:0; — (\/|9.]) ~9:(\/]9210;) and
Vg ()| = O(]z|), we have

(B, @han o — (v, 0)e] =

V9
/ 5Vf/(sz)ﬁ)(az)ﬂ dzydzg - - dzN’
RN

24/19z|

= O("||5||gn o||@]|gn o) for v,w € HY(By(x,e%)).

[(e*(A = Ag)v,w)e| = ¢

Since we have [(Av, w)p~ . — (Av,w).| = O(e?¥||v||c||w]|:), by the same argument
as above we obtain (A 13).
Let v € Hj(By(x,e)) N ES, NN, with [[v]|e < do. Since

aWe,w o
(»%e=)) =0
_oUu., oW, -1 B
<< o o, >> o(exp (M)nvnm)

by (2.14), and
LW\ oW
’ 8.131 c ’ axi RN &
by (A 14), we find
5~ 5 50)
V, — =0, =— —
81’1‘ RN ¢ 8171' 8371 RN ¢
(] W Yy W\ |, W
’ axz RN ¢ ’ 8171' < ’ al'i €

= O0(e"*vll)-

by definition,

=0 lv].)

Here we set
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Then v € (TpS:)* and ||o — ||gx - = O('7*||v]|.). On the other hand, noting that
[We o +0[12 = (f(Wep +v), We z +v)e = 0, we have by (A 14) and (A 13) that

W+ )20 / F(We +0)(We +0) di = O(e"+u]).).
RN

Let 7 € R such that (14 7)o € Ng~ . Then from the equality above, we have that
7 = O(e't*||v||c). Here we set v = (14 7)v. Then we obtain that |0 — v/|[gy . =
O(e'*?|jv||c). This completes the proof.
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