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Let (M, g) be a compact smooth N -dimensional Riemannian manifold without
boundary. We consider the multiple existence of positive solutions of the problem

−ε2∆gu + u = f(u) in M,

where ∆g stands for the Laplacian in M and f ∈ C2(M).

1. Introduction

Let 2 � N � 4 and let (M, g) be a compact smooth N -dimensional Riemannian
manifold without boundary. We consider the multiple existence of positive solutions
of problem

−ε2∆gu + u = f(u) in M, (P)

where f : R → R is a continuous mapping and ∆g denotes the Laplacian in M .
Let Ω ⊂ R

N be a domain. The existence and multiplicity of positive solutions of
the problem

−ε2∆u + u = up−1 in Ω,

Bu = 0 on ∂Ω,

}
(1.1)

has been investigated by many authors in the case that p is subcritical, i.e. 1 <
p < 2∗, where 2∗ = 2N/(N − 2) and B is the Dirichlet or Neumann boundary
operator. It is known the multiplicity of the solution depends on the geometry
and topology of Ω (cf. [1, 2,4–6] and references therein). For the problem (P) with
f(t) = tp−1, Benci et al . [3] established multiple existence results for (P). They
showed that if M has a rich topology, problem (P) has multiple solutions using
Lyusternik–Schnirelman category. As far as we know, their results are the first
multiple existence results for (P) on a Riemannian manifold. In [7], Hirano showed
that the number of solutions of (P) is affected by the topology of suitable subset of
M . More recently, Micheletti and Pistoia [8] studied the role of the scalar curvature
for the multiple existence of positive solutions of (P) with f(t) = tp−1. They showed
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that, for each C1-suitable critical set K, there exists a solution uε of (P) under the
assumption that the limiting problem

−∆U + U = f(U), U ∈ H1(RN ) (1.2)

has a unique least energy solution U up to translations and which is non-degenerate,
i.e. the solutions of the linearized problem

−∆ϕ + ϕ = f ′(U)ϕ, ϕ ∈ H1(RN ) (1.3)

consist only of translations of U . Their argument is based on Lyapunov–Schmidt
reduction procedure. That is, they reduce the problem to finding the critical point
of a functional on the finite-dimensional manifold M . Our purpose in this paper is
to obtain an analogous result to the result obtained in [8] for a more general class of
functions f . In case that f(t) = tp−1, the uniqueness of the least energy solution of
problem (1.2) up to translations plays a crucial role. In general, we cannot expect
such uniqueness. Moreover, the Lyapunov–Schmidt reduction procedure is involved
and it is not clear if the procedure works for general cases such that the set of the
positive solutions of (1.2) is degenerate [8]. In this paper, we will show the multiple
existence of positive solutions of (P) under some assumptions on f using homology
group arguments.

To state our main result, we need some notation. We denote by τ : M → R the
scalar curvature of M . Let K(τ) = {x ∈ M : ∇τ(x) = 0} and

K(τ) = {Lis a connected subset of K(τ)}.

For each L ∈ K(τ), we set cL = −τ(x), where x ∈ L. We denote by KC(τ) the
subset of K(τ) such that each L ∈ KC(τ) satisfies

H∗((−τ)cL ∩ U, ((−τ)cL \ L) ∩ U) �= {0}

for an open neighbourhood U of L such that U ∩K(τ) = L. We denote by #KC(τ)
the number of elements of KC(τ). We assume that the function f : R → R satisfies
the following conditions.

(f1) There exists µ > 1 such that f ′(t)t > µf(t) > 0 for all t ∈ R
+.

(f2) There exists M0 > 0 such that |f(t)| � M0(|t|q−1 + |t|p−1) for t ∈ R, where
1 < q � 2 < p < 3.

(f3) f ′′′ ∈ C(R) is bounded and f ′′′(t) < 0 for t ∈ R
+.

We can now state our main results.

Theorem 1.1. There exists ε1 > 0 such that problem (P) has at least #KC(τ)
positive solutions for each ε ∈ (0, ε1).

Remark 1.2. Through the argument below, we can see that, for each L ∈ KC(τ),
there exists solutions uε of (P) such that uε concentrate at a point of L as ε → 0.

Remark 1.3. We do not need condition (f3) in the case that the non-degeneracy of
problem (1.3) is guaranteed. That is, theorem 1.1 covers the case that f(t) = tp−1,

https://doi.org/10.1017/S0308210510000892 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000892


Multiple existence of a nonlinear elliptic problem 83

t > 0. Conditions (f1)–(f3) are satisfied by a broad class of functions, e.g. f(t) =
t log(t+1) and f(t) = (1+ t)t2/(1+2t), t > 0. We conjecture whether the condition
f ′′′(t) < 0 can be removed.

The text is organized as follows: the next section is devoted to preliminaries. In
§ 3, we give a few lemmas that are crucial for our argument. Section 4 is devoted to
the proof of theorem 1.1. In Appendix A, we give a few estimates which are needed
for our computation.

2. Preliminaries

Let (X, Y ) be a pair of topological space with Y ⊂ X. We denote by H∗(X, Y ) the
singular relative homology group. For each q ∈ N ∪ {0} and a q-singular chain α,
[α] stands for the element of Hq(X, Y ) induced from α [13]. Let E be a real Hilbert
manifold and F : E → R be a functional. Then, for each c ∈ R, we denote by F c

the level set with respect to F , i.e. F c = {v ∈ E : F (v) � c}. For each C1-Hilbert
manifold E, we denote by TvE the tangent space of E at v ∈ H and TE the tangent
space, respectively. Let ε ∈ R

+. We denote by ‖ · ‖RN ,ε the norm of H1(RN ) defined
by

‖v‖2
RN ,ε =

1
εN

∫
RN

(ε2|∇v|2 + |v|2) dµ for all v ∈ H1(RN ),

where dµ stands for the Euclidian measure. The inner product of H1(RN ) corre-
sponding to the norm ‖ · ‖RN ,ε is denoted by 〈〈·, ·〉〉RN ,ε. In addition, we denote by
| · |RN ,p,ε the norm of Lp(RN ) defined by

|v|p
RN ,p,ε

=
1

εN

∫
RN

|v|p dµ for v ∈ Lp(RN ).

We set

〈u, v〉RN ,ε =
1

εN

∫
RN

uv dµ for u, v ∈ H1(RN ).

We denote by exp the exponential mapping exp: TM → M (cf. [10]). We denote by
Br(x) the open ball in R

N centred at x with radius r. Then, for ε > 0 sufficiently
small, the Riemannian manifold M has the special set of charts {expx : Bε(0) →
M : x ∈ M}. Corresponding to this chart, by choosing a orthogonal coordinate
system (x1, . . . , xN ) of R

N and identifying TxM with R
N for x ∈ M , we can define

a coordinates called Riemannian normal coordinates. Let C be an atlas of M whose
charts are given by the exponential map. For each R > 0 and x ∈ M , we denote by
Bg(x, R) the ball in M centred at x with radius R with respect to metric induced
by g. Let ε > 0. We denote by ‖ · ‖ε the norm of H = H1(M) given by

‖u‖2
ε =

1
εN

∫
M

(ε2|∇gu|2 + |u|2) dµg for u ∈ H,

where ∇g denotes the gradient and µg is the volume form on M associated to the
metric tensor g. We omit dµ and dµg when there is no fear of confusion. We denote
by 〈〈·, ·〉〉ε the inner product of H corresponding to the norm ‖ · ‖ε. We also define
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an inner product of L2(M) and a norm of Lr(M), 1 < r < 2∗, by

〈u, v〉ε =
1

εN

∫
M

uv dµg for u, v ∈ L2(M)

and

|w|rr,ε =
1

εN

∫
M

|w|r dµg for w ∈ Lr(M).

For each w ∈ H, we set

|w(z)|2ε = ε2|∇gw(z)|2 + |w(z)|2 for z ∈ M.

By Sobolev’s embedding theorem, we have that there exists cp > 0, independent of
ε, such that |v|p,ε � cp‖v‖ε for all v ∈ H and(

1
εN

∫
Bg(x,a)

|w|pε dµg

)2/p

� cp

(
1

εN

∫
Bg(x,a)

|w|2ε dµg

)
for w ∈ H and a ∈ (0, 1].

(2.1)
For each x ∈ M , H1(Bg(x, 1)) stands for the restriction of H on Bg(x, 1) and
H1

0 (Bg(x, 1)) denotes the closure of C∞
0 (Bg(x, 1)) in H1(Bg(x, 1)). For each func-

tion u ∈ H, we have∫
M

|∇gu|2 dµg =
∑
C∈C

∫
C

ϕC(x)|∇gu|2 dµg.

If C = Bg(x, 1) ∈ C for some x ∈ M and suppu ∈ C, then∫
C

|∇gu|2 dµg =
∫

B(0,1)

( n∑
i,j=1

gij
x

∂u(expx(z))
∂zi

∂u(expx(z))
∂zj

)√
|gx| dz1 · · ·dzN ,

where |gx| denotes the determinant of the metric matrix {(gx)ij} for each x ∈ M
and {gij

x } is the inverse matrix of {(gx)ij}. The Laplacian ∆g on M is given by

∆gv =
∑
i,j

1√
|gx|

∂i(gij
x

√
|gx|∂jv) for v ∈ H. (2.2)

For each x ∈ M , there exists ε > 0 such that expx : Bε(0) → Bg(x, ε) is a dif-
feomorphism for all x ∈ M . We may assume, for simplicity, that ε = 1 for each
x ∈ M and each C ∈ C has the form C = Bg(x, 1) for some x ∈ M . For x ∈ M and
(r, ζ) ∈ [0, 1) × SN−1, we have

rN−1
√

|gx(exp(rζ))| = rN−1 − 1
6ρx(ζ)rN+1 + O(rN+2), (2.3)

where ρx stands for the Ricci curvature [12]. It is known that∫
SN−1

ρx(ζ) dζ = 	τ(x), (2.4)

where 	 is the volume of unit ball B1(0) in R
N [12]. We set

ηx(r, ζ) =
√

|gx(exp(rζ))|
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for (r, ζ) ∈ [0, 1) × SN−1. Then we have∫
M

u dµg =
∫

SN−1
dζ

∫
B1(0)

u(r, ζ)ηxrN−1 dr for u ∈ L1(Bg(x, 1)). (2.5)

By (2.3), we also have that

ηx(r, ζ) = 1 − 1
6ρx(ζ)r2 + O(r3) for (r, ζ) ∈ R

+ × SN−1. (2.6)

We simply write g and gij instead of gx and (gx)ij , respectively, when there is no fear
of confusion. For x ∈ M , each function u ∈ H1

0 (Bg(x, 1)) is regarded as an element
of H by putting u = 0 on M \ Bg(x, 1), that is, we have H1

0 (Bg(x, 1)) ⊂ H1(M).
Set

Hx,rad = {u ∈ H1
0 (Bg(x, 1)) : u is radial with respect to x} for x ∈ M.

Then for each u ∈ Hx,rad, we have that∫
M

|∇gu|2 dµg =
∫

B(0,1)

∣∣∣∣∂u(expx(r))
∂r

∣∣∣∣
2

ηxrN−1 dr. (2.7)

We also recall [11, ch. 2.4] that for u ∈ Hx,rad,

∆gu =
1

rN−1

∂

∂r

(
rN−1 ∂u

∂r

)
+

1
ηx

∂ηx

∂r

∂u

∂r
. (2.8)

Since our purpose is to find positive solutions, we may assume without any loss of
generality that f(t) = 0 for t � 0. We set

F (t) =
∫ t

0
f(τ) dτ for t ∈ R.

From (f1), it is easy to verify that

f(t)t > (µ + 1)F (t) for all t ∈ R. (2.9)

Next we retrieve some known facts related to problem (P). It is known that
problem (1.2) has a radial positive solution U0 ∈ C∞(RN ) ∩ H2(RN ) such that

c0 = IRN ,1(U0) = min{IRN ,1(v) : v ∈ NRN ,1}, (2.10)

where

IRN ,ε(v) =
1

εN

(
1
2

∫
RN

(ε2|∇v|2 + |v|2) dµ −
∫

RN

F (v) dµ

)
(2.11)

for (ε, v) ∈ R
+ × H1(RN ), and

NRN ,ε =
{

v ∈ H1(RN ) :
∫

RN

(ε2|∇v|2 + |v|2) dµ =
∫

RN

f(v)v dµ

}
for ε ∈ R

+.

We also have by (f1) that

IRN ,1(v) � IRN ,1(tv) for all v ∈ NRN ,1 and t ∈ R.
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Since U0 is radial, U0(r) is a solution of the following problem:

−∂2U

∂r2 − (N − 1)
r

∂U

∂r
+ U = f(U) for r � 0. (2.12)

Since limt→0f(t)/t = 0 by (f2), we have that U0 satisfies the condition that, for
dU0/dr < 0 on (0,∞),

lim sup
r→∞

U0(r)e(1−δ)r < ∞ and lim sup
r→∞

∣∣∣∣dU0(r)
dr

∣∣∣∣e(1−δ)r < ∞ (2.13)

for each δ ∈ (0, 1) [9]. Let a ∈ ( 1
2 , 1) be a constant. From the inequality above, we

have that there exists l0 > 0 and ε0 > 0 such that

|U0(r)| � l0e−r/2 and
∣∣∣∣dU0(r)

dr

∣∣∣∣ � l0e−r/2 for all r � 1
4ε1−α

0
. (2.14)

Combining (2.12) and (2.13) with (f2), we find that

lim sup
r→∞

∣∣∣∣∂2U0

∂r2

∣∣∣∣e(1−δ)r < ∞ for each δ ∈ (0, 1). (2.15)

It is obvious that each element of the set S = {U0(· − x) : x ∈ R
N} is a solution of

problem (1.2). Let ε ∈ R
+. We put Uε(x) = U0(x/ε) on R

N . Then Uε ∈ H1(RN ) is
a positive radial solution of problem

−ε2∆U + U = f(U) on R
N , (2.16)

and each Uε is a critical point of IRN ,ε with IRN ,ε(Uε) = c0. Since Uε is radial,
i.e. Uε(x) = Uε(|x|), it follows from (1.2) that

−ε2 1
rN−1

∂

∂r

(
rN−1 ∂Uε

∂r

)
+ Uε = f(Uε). (2.17)

It is obvious that for each x ∈ R
N , Uε(· − x) is a solution of (2.16). We put

Sε = {Uε(· − x) : x ∈ R
N} and T0Sε = TUεSε = span

{
∂Uε

∂xi
: 1 � i � N

}
.

By multiplying (2.16) by Uε we have that

‖Uε‖2
RN ,ε =

1
εN

∫
RN

f(Uε)Uε dµ. (2.18)

Then it follows that

c0 = IRN ,ε(Uε) = 1
2‖Uε‖2

RN ,ε − 1
εN

∫
RN

F (Uε) =
1

εN

∫
RN

( 1
2f(Uε)Uε − F (Uε)) dµ.

(2.19)
The functional Iε ∈ C2(H, R) associated with the problem (P) is given by

Iε(u) =
1

εN

∫
M

( 1
2ε2|∇gu|2 + 1

2 |u|2 − F (u)) dµg for u ∈ H.
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We denote by Nε the Nehari manifold defined by

Nε =
{

v ∈ H1(M) : ‖v‖2
ε =

1
εN

∫
M

f(v)v dµg

}
.

From (f1), we can see that for each v ∈ H \ {0}, there exists a unique positive
number t such that tv ∈ Nε [14]. We set Nε(v) = tv. Then Nε(·) : H \ {0} → Nε

is a continuous mapping and Nε is a submanifold of H with codimension 1. It
is clear that Nε(v) is transversal to Nε. It is easy to see that each critical point
u ∈ H1(M)\{0} of Iε is contained in Nε. By the definition of Nε and (f1), we have
that, for each v ∈ Nε,

Iε(v) =
1

εN

∫
M

( 1
2f(v)v − F (v)) dµg > 0.

We next consider the eigenvalue problem of the linearized problem of (1.2)

−∆w + w − µf ′(U0)w = 0. (2.20)

From the definition of U0, we have that the first eigenvalue µ1 of (2.20) is less
than 1. We also have µ2 = 1 and the eigenspace N(U0) corresponding to µ2 is a
space whose dimension is at most N + 1 and contains the tangent space TU0S. For
simplicity, we write T0S instead of TU0S, i.e. T0S = span{∂U0/∂xi : 1 � i � N}
of S.

If dimN(U0) = N , the reduction method employed in [8] is valid and condition
(f3) is not needed. Then, in the following, we assume that dimN(U0) = N + 1 and
give the proof of theorem 1.1 under this assumption. Our argument is valid for the
case that dim N(U0) = N . Let v1 ∈ H1(RN ) be a normalized eigenfunction corre-
sponding to the first eigenvalue µ1 and v0 ∈ H1(RN ) ∩ (T0S)⊥ be an normalized
eigenfunction corresponding to µ1 = 1.

3. Lemmas

Henceforth, we fix α ∈ (0, 1) such that 1
2 < α and 10(1 − α) > 4. Let ϕ ∈

C∞(R, [0, 1]) be a monotone decreasing function such that ϕ(x) = 1 on (−∞, 1
2 ],

ϕ(x) = 0 on [1,∞) and |ϕ|C1 � 2. For each ε ∈ (0, 1), we set

ϕε(x) = ϕ

(
2|x|
εα

)
for x ∈ R

N ,

and define a function Wε ∈ H1
0 (B1(0)) by

Wε(z) = ϕε(z)Uε(z) for z ∈ R
N .

From the definition of ϕ, we have that Wε(z) = 0 for z ∈ R
N \ Bεα/2(0) and

Wε(z) = Uε(z) for z ∈ Bεα/4(0). For each (ε, x) ∈ R
+ × M , we define a function

Wε,x ∈ H by

Wε,x(z) =

{
Wε(exp−1

x (z)) for z ∈ Bg(x, 1),
0 for z ∈ M \ Bg(x, 1).
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We put S̃ε = {Wε,x : x ∈ M} and define a neighbourhood Dδ(S̃ε) ⊂ H1(M) of S̃ε

by

Dδ(S̃ε) = {Wε,x + w : x ∈ M, w ∈ H1(M) with ‖w‖ε < δ} for each δ > 0.

Lemma 3.1. There exists δ0 ∈ (0, 1) such that, for each ε ∈ (0, ε0), there exists a
metric projection Pε from Dδ0(S̃ε) onto S̃ε.

Proof. We identify Bg(x, 1) with B1(0) for each x ∈ M . Then, from the definition
of W1,x, we have that there exists C > 0 such that∥∥∥∥∂W1,x

∂xi

∥∥∥∥
1

� C and
∥∥∥∥∂2W1,x

∂xi∂xj

∥∥∥∥
1

� C for all x ∈ M and 1 � i, j � N.

For each ε ∈ (0, ε0) and (x, y) ∈ M ×Bg(x, 1), we define a curve ρε,x,y(t) = Wε,x+ty,
for |t| sufficiently small. Let τε(x, y) be the curvature of the curve at t = 0. Then,
to prove the assertion, it is sufficient to show that {τε(x, y) : ε ∈ (0, ε0), (x, y) ∈
M × Bg(x, 1)} is bounded. From the definition,

τε(x, y) =
∥∥∥∥∂Wε,x

∂y

∥∥∥∥
−1

ε

〈〈
∂Wε,x

∂y
,
∂2Wε,x

∂y2

〉〉
ε

∂Wε,x

∂y

−
∥∥∥∥∂Wε,x

∂y

∥∥∥∥
ε

∂2Wε,x

∂y2

(∥∥∥∥∂Wε,x

∂y

∥∥∥∥
3

ε

)−1

for ε ∈ (0, ε0) and (x, y) ∈ M × Bg(x, 1). Then noting that∥∥∥∥∂Wε,x

∂y

∥∥∥∥
ε

= ε−1
∥∥∥∥∂W1,x

∂y

∥∥∥∥
1

and
∥∥∥∥∂2Wε,x

∂y2

∥∥∥∥
ε

= ε−2
∥∥∥∥∂2W1,x

∂y2

∥∥∥∥
1
,

one can see that {τε(x, y) : ε ∈ (0, ε0), x ∈ M, y ∈ Bg(x, 1)} is bounded. Then the
assertion holds.

In the following, we will find solutions of (P) in Dδ0(S̃ε). By the definition of
Dδ0(S̃ε), we have that M1 = sup{‖v‖ε : ε ∈ (0, ε0) and v ∈ Dδ0(S̃ε)} < ∞. Then
we have

mN = inf
{

1
εN

∫
M

f(v)v dµg : ε ∈ (0, ε0), v ∈ Dδ0(S̃ε)
}

> 0. (3.1)

From (f1) and (f3), we have that there exists Mf > 0 such that

0 � f ′(t) � Mf (1 + t) for t ∈ R
+ and sup{|f ′′(t)| : t ∈ R} < ∞. (3.2)

Lemma 3.2. For each ε ∈ (0, ε0) and x ∈ M ,

Iε(Wε,x) = c0 − Aε2τ(x) + O(ε3),

where A = 1
6	(A0 + NA1),

A0 =
∫

SN−1
dζ

∫ ∞

0
( 1
2f(U0)U0 − F (U0))rN+1 dr
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and

A1 =
∫

SN−1
dζ

∫ ∞

0
U2

0 rN−1 dr.

Proof. Let (ε, x) ∈ (0, ε0) × M . For simplicity, we set η(z) = ηx(z), U(z) = Uε(z),
ψ(z) = ϕε(z) for z ∈ B1(0) and Ũ = Uε(exp−1

x (z)) and ψ̃(z) = ψ(exp−1
x (z)) for

z ∈ M . Then, by definition, Wε = ψU and Wε,x = ψ̃Ũ . Since ψ and U are radial
with respect to the origin, we have by (2.8), (2.17) and (A 8) that, for each w ∈ H,

〈−ε2∆gWε,x + Wε,x, w〉ε

= ε2〈−ψ̃∆gŨ − 2∇gψ̃∇gŨ − Ũ∆gψ̃, w〉ε + 〈Wε,x, w〉ε

= − ε2

εN

∫
SN−1

dζ

∫ 1

0
ψ

1
rN−1

∂

∂r

(
rN−1 ∂U

∂r

)
w(expx(rζ))ηrN−1 dr

− ε2

εN

∫
SN−1

dζ

∫ 1

0
ψ

∂U

∂r

∂η

∂r
w(expx(rζ))rN−1 dr + 〈Wε,x, w〉ε

− ε2〈2∇gϕ̃ · ∇gŨ + Ũ∆gϕ̃, w〉ε

=
1

εN

∫
SN−1

dζ

∫ 1

0
ψf(U)w(expx(rζ))ηrN−1 dr

− ε2

εN

∫
SN−1

dζ

∫ 1

0
ψ

∂U

∂r

∂η

∂r
w(expx(rζ))rN−1 dr

+ O

(
exp

(
− 1

8ε1−α

)
‖w‖ε

)
. (3.3)

Then setting w = Wε,x = (ψU)(exp−1
x (z)) for z ∈ M , we have by (3.3) that∫

M

(ε2|∇gWε,x|2 + |Wε,x|2) dµg

=
∫

SN−1
dζ

∫ 1

0
ψ2f(U)UηrN−1 dr

− ε2
∫

SN−1
dζ

∫ 1

0
ψ2

(
U

∂U

∂r

)
∂η

∂r
rN−1 dr + O

(
exp

(
− 1

8ε1−α

))
.

(3.4)

Therefore, we have that

Iε(Wε,x) =
1

εN

(
1
2

∫
M

(ε2|∇gWε,x|2 + W 2
ε,x) dµg −

∫
M

F (Wε,x) dµg

)

=
1

εN

∫
SN−1

dζ

∫ 1

0
( 1
2ψ2f(U)U − F (ψU))ηrN−1 dr

− ε2

εN

∫
SN−1

dζ

∫ 1

0

(
ψ2

(
U

∂U

∂r

)
∂η

∂r

)
rN−1 dr + O

(
exp

(
− 1

8ε1−α

))
.

Then, by (A 7) and (A 11), the assertion follows.
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Lemma 3.3. For each (ε, x) ∈ (0, ε0) × M ,

‖Nε(Wε,x) − Wε,x‖ε = O(ε1+α) and |Iε(Nε(Wε,x)) − Iε(Wε,x)| = O(ε2(1+α)).
(3.5)

Proof. Let (ε, x) ∈ (0, ε0)×M . We set W = Wε,x. Let τ ∈ R such that (1+ τ)W =
Nε(W ). That is

(1 + τ)2‖W‖2
ε =

1
εN

∫
M

f((1 + τ)W )(1 + τ)W dµg.

It then follows that

‖W‖2
ε + 2τ‖W‖2

ε =
1

εN

∫
M

(f(W ) + τ(f(W ) + f ′(W )W )W ) dµg + O(τ2).

Then we have

τ = −‖W‖2
ε − 1

εN

∫
M

f(W )W dµg

×
(

2
(

‖W‖2
ε − 1

εN

∫
M

f(W )W dµg

)
+

1
εN

∫
M

(f(W ) − f ′(W )W )W dµg

)−1

+ O(τ2). (3.6)

We can see from (f1) that

L0 =
∫

RN

(f ′(U0)U2
0 − f(U0)U0) dµ �

∫
M

(µ − 1)f(U0)U0 dµ > 0. (3.7)

Then since limε→0(Wε,x − Uε(exp−1
x (·))) = 0 on Bg(x, 1), we have that

1
εN

∫
M

(f ′(W )W 2 − f(W )W ) dµg � L0

2
. (3.8)

for ε > 0 sufficiently small. On the other hand, from lemma A.4 with w = Wε,x, we
have that

‖W‖2
ε − 1

εN

∫
M

f(W )W dµg = O(ε1+α)

and then τ = O(ε1+α). Therefore, ‖Nε(W ) − W‖ε = O(ε1+α). Since

Iε(Nε(W )) =
(1 + τ)2

2
‖W‖2

ε − 1
εN

∫
M

F ((1 + τ)W ) dµg

= Iε(W ) + τ

(
‖W‖2

ε − 1
εN

∫
M

f(W )W dµg

)
+ O(τ2), (3.9)

we obtain that
Iε(Nε(W )) = Iε(W ) + O(ε2(1+α)).

Lemma 3.4. There exist δ1 ∈ (0, δ0) and m1 > 0 such that

IRN ,1(U0 + w) � IRN ,1(U0) + m1‖w‖4
RN ,1

for all w ∈ H1(RN ) with w ∈ (T0S)⊥ ∩ NRN ,1 and ‖w‖RN ,1 < δ1.
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Proof. For simplicity, we write ‖ · ‖ and 〈·, ·〉 instead of ‖ · ‖RN ,1 and 〈·, ·〉RN ,1,
respectively. The Nehari manifold N = N RN ,1 is a C1-submanifold of H1(RN )
with codimension 1. That is, there exists τ0 ∈ C1(H1(RN ) \ {−U0}, R) such that
(1 + τ0(w))(U0 + w) ∈ N for each w ∈ H1(RN ) \ {−U0} [14]. By lemma A.1,
|τ0(w)| � L1‖w‖RN ,1 for w with ‖w‖RN ,1 sufficiently small. From the property of
τ0, it is easy to see that (T0S)⊥ ∩ N is a C1-submanifold of (T0S)⊥ with codi-
mension 1. Let E be a subspace of (T0S)⊥ such that codimension of E is 1 and
E ∩ {tU0 : t ∈ R} = {0}. Then, for δ > 0 small,

{(1 + τ0(w))(U0 + w) : w ∈ E with ‖w‖RN ,1 < δ}

form a neighbourhood of U0 in (T0S)⊥ ∩ N . To show the assertion, it is sufficient
to show that there exists m̃ > 0 such that

IRN ,1((1 + τ0(w))(U0 + w)) � IRN ,1(U0) + m̃‖w‖4 (3.10)

for each w ∈ E with ‖w‖ sufficiently small. In fact, setting

w′ = τ0(w)U0 + (1 + τ0(w))w,

we can rewrite the inequality above as

IRN ,1(U0 + w′) � IRN ,1(U0) + m̃‖w‖4.

Since

‖w′‖ = ‖τ0(w)U0 + (1 + τ0(w))w‖ � (L1‖U0‖ + (1 + L1‖w‖))‖w‖,

we have that there exists m1 > 0, independent of w, such that

IRN ,1(U0 + w′) � IRN ,1(U0) + m1‖w′‖4

for ‖w′‖ sufficiently small. Since w′ ∈ (T0S)⊥, we have the assertion.
Next we shall show that (3.10) holds for some m̃ > 0. We set

E = {v ∈ H1(RN ) : 〈−∆U0 + U0 − f ′(U0)U0, v〉 = 0} ∩ (T0S)⊥.

Then E is a subspace of (T0S)⊥ with codimension 1, and E ∩ {tU0 : t ∈ R} = {0}.
We also have that there exists c1 > 0 such that

〈−∆w + w − f ′(U0)w, w〉 � c1‖w‖2 for w ∈ E ∩ {tv0 : t ∈ R}⊥. (3.11)

Let w ∈ E. In the following, we decompose w into the form w = w1 + w0, where
w0 ∈ V0 = {tv0 : t ∈ R} and w1 ∈ V ⊥

0 . Noting that IRN ,1((1 + τ0(w))(U0 + w)) �
IRN ,1(U0 + w), we find from (A 5) that

IRN ,1(U0 + w) � IRN ,1(U0) + 1
2 〈−∆w1 + w1 − f ′(U0)w1, w1〉

−
∫

RN

(
1
3!

f ′′(U0)(w0 + w1)3 +
1
4!

f ′′′(U0 + θw)(w0 + w1)4
)

(3.12)

for some θ ∈ (0, 1). In case that w1 = 0 in (3.12), one can see from lemma A.1(ii)
and (f3) that if ‖w‖ = ‖w0‖ is sufficiently small, the assertion holds. We note that
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since N = 2, 3, 4, condition (3.2) implies that there exists L2 > 0 such that, for
w = w0 + w1 ∈ H1(RN ),∣∣∣∣
∫

RN

f (n)(U0 + ξw)wk
0wn+1−k

1

∣∣∣∣ � L2‖w0‖k‖w1‖n+1−k, 2 � n � 3, 0 � k � n+1.

Then from (3.11), lemma A.1(ii) and (3.12), we can see that there exist L3 > 0,
d1 > 0 and l1 > 0 such that, for each w ∈ E with ‖w‖ < d1 and ‖w1‖ � L3‖w0‖2,

IRN ,1(U0 + w) � IRN ,1(U0) + l1‖w‖4. (3.13)

We next claim that

〈−∆w + w − f ′(U0)w, w〉 − 1
2c

(
1
3!

∫
RN

f ′′(U0)wv2
0

)2

� 0 (3.14)

for w ∈ E with ‖w‖ = 1, where

c = − 1
4!

∫
RN

f ′′′(U0)v4
0 + L−1

0

( ∫
RN

f ′′(U0)U0v
2
0

)
.

Here L0 is the constant defined in (3.7). Moreover, we will show that there exists at
most one pair ±v ∈ E ∩ V ⊥ such that ‖v‖ = 1 and the equality holds with w = ±v
in (3.14).

We note that condition (f3) implies that c > 0. We prove (3.14) by contradiction.
Suppose that there exists v ∈ E such that ‖v‖ = 1 and

〈−∆v + v − f ′(U0)v, v〉 − 1
2c

(
1
3!

∫
RN

f ′′(U0)vv2
0

)2

< 0. (3.15)

Let w ∈ E with ‖w1‖ � L3‖w0‖2. Put τ = τ0(w). Since

〈−∆U0 + U0 − f ′(U0)U0, w〉 = 0,

we have by (A 2) that

‖U0+w0‖2−〈f(U0+w), U0+w〉 = 〈−∆w−f(U0)w, w〉−〈 1
2f ′′(U0)w2, U0〉+O(‖w‖3).

(3.16)
Since

|τ | = L−1
0 |‖U0 + w‖2 −

∫
RN

f(U0 + w)(U0 + w)|(1 + O(‖w‖))

by (A 3), we have from the quality above that

τ

(
‖U0 +w‖2 −

∫
RN

f(U0 +w)(U0 +w)
)

= L−1
0

(
1
2

∫
RN

f ′′(U0)U0w
2
0

)2

+O(‖w0‖5).

On the other hand, we have by (A 5) that

IRN ,1((1 + τ)(U0 + w))

= IRN ,1(U0 + w) + τ

(
‖U0 + w‖2 −

∫
RN

f(U0 + w)(U0 + w)
)
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= IRN ,1(U0) + 1
2 〈−∆w + w − f ′(U0), w〉

−
∫

RN

(
1
3!

f ′′(U0)w3 +
1
4!

f ′′′(U0 + θw)w4
)

+ τ

(
‖U0 + w‖2 −

∫
RN

f(U0 + w)(U0 + w)
)

.

Then, combining the equalities above, we have

IRN ,1((1 + τ)(U0 + w)) − IRN ,ε(U0)

= 1
2 〈−∆w1 + w1 − f ′(U0), w1〉 −

∫
RN

(
1
3!

f ′′(U0)w1w
2
0 +

1
4!

f ′′′(U0)w4
0

)

+ L−1
0

(
1
2

∫
RN

f ′′(U0)U0w
2
0

)2

+ O(‖w0‖5). (3.17)

Here we set t = ‖w0‖, xw = ‖w1‖/t,

aw =
1

2‖w1‖2 〈−∆w1 + w1 − f ′(U0)w1, w1〉 and bw =
1
3!

∫
RN

f ′′(U0)
(

w1

‖w1‖

)
v2
0 .

Then (3.17) is rewritten as

IRN ,1(1 + τ)(U0 + w) − IRN ,1(U0)

= (awx2
w)t2 − (bwxw)t3 + ct4 + O(t5)

= t2
(

c

(
t − bwxw

2c

)2

+
x2

w(4awc − b2
w)

4c

)
+ O(t5), (3.18)

where c is the constant defined above. We note that aw = 0 if and only if w1 = 0,
and then we have by of lemma A.1(ii) that if w1 = 0,

IRN ,1(1 + τ)(U0 + w) � IRN ,1(U0) + ct4 = IRN ,1(U0) + c‖w‖4. (3.19)

Now we suppose that w1 = sv for s > 0. Then. by (3.15), it follows that (bwxw)2 −
awcx2

w = x2
w(b2

w −4awc) > 0. Then setting t = bwxw/2c with t sufficiently small, we
have from (3.18) that IRN ,1((1 + τ)(U0 + w)) < IRN ,1(U0). This contradicts (2.10).
Then we find (3.14) holds as claimed. Next we assume that there exists v ∈ E ∩V ⊥

0
such that

〈−∆v + v − f ′(U0)v, v〉 − 1
2c

(
1
3!

∫
RN

f ′′(U0)vv2
0

)2

= 0. (3.20)

That is v ∈ E is the minimizer of the minimization problem

min
{

〈−∆w + w − f ′(U0)w, w〉 − 1
2c

(
1
3!

∫
RN

f ′(U0)wv2
0

)2

: w ∈ E with ‖w‖ = 1
}

.

Noting that 〈−∆w + w − f ′(U0)w, U0〉 = 0 for w ∈ E, we have that

−∆v + v − f ′(U0)v =
1
2c

(
1
3!

∫
RN

f ′(U0)vv2
0

)(
f ′(U0)v2

0 −
(∫

RN f ′(U0)v2
0U0∫

RN U2
0

)
U0

)
.
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Then, from the definitions of E and V0, we find ±v ∈ E ∩ V ⊥
0 is the unique pair

satisfying (3.20), as claimed.
Thus we find that there exists m > 0 such that

〈−∆w + w − f ′(U0)w, w〉 − 1
2c

( ∫
RN

f ′′(U0)wv2
0

)2

� m

for all w ∈ E ∩ span{v, v0}⊥ with ‖w‖ = 1. That is (4awc − b2
w)/4c � m for all

w ∈ E ∩{tv : t ∈ R}⊥ with ‖w‖ = 1. Therefore, we find from (3.18) that there exist
d2 > 0 and l2 > 0 such that

IRN ,1(U0 + w) � IRN ,1(U0) + l2‖w‖4 (3.21)

for all w ∈ E ∩ span{v, v0}⊥ such that ‖w‖ � d2 and ‖w1‖ � L3‖w0‖2.
It follows from (3.18) and the definitions of v and v0 that there exist d3 > 0 and

l3 > 0 such that
IRN ,1(U0 + w) � IRN ,1(U0) + l3‖w‖4 (3.22)

for w ∈ span{v, v0} such that ‖w‖ � d3 and ‖w1‖ � L3‖w0‖. From (3.21) and
(3.22), it is easy to see, using (3.18) again, that there exists d4 > 0 and l4 > 0 such
that

IRN ,1(U0 + w) � IRN ,1(U0) + l4‖w‖4 (3.23)

for w ∈ E such that ‖w‖ � d3 and ‖w1‖ � L3‖w0‖2. Then, combining (3.13)
and (3.23), we obtain the assertion.

Here we put

Eε,x = span
{

∂Wε,x

∂xi
: 1 � i � N

}
for each x ∈ M.

Then we have the following.

Lemma 3.5. There exists δ2 ∈ (0, δ1) and m2 > 0 such that for (ε, x) ∈ (0, ε0)×M
and w ∈ E⊥

ε,x ∩ Nε with ‖w‖ε < δ2, there exists w′ ∈ (E⊥
ε,x ∩ Nε) ∩ H1

0 (Bg(x, εα))
such that

‖w′‖2
ε � m2‖w‖2

ε, (3.24)

and satisfies one of the following conditions:

(i) Iε(Wε,x + w′) < Iε(Wε,x + w);

(ii) ‖w − w′‖ε � m2ε
2‖w‖ε and Iε(Wε,x + w′) � Iε(Wε,x + w) + m2ε

2‖w‖ε.

Proof. Let (ε, x) ∈ (0, ε0) × M . By (f2) and Sobolev’s embedding theorem, we can
choose δ2 ∈ (0, δ1) sufficiently small that

1
εN

∫
M

f(w)w dµg � 1
4εN

∫
M

|w|2ε dµg (3.25)

and
1

εN

∫
M\Bg(x,a)

f(w)w dµg � 1
4εN

∫
M\Bg(x,a)

|w|2ε dµg (3.26)
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for all a ∈ (ε, 1
2 ) and w ∈ H with ‖w‖ε < δ2. Recall that Wε,x = 0 on M\Bg(x, 1

2εα).
Let w ∈ E⊥

ε,x ∩ Nε with ‖w‖ε � δ2. We set

n =
[

1
20ε1−α

]
.

Here [t] denotes the minimal natural number greater than or equals to t ∈ R
+.

Then, noting that ∫
M

f(w)w � 1
4‖w‖2

ε,

there exists k1 ∈ N such that 10n � k1 � 11n − 1 and

1
εN

∫
Bg(x,ε(k1+1))\Bg(x,εk1)

(|w|2ε + f(w)w) dµg � 5
4 · 20ε1−α‖w‖2

ε = 25ε1−α‖w‖2
ε.

(3.27)
Let ϕ be the function defined at the beginning of this section. We set

ϕ1(z) = ϕ(ε−1 · dist(Bg(x, εk1), z)) for z ∈ M.

where dist(A, x) stands for the distance of x ∈ M from A ⊂ M with respect to
the Riemannian metric g. Then ϕ1(z) = 0 on M \ Bg(x, ε(k1 + 1)), ϕ1(z) = 1 on
Bg(x, εk1) and |∇gϕi| � C0ε

−1 on M for some C0 > 0. We also set

w1(z) = ϕ1(z)w(z) on M. (3.28)

Then since w1 = w on supp ∂Wε,x/∂xi for 1 � i � N , we find that w1 ∈ E⊥
ε,x. On

the other hand, we have∫
Bg(x,ε(k1+1))

|∇g(Wε,x + w1)|2 dµg

=
∫

Bg(x,ε(k1+1))
|∇g(Wε,x + w) + (∇gϕ1)w + (ϕ1 − 1)∇gw|2 dµg

=
∫

Bg(x,ε(k1+1))
|∇g(Wε,x + w)|2 dµg

+
∫

Bg(x,ε(k1+1))\Bg(x,εk1)
|(∇gϕ1)w + (ϕ1 − 1)∇gw|2 dµg

+ 2
∫

Bg(x,ε(k1+1))\Bg(x,εk1)
∇gw · ((∇gϕ1)w + (ϕ1 − 1)∇gw) dµg.

Noting that

ε2
∫

Bg(x,ε(k1+1))\Bg(x,εk1)
|(∇gϕ1)w|2 dµg � 25ε1−αC2

0‖w‖2
ε

and |∇gϕ1| � C0ε
−1, we have that, for some C > 0,∣∣∣∣ ε2

εN

∫
Bg(x,ε(k1+1))\Bg(x,εk1)

∇gw · ((∇gϕ1)w + (ϕ1 − 1)∇gw)
∣∣∣∣ � Cε1−α‖w‖2

ε
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and

ε2

εN

∫
Bg(x,ε(k1+1))\Bg(x,εk1)

|(∇gϕ1)w + (ϕ1 − 1)∇gw|2 � Cε1−α‖w‖2
ε.

Then we find that there exists C1 > 0 such that∣∣∣∣ 1
εN

∫
Bg(x,ε(k1+1))

|Wε,x + w1|2ε dµg − 1
εN

∫
Bg(x,ε(k1+1))

|Wε,x + w|2ε dµg

∣∣∣∣
� C1ε

1−α‖w‖2
ε. (3.29)

Similarly, we have from (3.27) and (f1) that, by choosing C1 sufficiently large,

1
εN

∫
Bg(x,ε(k1+1))

F (Wε,x + w1) dµg

� 1
εN

∫
Bg(x,ε(k1+1))

F (Wε,x + w) dµg − 1
2C1ε

1−α‖w‖2
ε.

Then we obtain

1
εN

∫
Bg(x,ε(k1+1))

( 1
2 |Wε,x + w1|2ε − F (Wε,x + w1)) dµg

� 1
εN

∫
Bg(x,ε(k1+1))

( 1
2 |Wε,x + w|2ε − F (Wε,x + w)) dµg + C1ε

1−α‖w‖2
ε. (3.30)

Then, since Wε,x = 0 on M \ Bg(x, εk1) and F (t) � f(t)t for t ∈ R, we obtain
from (3.26) and (3.30) that

Iε(Wε,x + w1)

< Iε(Wε,x + w) −
(

1
εN

∫
M\Bg(x,ε(k1+1))

( 1
2 |w|2ε − F (w)) dµg − C1ε

1−α‖w‖2
ε

)

� Iε(Wε,x + w) −
(

1
4εN

∫
M\Bg(x,ε(k1+1))

|w|2ε dµg − C1ε
1−α‖w‖2

ε

)
. (3.31)

Here we consider two cases.

Case 1. Suppose that

1
4εN

∫
M\Bg(x,ε(k1+1))

|w|2ε dµg � 2C1ε
1−α‖w‖2.

For simplicity of notation, we set W = Wε,x+w1. Then we have, from the inequality
above, that

Iε(W ) = Iε(Wε,x + w1) < Iε(Wε,x + w) − 1
8εN

∫
M\Bg(x,ε(k1+1))

|w|2ε dµg. (3.32)

On the other hand, noting that

‖Wε,x + w‖2
ε − 1

εN

∫
M

f(Wε,x + w)(Wε,x + w) dµg = 0,
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we have by (3.29) that∣∣∣∣‖W‖ε − 1
εN

∫
M

f(W )W dµg

∣∣∣∣
=

∣∣∣∣‖Wε,x + w‖2
ε − ‖W‖2

ε − 1
εN

∫
M

(f(Wε,x + w)(Wε,x + w) − f(W )W ) dµg

∣∣∣∣
� |‖Wε,x + w‖2

ε − ‖Wε,x + w1‖2
ε| +

1
εN

∫
M\Bg(x,εk1)

f(w)(w) dµg

� C1ε
1−α‖w‖2

ε +
1

εN

∫
M\Bg(x,εk1)

f(w)(w) dµg.

Then, again by (3.26) and (3.27), we have that there exists C > 0 such that∣∣∣∣‖W‖2
ε − 1

εN

∫
M

f(W )W dµg

∣∣∣∣ � 1
4εN

∫
M\Bg(x,ε(k1+1))

|w|2ε dµg + Cε1−α‖w‖2
ε

�
(

2C1 + C

8C1

)
1

εN

∫
M\Bg(x,ε(k1+1))

|w|2ε. (3.33)

Now let τ ∈ R such that (1+τ)(Wε,x+w1) ∈ Nε. Note that (1+τ)(Wε,x+w1) ∈ E⊥
ε,x.

We shall see that Iε((1 + τ)(Wε,x + w1)) < Iε(Wε,x + w). That is, we claim that
(i) holds with w′ = τWε,x + (1 + τ)w1. From the definition of τ , we have, by (3.6)
and (3.8) with W = Wε,x + w1, that

|τ | � 2
L0

(
‖W‖2

ε − 1
εN

∫
M

f(W )W dµg

)

�
(

2C1 + C

8C1

)
2

L0εN

∫
M\Bg(x,ε(k1+1))

|w|2ε dµg. (3.34)

Then by (3.32) and (3.9) with W = Wε,x + w1, we have

Iε((1 + τ)(Wε,x + w1))

= Iε(W ) + τ

(
‖W‖2

ε − 1
εN

∫
M

f(W )W dµg

)
+ O(τ2)

< Iε(Wε,x + w) − 1
8εN

∫
M\Bg(x,ε(k1+1))

|w|2ε dµg

+
2
L0

[(
2C1 + C

8C1

)
1

εN

∫
M\Bg(x,ε(k1+1))

|w|2ε dµg

]2
+ O(τ2).

Since ‖w1‖ε → 0 as ε → 0, we find that, for ε > 0 sufficiently small,

Iε((1 + τ)(Wε,x + w1)) < Iε(Wε,x + w)

holds, as claimed.

Case 2. We next assume that
1

4εN

∫
M\Bg(x,ε(k1+1))

|∇gw|2ε dµg � 2C1ε
1−α‖w‖2

ε.
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Then we can find k2 ∈ N such that 11n � k � 12n − 1 and

1
εN

∫
Bg(x,ε(k2+1))\Bg(x,εk2)

(|∇gw|2ε + f(w)w) dµg � 200C1ε
2(1−α)‖w‖2

ε.

We set

ϕ2(z) = ϕ(ε−1 · dist(Bg(x, εk2), z)) and w2(z) = ϕ2(z)w(z) on M.

Then, by the same argument as above, we have that there exists C2 > 0 such that

Iε(Wε,x +w2) < Iε(Wε,x +w)−
(

1
4εN

∫
M\Bg(x,ε(k2+1))

|w|2ε dµg −C2ε
2(1−α)‖w‖2

ε

)
.

If
1
4

∫
M\Bg(x,ε(k2+1))

|∇gw|2ε dµg > 2C2ε
2(1−α)‖w‖2

ε,

then we find, for τ ∈ R such that (1 + τ)(Wε,x + w2) ∈ Nε, that

Iε((1 + τ)(Wε,x + w2)) < Iε(Wε,x + w),

and then (i) holds with w′ = τWε,x + (1 + τ)w2.
Repeating this procedure, we can define positive integers ki and functions wi for

i � 3. That is, if (i) does not hold, then there exist C10 > 0 and k10 ∈ N with
19n � k10 � 20n − 1 such that

1
4

∫
M\Bg(x,ε(k10+1))

|∇gw|2ε dµg � 2C10ε
10(1−α)‖w‖2

ε.

We set

ϕ10(z) = ϕ(ε−1 · dist(Bg(x, εk10), z)) and w10(z) = ϕ10(z)w(z) on M.

Then since 10(1 − α) > 4 by the assumption, we find that

‖w − w10‖2
ε = O(ε10(1−α)‖w‖2

ε) = o(ε4‖w‖2
ε),

and then by a parallel argument as above we find that |τ | = O(ε2‖w‖2
ε). That is,

by setting w′ = τWε,x + (1 + τ)w10, we have that ‖w−w′‖ε = o(ε2‖w‖ε) and then,
by the definition of Iε, we can deduce that

Iε(Wε,x + w′) � Iε(Wε,x + w) + O(ε2‖w‖ε).

This completes the proof.

Lemma 3.6. There exists δ3 ∈ (0, δ2) such that

Iε(Wε,x + w) � Iε(Wε,x) + m3‖w‖4
ε − m4(ε1+α‖w‖ε + ε2α‖w‖2

ε) (3.35)

for all (ε, x) ∈ (0, ε0) × M and w ∈ E⊥
ε,x such that Wε,x + w ∈ Nε and ‖w‖ε � δ3.
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Proof. We first note that we can choose δ3 ∈ (0, δ2) sufficiently small that, for
w ∈ H with ∫

Bg(x,εα/2)
|w|2ε dµg < δ3,

we have
1

εN

∫
Bg(x,εα/2)

(w2 + |w|3) dµg <
2

εN

∫
Bg(x,εα/2)

|w|2ε dµg

for all (ε, x) ∈ (0, ε0) × M . On the other hand, we have from (3.2) that, for some
m > 0,

1
εN

∫
Bg(x,εα/2)

f ′(Wε,x + θw)w2 dµg � m

εN

∫
Bg(x,εα/2)

(w2 + |w|3) dµg

for θ ∈ [0, 1] and w ∈ H. Therefore, combining the inequalities above, we have that

1
εN

∫
Bg(x,εα/2)

f ′(Wε,x + θw)w2 dµg � 2m

εN

∫
Bg(x,εα/2)

|w|2ε dµg (3.36)

for all (ε, x) ∈ (0, ε0) × M and w ∈ H with∫
Bg(x,εα/2)

|w|2ε dµg < δ3.

Now let (ε, x) ∈ (0, ε0) × M . From lemma A.4 and the inequality above, we have
that ∫

Bg(x,εα/2)
[( 1

2 |Wε,x + w|2ε − F (Wε,x + w)) − ( 1
2 |Wε,x|2 − F (Wε,x))] dµg

�
∫

Bg(x,εα/2)
(−∆gWε,x + Wε,x − f(Wε,x))w dµg

+ 1
2

∫
Bg(x,εα/2)

(|w|2ε − f ′(Wε,x + θ)w2) dµg

� −m̄ε1−α‖w‖ε − 2m

εN

∫
Bg(x,εα/2)

|w|2ε dµg. (3.37)

On the other hand, we have by (3.26) that∫
M\Bg(x,εα/2)

[( 1
2 |Wε,x + w|2ε − F (Wε,x + w)) − ( 1

2 |Wε,x|2 − F (Wε,x))] dµg

=
∫

M\Bg(x,εα/2)
( 1
2 |w|2ε − F (w)) dµg

� 1
4

∫
M\Bg(x,εα/2)

|w|2ε dµg. (3.38)

Now suppose that

2m

∫
Bg(x,εα/2)

|w|2ε dµg � 1
8

∫
M\Bg(x,εα/2)

|w|2ε dµg.
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Then from (3.37) and (3.38), we have

Iε(Wε,x + w) � Iε(Wε,x) + 1
8

∫
M\Bg(x,εα/2)

|w|2ε dµg − m̄ε1+α‖w‖ε

� Iε(Wε,x) + m′‖w‖2
ε − m̄ε1+α‖w‖ε

� Iε(Wε,x) + m′‖w‖4
ε − m̄ε1+α‖w‖ε,

where m′ = 2m/(16m + 1). That is (3.35) holds for some m3 and m4.
We next assume that

2m

∫
Bg(x,εα/2)

|w|2ε dµg � 1
8

∫
M\Bg(x,εα/2)

|w|2ε dµg. (3.39)

Then, by lemma 3.5, there exists w′ ∈ (E⊥
ε,x ∩ Nε) ∩ H1

0 (Bg(x, εα)) such that (i) or
(ii) of lemma 3.5 is satisfied.

We first consider the case that (i) holds. From the proof of lemma 3.5, we have
that w′ has the form w′ = τWε,x+(1+τ)wi, 1 � i � 10, where wi = w on Bg(x, 1

2εα)
and τ ∈ R. From (3.34) with k1 replaced by ki, we have that |τ | = O(‖w‖2

ε). Then
from (3.39), by choosing δ3 sufficiently small, we have that there exists d1 > 0 such
that ‖w′‖ε � d1‖w‖ε. Here we set

H(v) =
1
v
(F (Wε,x + v) − F (Wε,x)) − f(Wε,x) for (ε, x) ∈ (0, ε0) × M and v ∈ H.

We also set

H̃(v) =
1
v
(F (Wε + v) − F (Wε)) − f(Wε) for v ∈ H1(RN ).

Then we have H(v) = H̃(ṽ) for v ∈ H1
0 (Bg(x, 1)), where ṽ(z) = v(exp−1

x (z)) for
z ∈ B1(0). For each v ∈ H with ‖v‖ε sufficiently small, we have that there exists
θ ∈ (0, 1) such that

〈H(w), v〉ε = 〈f ′(Wε,x + θw)w, v〉ε.

Then noting that (3.36) holds with M \ Bg(x, εα/2) replaced by M , we find that
there exists Ch > 0 such that

〈H(w), v〉ε � Ch(|w|2,ε + |w|23,ε)|v|3,ε for v, w ∈ H. (3.40)

That is H(w) ∈ L3/2(Bg(x, εα/2)) and |H(w)|3/2 � Ch(|w|2,ε+|w|23,ε). Then noting
that ‖w‖ε is small, we have by lemma A.5 that

〈H(w′), w′〉ε − 〈H̃(w′), w′〉RN ,ε = O(ε2α(|w|2,ε + |w|23,ε)|w|3,ε) = O(ε2α‖w‖2
ε).
(3.41)

From the definition of H and Iε, we have

Iε(Wε,x + w′) − Iε(Wε,x) = 〈−∆gWε,x + Wε,x − f(Wε,x), w′〉ε + 〈H(w′), w′〉ε

= O(ε1+α‖w‖ε) + 〈H(w′), w′〉ε.

Then by (3.41), we have

Iε(Wε,x +w′)− Iε(Wε,x) = O(ε1+α‖w‖ε)+O(ε2α‖w′‖2
ε)+ 〈H̃(w′), w′〉RN ,ε, (3.42)
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where we identify w′ with the function w′(exp−1
x (·)) on Bεα(0). By lemma A.5, we

have that there exists v′ ∈ H1
0 (Bεα(0)) ∩ NRN ,ε and ‖v′ − w′‖RN ,ε = O(ε2α‖w′‖ε).

Then we have

|〈H̃(v′), v′〉RN ,ε − 〈H̃(w′), w′〉RN ,ε| = O(ε2α‖w′‖2
ε), (3.43)

On the other hand, we have, by lemma 3.4,

m1‖v′‖4
RN ,ε � IRN ,ε(Wε + v′) − IRN ,ε(Wε)

= 1
2 〈−∆Wε + Wε − f(Wε), v′〉RN ,ε + 〈H̃(v′), v′〉RN ,ε

= O

(
exp

(
− 1

8ε1−α

)
‖v′‖RN ,ε

)
+ 〈H(v′), v′〉RN ,ε. (3.44)

Then combining (3.42)–(3.44), assuming that ε is sufficiently small, we obtain that

Iε(Wε,x + w′) − Iε(Wε,x) � m1‖v′‖4
RN ,ε + O(ε1+α‖w‖ε) + O(ε2α‖w′‖2

ε).

Therefore,

Iε(Wε,x+w) � Iε(Wε,x+w′) � Iε(Wε,x)+m1‖v′‖4
RN ,ε+O(ε1+α‖w‖ε)+O(ε2α‖w′‖2

ε).

Recalling that ‖w′‖ε � d1‖w‖ε and ‖w′ − v′‖RN ,ε = O(ε2α‖w′‖ε), we have

Iε(Wε,x + w) � Iε(Wε,x) + m1d
4
1‖w‖4

RN ,ε + O(ε1+α‖w‖ε) + O(ε2α‖w‖2
ε).

That is (3.35) holds for some m3 and m4. By a parallel argument as above, we
find that there exist m3 and m4 such that (3.35) holds for w satisfying (3.39) and
lemma 3.5(ii). This completes the proof.

4. Proof of theorem 1.1

For each L ∈ K(τ), we choose open neighbourhoods U
(1)
L , U

(2)
L and VL of L satisfying

the following conditions:

V̄L ⊂ U
(1)
L ⊂ U

(1)
L ⊂ U

(2)
L and U

(2)
L ∩ U

(2)
L′ = ∅ if L, L′ ∈ K(τ) and L �= L′.

Then for L ∈ KC(τ),

H∗((−τ)cL ∩VL, ((−τ)cL \L)∩VL) ∼= H∗((−τ)cL ∩U
(2)
L , ((−τ)cL \L)∩U

(2)
L ) �= {0}.

Since M is compact, we have that

md = min
x∈M\VK

{
max

∣∣∣∣∂τ(x)
∂xi

∣∣∣∣ : 1 � i � N

}
> 0, (4.1)

where VK =
⋃

{VL : L ∈ K(τ)}. Then we have the following lemma.

Lemma 4.1. There exist a0 ∈ (0, 1) and δ4 ∈ (0, δ3) such that, for each ε ∈ (0, ε0),
x ∈ M and w ∈ E⊥

ε,x with Wε,x + w ∈ Nε and ‖w‖ε � δ4,

‖QWε,x+w∇Iε(Wε,x + w)‖ε � a0‖∇Iε(Wε,x + w)‖ε,

where Qv is the projection from H to TvNε for each v ∈ Nε.
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Proof. Since U0 is transversal to NRN ,1, we have that there exists a ∈ (0, 1) such
that

〈〈U0, v〉〉RN ,1 � a‖U0‖RN ,1‖v‖RN ,1 for all v ∈ TU0NRN ,1. (4.2)

Then, for any ε > 0,

〈〈Uε, v〉〉RN ,ε � a‖Uε‖RN ,ε‖v‖RN ,ε for all v ∈ TUεNRN ,ε.

Let a1, a2 ∈ (0, 1) such that a < a1 < a2. Since (2.14) holds, by the definition of
Wε, assuming ε0 is sufficiently small, we have that

〈〈Wε, v〉〉RN ,ε � a1‖Wε‖RN ,ε‖v‖RN ,ε for all v ∈ TN (Wε)NRN ,ε.

Then recalling that suppWε,x ⊂ Bg(x, εα/2) for x ∈ M and (gx)ij(εαz) → 1, as
ε → 0 uniformly on B1(0), again assuming that ε0 is sufficiently small, for each
ε ∈ (0, ε0) and x ∈ M , we have that

〈〈Wε, v〉〉ε � a2‖Wε,x‖ε‖v‖ε for all v ∈ TNε(Wε,x)Nε. (4.3)

Then it is easy to verify that there exists δ4 ∈ (0, δ3) and a3 ∈ (a2, 1) such that for
each ε ∈ (0, ε0) and w ∈ H such that ‖w‖ε � δ4 and Wε,x + w ∈ Nε,

〈〈Wε,x + w, v〉〉ε � a3‖Wε,x + w‖ε‖v‖ε for all v ∈ TNε(Wε,x+w)Nε. (4.4)

By definition,
〈〈∇Iε(Nε(Wε,x + w)), Wε,x + w〉〉ε = 0

for each w ∈ H, that is ∇Iε(Nε(Wε,x + w)) is orthogonal to Wε,x + w for (ε, x) ∈
(0, ε0) × M and w ∈ H. Then the assertion follows from (4.4).

Lemma 4.2. There exists m5 > 0 such that for (ε, x) ∈ (0, ε0) × (M \ VK) and
w ∈ E⊥

ε,x with ‖w‖ε � δ4,

‖Qε,x,S∇Iε(Wε,x)‖ε � m5ε
2,

where Qε,x,S is the projection from H to TWε,x S̃ε for each x ∈ M .

Proof. Let (ε, x) ∈ (0, ε0) × (M \ VK). Then noting that

∂Wε,x

∂xi
=

d
dt

Wε,x+txi

∣∣∣∣
t=0

for x ∈ M and 1 � i � N,

we have by (2.4), (2.6) and (2.14) that

∂

∂xi
Iε(Wε,x)

=
〈

− ε2∆W + W − f(W ),
∂Wε,x

∂xi

〉
ε

=
1

εN

∫
SN−1

dζ

∫ 1

0
( 1
2 (ε2|∇Wε|2 + |Wε|2) − F (Wε))

∂ηx

∂xi
rN−1 dr
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= 	

∫ 1/ε

0
( 1
2 (|∇(ϕ1U0)|2 + ϕ2

1|U0|2) − F (ψU0))
(

ε2

3
y

∂τ

∂xi
+ O(ε2y2)

)
yN−1 dy

=
ε2	

3

∫ ∞

0
( 1
2 (|∇U0|2 + |U0|2) − F (U0))

∂τ

∂xi
yN dy

+
ε2	

3

∫ ∞

1/4ε1−α

( 1
2 (|∇(ϕ1U0)|2 − |∇U0|2

+ (ϕ2
1 − 1)|U0|2) − F (ψU0) + F (U0))

∂τ

∂xi
yN dy + O(ε3)

=
ε2	

3
A2

∂τ(x)
∂xi

+ O(ε3)

where
A2 =

∫ ∞

0
( 1
2 (|∇U0|2 + |U0|2) − F (U0))rN dr.

Then by (4.1), the assertion follows.

Here we define a semiflow on Nε associated with the functional Iε. For each
ε ∈ (0, ε0), we can define, by a standard argument, a pseudo-gradient vector field
Vε : Nε → TNε satisfying the following conditions:

(i) for each v ∈ Nε, Vε(v) ∈ TvNε;

(ii) ‖Vε(v)‖ε � 2‖Qv∇Iε(v)‖ε for v ∈ Nε;

(iii) 〈〈Vε(v),∇Iε(v)〉〉ε � 1
2‖Qv∇Iε(v)‖2

ε for v ∈ Nε.

We define a semiflow ρε : [0,∞) × Nε → Nε by

dρε(t, v)
dt

= −Vε(ρε(t, v)) for t > 0,

ρε(0, v) = v ∈ Nε.

Similarly, we can construct a pseudo-gradient vector field Vε,S : S̃ε → T S̃ε satisfying
(i)–(iii) with Qv replaced by Qε,x,S . Then we define a semiflow ρε,S : [0,∞)× S̃ε →
S̃ε in the same way as above, with Vε replaced by Vε,S .

Let l0 > 0 such that

m3l0 > 4A max
{∣∣∣∣∂τ(x)

∂xi

∣∣∣∣ : x ∈ M, 1 � i � N

}
,

where A is the constant defined in lemma 3.2. By lemmas 3.2 and 3.3 we can choose
ε1 ∈ (0, ε0) so small that

Iε(Nε(Wε,x)) � c0 + 2Aε2|τ(x)| for all ε ∈ (0, ε1) and x ∈ M. (4.5)

We may assume ε1 is so small that

m3‖w‖4
ε − m4(ε1+α‖w‖ε + ε2α‖w‖2

ε) � 1
2m3‖w‖4

ε (4.6)

for ε ∈ (0, ε1) and w ∈ H with ‖w‖ε = l0
√

ε, where m3 and m4 are constants given
in lemma 3.6. Then, from lemma 3.6 and the inequalities above, we have that

Iε(Nε(Wε,x)) < c0 + 2Aε2|τ(x)| < Iε(Wε,x + w) (4.7)
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for (ε, x) ∈ (0, ε1) × M and w ∈ ∂Dl0
√

ε(S̃ε) ∩ Nε. By the definition of semiflows
ρε, we have Iε(ρε(t, Nε(Wε,x))) � Iε(Nε(Wε,x)) for all (t, x) ∈ [0,∞) × M . Then
we find that

ρε(t, S̃ε) ⊂ Dd0
√

ε(S̃ε) for all (ε, t) ∈ (0, ε1) × [0,∞). (4.8)

We set

Ωε(L) = {v ∈ Dl0
√

ε(S̃ε) : Pεv ∈ VL}

and

Ωi,ε(L) = {v ∈ Dl0
√

ε(S̃ε) : Pεv ∈ U
(i)
L }

for (ε, L) ∈ (0, ε1) × K(τ) and i = 1, 2. For each L ∈ KC(τ) and ε ∈ (0, ε1), we set

d1 = inf
L∈K(τ),ε∈(0,ε1)

inf{‖Wε,x − Wε,y‖ε : x ∈ ∂U
(1)
L and y ∈ ∂VL ∪ ∂U

(2)
L }.

Then by the definition Ωi,ε, assuming that δ0 is sufficiently small, we find that
d1 > 0.

Lemma 4.3. Let ε ∈ (0, ε1) and L ∈ KC(τ). Suppose that there exists no critical
point of Iε in Id

ε ∩ Ω2,ε(L), where d = sup{Iε(N (Wε,x)) : x ∈ U
(2)
L }. Then, for x ∈

Ω2,ε(L), there exist t̃x ∈ [0,∞) and a semiflow ρ̃ε : {(t, x) : t ∈ [0, t̃x), x ∈ VL} →
Ω2,ε(L) such that, for each x ∈ VL:

(a) Pερ̃ε(t, x) ∈ U
(2)
L for t ∈ [0, t̃x) and Pερ̃ε(t̃x, x) ∈ ∂U

(2)
L ;

(b) Iε(ρ̃ε(t̃x, x)) � Iε(Wε,x) − m6ε
2, where m6 is a positive number independent

of L and x.

Proof. Let ε ∈ (0, ε1) and L ∈ KC(τ). Assume that there exists no critical point of
Iε in Id

ε ∩ Ω2,ε(L). Let x ∈ VL. If ρε(t, Nε(Wε,x)) ∈ Ω1,ε(L) for all t � 0, then we
have

lim
t→∞

Iε(ρε(t, Nε(Wε,x))) = −∞

by assumption. Since inf{Iε(Nε(Wε,x)) : x ∈ M} > 0, we find that there exists
t1,x � 0 such that

ρε(t, Nε(Wε,x)) ∈ Ω1,ε(L) for t ∈ (0, t1,x)

and
Pερε(t1,x,Nε(Wε,x)) ∈ ∂U

(1)
L .

Set y = Pερε(t1,x,Nε(Wε,x)). Noting that inf{Iε(Nε(Wε,x)) : x ∈ M} > −∞, we
have, by lemma 4.2 and the definition of ρε,S , that there exists t2,x > 0 such that

Pερε,S(t2,x, Wε,y) ∈ ∂U
(2)
L ∪ ∂VL.

From the definition of ρε,S , we have

‖ρε,S(t, Wε,y) − Wε,y‖ε �
∫ t

0

∥∥∥∥dρε,S(τ, Wε,y)
dτ

∥∥∥∥
ε

dτ �
∫ t

0
‖Vε,S(ρε(τ, Wε,y))‖ε dt.
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Since Pερε,S(t2,x, Wε,x) ∈ ∂U
(2)
L ∪ ∂VL, we have, by the definition of d1, that

‖ρε,S(t2,x, Wε,y) − Wε,y‖ε � d1.

It then follows from lemma 4.2 and the definition of ρε,S that

Iε(ρε,S(t2,x, Wε,y)) � Iε(Wε,y) −
∫ t2,x

0

〈〈
∇Iε(ρε,S(τ, Wε,y)),

dρε,S(τ, Wε,y)
dt

〉〉
ε

dτ

� Iε(Wε,y) − 1
2

∫ t2,x

0
‖Qε,Pερε,S(τ,Wε,y),S∇Iε(ρε,S(τ, Wε,y))‖2

ε dt

� Iε(Wε,y) − 1
4m5ε

2
∫ t2,x

0
‖Vε,S(ρε,S(τ, Wε,y))‖ε dt

� Iε(Wε,y) − 1
4m5ε

2d1.

Since
z = Pερε,S(t2,x, Wε,x) ∈ ∂VL ∪ ∂U

(2)
L ,

we have that there exists t3,x � 0 such that Pερε(t3,x,Nε(Wε,z)) ∈ ∂U
(2)
L . Clearly,

t3,x = 0 if z ∈ ∂U
(2)
L . We now define a semiflow as follows: let x ∈ VL. We set

t̃1,x = t1,x + 1, t̃2,x = t1,x + t2,x + 1 and t̃x = t1,x + t2,x + t3,x + 2. Then we set

ρ̃ε(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρε(t, Nε(Wε,x)) for 0 � t � t1,x,

(t1,x + 1 − t)pε(t1,x, Wε,x) + (t − t1,x)Wε,y for t1,x < t � t̃1,x,

ρε,S(t − t̃1,x, Wε,y) for t̃1,x < t � t̃2,x,

(t̃2,x + 1 − t)Wε,z + (t − t̃2,x)Nε(Wε,z) for t̃2,x < t � t̃2,x + 1,

ρε(t − t̃2,x − 1,Nε(Wε,z)) for t̃2,x + 1 < t � t̃x.

From the definition of ρ̃ε, we have

Iε(ρ̃ε(t1,x, x)) � Iε(Nε(Wε,x)). (4.9)

Then, by lemma 3.3, it follows that

Iε(ρ̃ε(t̃1,x, x)) � Iε(Nε(Wε,x)) + O(ε2(1+α)). (4.10)

Similarly, we have

Iε(ρ̃ε(t̃2,x + 1, x)) � Iε(ρ̃ε(t̃2,x, x)) + O(ε2(1+α))

� Iε(ρ̃ε(t̃1,x, x)) − 1
4m5ε

2d1 + O(ε2(1+α)).

Finally, combining the above inequality with (4.10), we find that

Iε(ρ̃ε(t̃x, x)) � Iε(ρ̃ε(t̃2,x + 1, x)) � Iε(Nε(Wε,x)) − 1
4m5ε

2d1 + O(ε2(1+α)).

Then by assuming ε1 is sufficiently small, we obtain assertion (b).

We can now complete the proof of theorem 1.1.
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Proof of theorem 1.1. Since (UL \ L) ∩ K(τ) = ∅ for each L ∈ K(τ), we can choose
d > 0 so small that d < m6/4A and

H∗((−τ)cL ∩ VL, ((−τ)cL \ L) ∩ VL)
∼= H∗((−τ)cL ∩ VL, (−τ)cL−2d ∩ VL)

∼= H∗((−τ)cL ∩ UL, (−τ)cL−d ∩ UL) for each L ∈ KC(τ).

Now fix ε ∈ (0, ε1) and L ∈ KC(τ) and set

d = sup{Iε(Nε(Wε,x)) : x ∈ U
(2)
L }.

We prove the assertion by contradiction. That is, we assume that there exists no
critical point of Iε in Ω2,ε(L) ∩ Id

ε . We define a homotopy of mappings σ : [0, 1] ×
VL → UL by

σ(t, x) =

{
Pε(2tNε(Wε,x) + (1 − 2t)Wε,x) if t ∈ [0, 1

2 ],

Pερ̃ε(t̃x(2t − 1),Nε(Wε,x)) if t ∈ ( 1
2 , 1],

for x ∈ VL, where t̃x ∈ [0,∞) defined in lemma 4.3. Then by lemma 4.3, we have

Iε(ρ̃ε(t̃x,Nε(Wε,x))) � Iε(Wε,x) − m6ε
2.

Let z = Pερ̃ε(t̃x,Nε(Wε,x)). Then ρ̃ε(t̃x,Nε(Wε,x)) = Wε,z + w and w ∈ E⊥
ε,z with

‖w‖ε � l0
√

ε. Then, by lemma 3.6,

Iε(Wε,z) � Iε(Wε,z + w) + m4(ε1+α‖w‖ε + ε2α‖w‖2
ε)

� Iε(Wε,x) + (l0ε3/2+α + l20ε
1+2α) − m6ε

2.

From the inequality above, by choosing ε1 sufficiently small, we have that

Iε(Wε,z) � Iε(Wε,x) − 1
2m6ε

2.

Then we have by lemma 3.2 that

−τ(σ(1, x)) = −τ(z) � −τ(x) − m6

2A
+ O(ε).

Then again assuming that ε1 is sufficiently small, we have

−τ(σ(1, x)) � −τ(x) − m6

4A
.

On the other hand, it also follows from lemma 3.3 and the definition of ρ̃ε that
there exists m7 > 0 such that

Iε(Wε,x(t)) � Iε(Wε,x) + m7ε
2(1+α) for all t ∈ [0, t̃x], (4.11)

where x(t) = Pερ̃ε(t, x) for t ∈ [0, t̃x]. Then, assuming ε1 is sufficiently small, we
have

−τ(σ(t, x)) � −τ(x) + 1
2d for t ∈ [0, 1] and x ∈ VL. (4.12)

From the assumption, there exist q ∈ N and a q-singular chain α such that [α] is a
non-trivial element of Hq((−τ)cL ∩ VL, (−τ)cL−2d ∩ VL). For simplicity, we assume
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that α is a q-singular simplex, i.e. α : ∆q → (−τ)cL ∩ VL is a continuous mapping.
Then [α] is considered as a non-trivial element of

Hq((−τ)cL ∩ UL, (−τ)cL−2d ∩ UL).

We set m = sup{−τ(σ(t, x)) : (t, x) ∈ [0, 1] × α}. Since there is no critical point of
−τ in {x ∈ UL : − τ(x) > cL}, we have

Hq((−τ)cL+m ∩ UL, (−τ)cL−d ∩ UL) = Hq((−τ)cL ∩ UL, (−τ)cL−d ∩ UL)

and [α] is a non-trivial element of Hq((−τ)cL+m ∩ UL, (−τ)cL−d ∩ UL). The homo-
topy of mappings σ(·, α(·)) : [0, 1] × ∆q → M satisfies

σ(t, α(x)) ∈ (−τ)cL+m ∩ UL for each (t, x) ∈ [0, 1] × ∆q,

and

σ(t, α(x)) ∈ (−τ)cL−d ∩ UL for (t, x) ∈ [0, 1] × ∂∆q

by (4.12). That is [α] = [σ(t, α)] in Hq((−τ)cL+m ∩ UL, (−τ)cL−d ∩ UL) for each
t ∈ [0, 1]. On the other hand, we have

σ(1, α(x)) ∈ (−τ)cL−d ∩ UL for all x ∈ ∆q.

That is [σ(1, α)] = {0} in Hq((−τ)cL+m ∩ UL, (−τ)cL−d ∩ UL). This is a contradic-
tion. Therefore, we have that there exists a critical point of Iε in Ω2,ε(L)∩Id

ε . Since
Ω2,ε(L) ∩ Ω2,ε(L′) = ∅ for L �= L′, the assertion of theorem 1.1 holds.
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Appendix A.

Let τ0 : H1(RN ) \ {−U0} → R such that (1 + τ0(w))(U0 + w) ∈ NRN ,1 for w ∈
H1(RN ) \ {−U0}. Then we have the following.

Lemma A.1.

(i) There exists L1 > 0 and d1 > 0 such that

|τ0(w)| � L1‖w‖RN ,1 for w ∈ H1(RN ) with ‖w‖RN ,1 < d1.

(ii)
∫

RN

f ′′(U0)v3
0 dµ = 0.

Proof. For simplicity, we write ‖·‖ and 〈·, ·〉 instead of ‖ · ‖RN ,1 and 〈·, ·〉RN ,1, respec-
tively. Let w ∈ H1(RN ). From the definition of τ = τ0(w), (1 + τ)(U0 + w) ∈ NRN ,1,
i.e.

(1 + τ)2‖U0 + w‖2 =
∫

RN

f((1 + τ)(U0 + w))((1 + τ)(U0 + w))
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holds. Then, by the same computation as in the proof of lemma 3.3, we find

τ = −‖U0 + w‖2 −
∫

RN

f(U0 + w)(U0 + w)

×
(

2
(

‖U0 + w‖2 −
∫

RN

f(U0 + w)(U0 + w)
)

+
∫

RN

(f(U0 + w)(U0 + w) − f ′(U0 + w)(U0 + w)2)
)−1

. (A 1)

On the other hand, we have by the Taylor expansion that, for some θ ∈ (0, 1),

(‖U0 + w‖2 − 〈f(U0 + w), U0 + w〉)
= ‖U0‖2 + 2〈〈U0, w〉〉RN ,1 + ‖w‖2

−
〈

f(U0) + f ′(U0)w + 1
2f ′′(U0)w2 +

1
3!

f ′′′(U0 + θw)w3, U0 + w

〉
= 〈−∆U0 + U0 − f ′(U0)U0, w〉 + 〈−∆w + w − f(U0)w, w〉

− 〈 1
2f ′′(U0)w2, U0〉 + O(‖w‖3). (A 2)

We note that condition (3.2) ensure that f (n)(U0 + θw)wn+1 ∈ L3(RN ) for n � 1.
Then we can see that

‖U0 + w‖2 −
∫

RN

f(U0 + w)(U0 + w) = O(‖w‖).

Then by (3.7) and (A 1), we find

|τ | =
1
L0

∣∣∣∣‖U0 + w‖2 −
∫

RN

f(U0 + w)(U0 + w)
∣∣∣∣(1 + O(‖w‖)) = O(‖w‖). (A 3)

for ‖w‖ sufficiently small. This completes the proof of (i).

(ii) Let w ∈ H1(RN ) with ‖w‖ small. Then recalling that −∆v0+v0−f ′(U0)v0 = 0,
we have from A 2 with w = αv0, α ∈ R that

‖U0 + w‖2 −
∫

RN

f(U0 + w)(U0 + w) = −1
2

∫
RN

f ′′(U0)U0w
2 + O(‖w‖3). (A 4)

Again by the Taylor expansion, we have that

IRN ,1(U0 + w)

= 1
2 (‖U0‖2 + 2〈〈U0, w〉〉RN ,1 + ‖w‖2) −

∫
RN

F (U0 + w)

= IRN ,1(U0) + 〈〈U0, w〉〉RN ,1 + 1
2‖w‖2

−
∫

RN

(
f(U0)w + 1

2f ′(U0)w2 +
1
3!

f ′′(U0)w3 +
1
4!

f ′′′(U0 + θw)w4
)

= IRN ,1(U0) + 1
2 〈−∆w + w − f ′(U0)w, w〉

−
∫

RN

(
1
3!

f ′′(U0)w3 +
1
4!

f ′′′(U0 + θw)w4
)

. (A 5)
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Here we assume that
d =

∫
RN

f ′′(U0)v3
0 �= 0.

Then by setting w = αv0 in (A 5) with αd < 0, we have

IRN ,1(U0 + αv0) = IRN ,1(U0) + 1
3dα3 + O(α4). (A 6)

By (A 1) and (A 4), we have τ = O(α2) and

‖U0 + w‖2 −
∫

RN

f(U0 + w)(U0 + w) = O(α2).

Then

IRN ,1((1 + τ)(U0 + αv0))

= 1
2 (1 + τ)2‖U0 + αv0‖2 −

∫
RN

F ((1 + τ)(U0 + αv0))

= 1
2 (1 + 2τ)‖U0 + αv0‖2

−
∫

RN

(F (U0 + αv0) + τf(U0 + αv0)(U0 + αv0)) + O(τ2)

= IRN ,1(U0 + αv0) − τ

(
‖U0 + αv0‖2 −

∫
RN

f(U0 + αv0)(U0 + αv0)
)

+ O(α4)

= IRN ,1(U0) + 1
3dα3 + O(α4).

Therefore, we have that IRN ,1((1 + τ)(U0 + αv0)) < IRN ,1(U0) for α sufficiently
small with αd < 0. This contradicts (2.10).

Lemma A.2. For each (ε, x) ∈ (0, ε0) × M ,

1
εN

∫
SN−1

dζ

∫ 1

0
ϕ2

ε

(
Uε

∂Uε

∂r

)
∂ηx

∂r
rN−1 dr = 1

6N	τ(x)A1 + O(ε), (A 7)

and
1

εN

∫
M

|∇gϕ̃ · ∇gŨ |2 dµg = O

(
exp

(
− 1

4ε1−α

))
,

1
εN

∫
M

|Ũ∆gϕ̃|2 dµg = O

(
exp

(
− 1

4ε1−α

))
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 8)

where Ũ(z) = Uε(exp−1
x (z)) and ϕ̃(z) = ϕε(exp−1

x (z)) for z ∈ Bg(x, 1),

Proof. Let (ε, x) ∈ R
+ × M . We put U = Uε, ψ = ϕ1 and η = ηx. Then ψ and

U are radial, i.e. ψ(x) = ψ(|x|) and U(x) = U(|x|) for x ∈ R
N . Integrating the

left-hand side of (A 7) by parts, we have∫
SN−1

dζ

∫ 1

0
ϕ2

ε

(
U

dU

dr

)
∂η

∂r
rN−1 dr

= −1
2

∫
SN−1

dζ

×
∫ 1

0
U2

(
ϕ2

ε

∂2η

∂r2 rN−1 + 2ϕε
∂ϕε

∂r

∂η

∂r
rN−1 + (N − 1)rN−2ϕ2

ε

∂η

∂r

)
dr.
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Noting that
∂2η

∂r2 = −ρx(ζ)
3

+ O(r) for [r, ζ) ∈ (0, 1) × SN−1,

we find by setting y = ε−1r that

1
εN

∫
SN−1

dζ

∫ 1

0
ϕ2

εU
2 ∂2η

∂r2 rN−1 dr

=
∫

SN−1
dζ

∫ 1/ε

0
ψ2U2

0 (y)(− 1
3ρx(ζ) + O(εy))yN−1 dy

=
∫

SN−1
dζ

∫ ∞

0
U2

0 (y)(− 1
3ρx(ζ) + O(εy))yN−1 dy

+
∫

SN−1
dζ

∫ ∞

1/4ε1−α

(ψ2 − 1)U2
0 (y)

∂2η

∂r2 yN−1 dy

= − 1
3	τ(x)A1 + O(ε) + O

(
exp

(
− 1

4ε1−α

))
. (A 9)

Similarly, we find

1
εN

∫
SN−1

dζ

∫ 1

0
ϕ2

εU
2 ∂η

∂r
rN−2 dr

=
∫

SN−1
dζ

∫ 1/ε

0
ψ2U2

0 (− 1
3ρx(ζ) + O(εy))yN−1 dy

= − 1
3	τ(x)A1 + O(ε). (A 10)

Noting that ∂ψ/∂r = 0 on [0, 1
4εα], we also have, by (2.14),

1
εN

∫
SN−1

dζ

∫ 1

0
ϕε

∂ϕε

∂r
U2 ∂η

∂r
rN−1 dr

=
1

εN

∫
SN−1

dζ

∫ 1

1/4ε1−α

ψ
∂ψ

∂r
U2 ∂η

∂r
rN−1 dr = O

(
exp

(
− 1

4ε1−α

))
.

Then combining (A 9) and (A 10) with the equality above, we find that (A 7) holds.
Next we see that (A 8) holds. Again noting that ∂ψ/∂r = 0 on [0, 1

4εα] and that
(2.14) holds, by setting r = εy, we have that

1
εN

∫
M

|∇gϕ̃ · ∇gŨ |2 dµg

=
1

εN

∫
SN−1

dζ

∫ 1

εα/4

(
∂ψ

∂r

∂U

∂r

)2

ηrN−1 dr

=
∫

SN−1
dζ

∫ 1/ε

1/4ε1−α

(
∂ψ

∂r
(2ε1−αy)

)2(
∂U0

∂r
(y)

)2

ηyN−1 dy

= O

(
exp

(
− 1

4ε1−α

))
.
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By a parallel argument, we have

1
εN

∫
M

|Ũ∆gϕ̃|2 dµg = O

(
exp

(
− 1

4ε1−α

))
.

Lemma A.3. For each (ε, x) ∈ (0, ε0) × M ,

1
εN

∫
SN−1

dζ

∫ 1

0
( 1
2ϕ2

εf(ϕεUε)Uε − F (ϕεUε))ηxrN−1 dr = c0 − 1
6ε2τ(x)A0 + O(ε3).

(A 11)

Proof. Let (ε, x) ∈ (0, ε0) × M . We put ψ = ϕ1, U = Uε and η = ηx. Then

1
εN

∫
SN−1

dζ

∫ 1

0
( 1
2ϕ2

εf(ϕεU)U − F (ϕεU))ηrN−1 dr

=
∫

SN−1
dζ

∫ ∞

0
( 1
2f(U0)U0 − F (U0))ηyN−1 dy

+
∫ ∞

1/4ε1−α

((ψ2 − 1)f(U0)U0 + ψ2(f(ψU0) − f(U0))

− (F (ψU0) − F (U0)))ηyN−1 dy.

From (f2) and (2.13), noting p > 2, one can see that∫ ∞

1/4ε1−α

((ψ2 − 1)f(U0)U0

+ ψ2(f(ψU0) − f(U0)) − (F (ψU0) − F (U0)))ηyN−1 dy

= O

(
exp

(
− 1

4ε1−α

))
.

Then we have

1
εN

∫
SN−1

dζ

∫ 1

0
( 1
2ϕ2

εf(U)U − F (ϕεU))ηrN−1 dr

=
∫

SN−1
dζ

∫ ∞

0
( 1
2f(U0)U0 − F (U0))ηyN−1 dy + O

(
exp

(
− 1

4ε1−α

))
.

From (2.6) and (2.19), we have

1
εN

∫
SN−1

dζ

∫ 1

0
( 1
2ϕ2

εf(U)U − F (ϕεU))ηrN−1 dr

=
∫

SN−1
dζ

∫ ∞

0
( 1
2f(U0)U0 − F (U0))(1 − 1

6ε2ρx(ζ)y2 + O(ε3y3))yN−1 dr

+ O

(
exp

(
− 1

4ε1−α

))
= c0 − 1

6ε2	τ(x)A0 + O(ε3).

This completes the proof.
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Lemma A.4. There exists m̄ > 0 such that for each (ε, x) ∈ (0, ε0)×M and w ∈ H,

|〈−ε2∆gWε,x + Wε,x − f(Wε,x), w〉ε| � m̄ε1+α‖w‖ε.

Proof. Let (ε, x) ∈ (0, ε0)×M and w ∈ H. Setting W = Wε,x, ψ = ϕ1 and U = Uε,
we have by (3.3) that

〈−ε2∆gW + W − f(W ), w〉ε

= 〈ϕεf(U) − f(ϕεU), w〉ε

− ε2

εN

∫
SN−1

dζ

∫ 1

0
ϕε

∂U

∂r

∂η

∂r
wrN−1 dr + O

(
exp

(
− 1

8ε1−α

)
‖w‖ε

)
.

By the definition of ϕε and (2.13), we have

1
εN

∫
M

|ϕεf(U) − f(ϕεU)|2µg

�
∫

SN−1
dζ

∫ 1/ε

1/4ε1−α

|ψf(Uε) − f(ψUε)|2ηyN−1 dy

= O

(
exp

(
− 1

4ε1−α

))
(A 12)

and

ε2

εN

∫
SN−1

dζ

∫ 1

0
ϕε

∂U

∂r

∂η

∂r
wrN−1 dr

=
ε2

εN

∫
SN−1

dζ

∫ εα/4

0
ϕε

∂U

∂r

∂η

∂r
wrN−1 dr

+
ε2

εN

∫
SN−1

dζ

∫ 1

εα/4
ϕε

∂U

∂r

∂η

∂r
wrN−1 dr

� ε2

εN

∫
SN−1

dζ

∫ εα/4

0

∂U

∂r

∂η

∂r
wrN−1 dr + O(ε2‖w‖ε)

� ε

(
1

εN

∫
SN−1

dζ

∫ εα/4

0

(
∂η

∂r
w

)2

rN−1 dr

)1/2

‖U‖RN ,ε

� ε1+α|w|RN ,2,ε‖U‖RN ,ε.

Therefore, the assertion follows.

Lemma A.5. Let (ε, x) ∈ (0, ε0) × M .

(i) For v ∈ L3/2(Bg(x, εα)) and w ∈ L3(Bg(x, εα)),

|〈v, w〉ε − 〈ṽ, w̃〉RN ,ε| = O(ε2α|v|3/2,ε|w|3,ε). (A 13)

(ii) For v, w ∈ H1
0 (Bg(x, εα)),

|〈−ε2∆gv, w〉ε − 〈−ε2∆ṽ, w̃〉RN ,ε| = O(ε1+α‖v‖ε‖w‖ε), (A 14)

where ṽ(z) = v(expx(z)) and w̃(z) = w(expx(z)) for z ∈ B1(0).

https://doi.org/10.1017/S0308210510000892 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000892


Multiple existence of a nonlinear elliptic problem 113

(iii) For v ∈ H1
0 (Bg(x, εα)) ∩ E⊥

ε,x ∩ Nε with ‖v‖ε < δ0, there exists v′ ∈ H1(RN )∩
(T0S)⊥ ∩ N such that

‖v′ − ṽ‖RN ,ε = O(ε2α‖v‖ε),

where d2 > 0 is a constant independent of ε.

Proof. Let (ε, x) ∈ (0, ε0) × M , v ∈ L3/2(Bg(x, εα)) and w ∈ L3(Bg(x, εα)). Since
|gjk

x (z) − δjk| = O(|z|2) for 1 � j, k � N and z ∈ R
N with |z| sufficiently small, we

have

|〈ṽ, w̃〉RN ,ε − 〈v, w〉ε| =
1

εN

∣∣∣∣
∫

B1(0)
ṽ(y)w̃(y)(

√
|gx| − 1) dy1 dy2 · · ·dyN

∣∣∣∣
= O(ε2α|ṽ|,RN ,3/2,ε|w̃|RN ,3,ε)

= O(ε2α|v|3/2,ε|w|3,ε).

On the other hand, recalling that ∆ − ∆g = δij∂i∂j − (
√

|gx|)−1∂i(
√

|gx|∂j) and
|∇gx(z)| = O(|z|), we have

|〈ε2(∆ − ∆g)v, w〉ε| = ε

∣∣∣∣
∫

RN

ε∇ṽ(εz)w̃(εz)
∇√

gx(εz)

2
√

|gx|
dz1 dz2 · · ·dzN

∣∣∣∣
= O(ε1+α‖ṽ‖RN ,ε‖w̃‖RN ,ε) for v, w ∈ H1

0 (Bg(x, εα)).

Since we have |〈∆v, w〉RN ,ε − 〈∆v, w〉ε| = O(ε2α‖v‖ε‖w‖ε), by the same argument
as above we obtain (A 13).

Let v ∈ H1
0 (Bg(x, εα)) ∩ E⊥

ε,x ∩ Nε with ‖v‖ε < δ0. Since〈〈
v,

∂Wε,x

∂xi

〉〉
ε

= 0

by definition, 〈〈
ṽ,

∂Uε

∂xi
− ∂Wε

∂xi

〉〉
RN ,ε

= O

(
exp

(
−1
4εα

)
‖ṽ‖RN ,ε

)

by (2.14), and ∣∣∣∣
〈〈

v,
∂Wε,x

∂xi

〉〉
ε

−
〈〈

ṽ,
∂Wε

∂xi

〉〉
RN ,ε

∣∣∣∣ = O(ε1+α‖v‖ε)

by (A 14), we find〈〈
ṽ,

∂Uε

∂xi

〉〉
RN ,ε

=
〈〈

ṽ,
∂Uε

∂xi
− ∂Wε

∂xi

〉〉
RN ,ε

+
(〈〈

ṽ,
∂Wε

∂xi

〉〉
RN ,ε

−
〈〈

v,
∂Wε,x

∂xi

〉〉
ε

)
+

〈〈
v,

∂Wε,x

∂xi

〉〉
ε

= O(ε1+α‖v‖ε).

Here we set

v̄ = ṽ −
N∑

i=1

〈〈
ṽ,

∂Uε

∂xi

〉〉
RN ,ε

∂Uε

∂xi
.
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Then v̄ ∈ (T0Sε)⊥ and ‖v̄ − ṽ‖RN ,ε = O(ε1+α‖v‖ε). On the other hand, noting that
‖Wε,x + v‖2

ε − 〈f(Wε,x + v), Wε,x + v〉ε = 0, we have by (A 14) and (A 13) that

‖Wε + v̄‖2
RN ,ε −

∫
RN

f(Wε + v̄)(Wε + v̄) dµ = O(ε1+α‖v‖ε).

Let τ ∈ R such that (1 + τ)v̄ ∈ NRN ,ε. Then from the equality above, we have that
τ = O(ε1+α‖v‖ε). Here we set v′ = (1 + τ)v̄. Then we obtain that ‖ṽ − v′‖RN ,ε =
O(ε1+α‖v‖ε). This completes the proof.
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