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A random walk that is skip-free to the left can only move down one level at a time but
can skip up several levels. Such random walk features prominently in many places in
applied probability including queuing theory and the theory of branching processes.
This article exploits the special structure in this class of random walk to obtain a
number of simplified derivations for results that are much more difficult in general
cases. Although some of the results in this article have appeared elsewhere, our proof
approach is different.

1. INTRODUCTION

A well-known but peculiar result (see [5,11]) is that a simple random walk started
above the origin with probability p > 1/2 of going up and probability q = 1 − p
of going down behaves, conditional on eventually returning to the origin, like an
unconditioned random walk for which q is now the probability of going up and p the
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probability of going down. It is perhaps less well known (see [4] for a discussion in
the setting of a branching process) that a general random walk on the integers with
step-size distribution X having E[X] > 0, P(X ≥ −1) = 1, and P(X < 0) > 0 also
behaves, conditional on eventually returning to the origin or below, like another uncon-
ditioned random walk. Because at any transition this random walk cannot decrease
by more than 1, it is said to be skip-free to the left. To see why this latter result is true,
notice that the skip-free property implies that the probability of eventually returning
to the origin starting from m > 0 equals cm, where c is the probability of eventually
returning to the origin starting from 1. From this it follows that the conditional prob-
ability of taking a step of size i starting from state m > 0 given the random walk
eventually returns to the origin equals P(X = i)cm+i/cm = ciP(X = i) independent
of m and thus implying that the conditioned process behaves like an unconditioned
random walk. Another elementary argument can show that this behavior does not
occur for general random walk that are not not skip-free to the left.

Skip-free to the left random walk is an example of what is called a Markov chain
of M/G/1 type (see [9, p. 267]), a chain that can only move down one level at a time
but can skip up several levels. The name comes from the fact that an example is the
M/G/1 queue length at the times when customers depart. The transition probability
matrixes for such Markov chains have a special structure that can be exploited in
matrix analytical methods for efficient computation (see [9,10]). Such chains have
been studied in many other places—for example [2] and [6]. Other examples of such a
Markov chain include the size of the current population in a Galton, Watson branching
process in which the offspring for an individual happen simultaneously but for siblings
occur sequentially, and various casino games such as roulette, keno, and slots, where
each Independent and identically distributed (i.i.d) bet puts only one unit at risk.

The organization of this article is as follows. In Section 2 we consider skip-free to
the left random walk with a downward drift and compute moments of some first and
last hitting times (conditional on being finite) and relate them to hitting probabilities.
We also give a derivation of the distribution of the first positive value of the random
walk, given that there is one, that simplifies the generating-function approach given
in Feller [3] and Asmussen [1]. Finally, we compute the mean and variance of the
maximum of the random walk using elementary methods. In Section 3 we employ a
duality between the conditioned and unconditioned random walk to compute similar
quantities for skip-free to the left random walk with an upward drift. Finally, in Section
4 we give some results for the number of visits to a given state.

2. RANDOM WALK WITH A DOWNWARD DRIFT

Let Xi be (i.i.d.) integer-valued with P(Xi ≥ −1) = 1 and define the random walk
process

Sn = S0 +
n∑

i=1

Xi, n ≥ 0,
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where, unless otherwise noted, we will take S0 = 0. Because at any transition this
random walk cannot decrease by more than 1, it is said to be skip-free (to the left). Let
X be a generic random variable having the distribution of Xi and let q = P(X = −1),
v = −E[X], and σ 2 = Var(X). We assume throughout that q > 0.

Assume throughout this section that E[Xi] < 0. Let Tr = inf(n : Sn = −r).
Although the results of Lemma 1 and Proposition 1 are known (see, for instance,

[1]), we include them for completeness.

Lemma 1: For r > 0,

E[Tr] = r/v

and

Var(Tr) = rσ 2

v3
.

Proof: The skip-free property yields that

E[T1|X1] = 1 + (X1 + 1)E[T1],
which yields that E[T1] = 1/v, with the more general result again following from the
skip-free property. Similarly, the skip-free property yields that

Var(T1|X1) = (X1 + 1) Var(T1)

and the conditional variance formula gives

Var(T1) = (E[X1] + 1) Var(T1) + (E[T1])2 Var(X1)

or

Var(T1) = (E[T1])2σ 2

v
,

which, using the previously defined expression for E[T1], proves the result when
r = 1. The general result now follows from the skip-free property. �

Now, let α be the probability that the random walk never returns to state 0; that is,

α = P(Sn �= 0 for all n > 0).

Proposition 1:

α = v.

Proof: Using that X1, . . . , Xn has the same joint distribution as does Xn, . . . , X1 gives
that

P(Sn < Sj, j = 0, . . . , n − 1) = P(Xn < 0, Xn + Xn−1 < 0, Xn + · · · + X1 < 0)

= P(S1 < 0, S2 < 0, . . . , Sn < 0).
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Hence,

α = lim
n

P(Sn < Sj, j = 0, . . . , n − 1).

Noting that every new low is a renewal, it now follows from the elementary renewal
theorem ( [13], p. 171) that

α = 1/E[T1] = v. �

Corollary 1:

P(Sn ≤ 0 for all n) = v/q.

Proof:

v = α = qP(never returns to 0|S1 = −1)

= qP(never visits 0|S0 = −1)

= qP(never positive|S0 = 0).

For r ≥ 0, let

Lr = max(k ≥ 0 : Sk = −r)

be the last time that the random walk is in state −r. �

Proposition 2: For r ≥ 0,

E[Lr] = r

v
+ σ 2

v2
.

To prove the preceding we will need the following result, known as the hitting
time theorem (HTT). (For a proof of the HTT, which does not require that E[Xi] < 0,
see [7].)

Hitting Time Theorem:

P(Tr = n) = r

n
P(Sn = −r).

Proof of Proposition 2:

P(L1 = n) = P(Sn = −1)α.

Hence,

E[L1] = v
∑

n

nP(Sn = −1) (by Proposition 1)

= v
∑

n

n2P(T1 = n) (by HTT)

= vE[T 2
1 ]

= σ 2

v2
+ 1

v
(by Lemma 1).
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Because

E[Lr] = E[Tr] + E[L0]
it follows, by taking r = 1, that

E[L0] = σ 2

v2

and, thus,

E[Lr] = r

v
+ σ 2

v2
. �

Proposition 3: Let

F0 = min(k ≥ 1 : Sk = 0)

be the time of the first return to 0 (and let it be infinite if there is no return). Then

E[F0|F0 < ∞] = σ 2

v(1 − v)
.

Proof: Conditioning on whether the random walk ever returns to state 0 yields

E[L0] = (1 − α)(E[F0|F0 < ∞] + E[L0]).
Using that α = v, the result follows from Proposition 2. �

Proposition 4: If F1 is the first time that state 1 is visited, Then

E[F1|F1 < ∞] = E[X2] − q

v(q − v)
.

Proof: Using that P(F0 < ∞) = 1 − v, note first that, with pk = P(X = k),

P(X1 = k|F0 < ∞) = pk

1 − v
, k ≥ 0,

P(X1 = −1|F0 < ∞) = q − v

1 − v
.

Hence, letting pk = P(X = k) and using Proposition 3 gives

σ 2

v(1 − v)
= E[F0|F0 < ∞]

=
∑

k≥−1

E[F0|F0 < ∞, X1 = k]P(X1 = k|F0 < ∞)

= 1 + E[F1|F1 < ∞]q − v

1 − v
+

∑
k≥1

E[Tk] pk

1 − v

= 1 + E[F1|F1 < ∞]q − v

1 − v
+ 1

v(1 − v)

∑
k≥1

kpk
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= 1 + E[F1|F1 < ∞]q − v

1 − v
+ q − v

v(1 − v)
,

which proves the result. �

Let

T = min(n : Sn > 0)

and let it be infinite if Sn is never positive. Additionally, let λk = P(T < ∞, ST = k)

be the probability that k is the first positive value of the random walk.

Proposition 5:

λk = P(X ≥ k)/q.

Proof: Let pj = P(X = j). Conditioning on X1 yields

λk = p0λk + pk + q(λ1λk + λk+1), (1)

where λ1λk is the probability, starting at −1, that the first state larger than −1 is 0 and
the first one larger than 0 is k, and λk+1 is the probability that the first value larger
than −1 is k. Hence,∑

k≥1

λk = 1 − q − p0 + (p0 + qλ1)
∑
k≥1

λk + q
∑
k≥1

λk+1.

However, Corollary 1 gives that
∑

k≥1 λk = 1 − v/q. Consequently,

1 − v/q = 1 − q − p0 + (p0 + qλ1)(1 − v/q) + q(1 − v/q − λ1).

Solving for λ1 yields

λ1 = 1 − q − p0

q
= P(X ≥ 1)/q.

Substituting this back in (1) gives

λk = p0λk + pk + (1 − q − p0)λk + qλk+1 = pk + (1 − q)λk + qλk+1.

Hence,

λk − λk+1 = pk/q,

giving that

λ2 = λ1 − p1/q = P(X ≥ 2)/q

and so on. �

Remark: Proposition 5 was originally proven by Feller [3, p. 425] by using generating
functions to solve (1). Another proof is given in Asmussen [1].
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Proposition 6: With M = maxn Sn,

E[M] = E[X2] − v

2v

and

Var(M) =
(

E[X(X + 1)]
2v

)2

+ E[X(X + 1)(2X + 1)]
6v

.

Proof: Let N be the number of new highs that are attained. Since 1 − v/q is the
probability, starting with a high, of ever getting another new high, it follows that

P(N = j) = (1 − v/q) j v/q, j ≥ 0

(i.e., N + 1 is geometric with parameter v/q). Letting Yi be the amount added by the
ith new high, it follows that

M =
N∑

i=1

Yi,

where Yi, i ≥ 1, are i.i.d. distributed as a jump from a previous high conditional on
the event that there is a new high; that is,

P(Yi = k) = λk

1 − v/q
, k ≥ 1.

Moreover, N is independent of the sequence Yi.
Because

P(X ≥ k|X > 0)

E[X|X > 0] = P(X ≥ k)

E[X] + q
= P(Yi = k),

it follows that Yi is distributed according to the stationary renewal distribution of X
given that X > 0. Thus,

E[Y ] = E[X(X + 1)|X > 0]
2E[X|X > 0]

= E[X(X + 1)I(X > 0)]
2E[XI(X > 0)]

= E[X(X + 1)]
2(q − v)

.

Similarly,

E[Y 2] = E[X(X + 1)(2X + 1)|X > 0]
6E[X|X > 0] = E[X(X + 1)(2X + 1)]

6(q − v)
.
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Using the formulas for the mean and variance of a compound random variable (see
[12]), the preceding yields that

E[M] = E[N]E[Y ] = q − v

v
E[Y ] = E[X(X + 1)]

2v

and

Var(M) =
(

E[X(X + 1)]
2v

)2

+ E[X(X + 1)(2X + 1)]
6v

. �

Remark: The distribution of M is derived in [1].

Roulette Example: Suppose

P(X = 36

j
− 1) = j/38, q = P(X = −1) = 1 − j/38;

that is, at each stage, you place a 1-unit bet that the roulette ball will land on one of a
set of j numbers. If you win your bet, you win 36/j − 1; otherwise you lose 1. Thus,
v = 2/38. Note that

λk = j

38 − j
, k ≤ j,

which shows that, conditional on a high being hit, its value is equally likely to be any
of 1, . . . , r, where r = (36 − j)/j. Hence,

E[Y ] = r + 1

2
, Var(Y) = (r + 1)(2r + 1)

6
− (r + 1)2

4
.

Because N + 1 is geometric with parameter v/q = 2/(38 − j), we have

E[N] = 36 − j

2
, Var(N) = (36 − j)(38 − j)

4
.

Thus,

E[M] = (36 − j)(r + 1)

4
= 9

(
36 − j

j

)
.

and, after some computations,

Var(M) = 12(36 − j)(261 − 7j)

j2
.

With Pj and Ej being probabilities as a function of j, we have

P1(Sn ≤ 0, all n) = 2

37
, E1[L0] = 11, 988, E1[M] = 315;

P12(Sn ≤ 0, all n) = 1

13
, E12[L0] = 702, E12[M] = 18;

P18(Sn ≤ 0, all n) = 1

10
, E18[L0] = 360, E12[M] = 9.
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3. RANDOM WALK WITH AN UPWARD DRIFT

Assume throughout this section that E[X] > 0. Let pj = P(X = j), with q = p−1. As
earlier, let Tr = inf(n : Sn = −r). Additionally, for s ≥ 0, let

g(s) = E[sX ] =
∑
j≥−1

sjpj.

Lemma 2: c ≡ P(T1 < ∞) is the unique value s ∈ (0, 1) with g(s) = 1. Moreover,
g′(c) < 0.

Proof: The skip-free property yields

c =
∑
r≥−1

P(T1 < ∞|X1 = j)pj

= q +
∑
r≥0

c j+1pj.

Dividing by c shows that g(c) = 1. Because E[X] > 0 and P(X = −1) > 0, it follows
that 0 < c < 1. Additionally,

g′′(s) = 2q

s3
+

∑
j≥2

j(j − 1)sj−2pj > 0.

Hence, g′(s) is strictly increasing for s ≥ 0. Moreover,

g′(s) = −q

s2
+

∑
j≥1

jsj−1pj,

showing that g′(0+) = −∞, and lims→∞ g′(s) > 0. Consequently, there is a unique
value s∗ with g′(s∗) = 0, and g(s∗) is the global minimum of g(s). Since g(c) = g(1) =
1, it follows that g(s∗) < 1 and that c < s∗ < 1. Hence, g′(c) < g′(s∗) = 0. �

Remark: That c satisfies g(c) = 0 was also proven in [1].

Now, define a dual random walk

S′
n =

n∑
i=1

X ′
i ,

where the X ′
i are i.i.d. according to X ′, whose mass function is

P(X ′ = j) = cjP(X = j), j ≥ −1.

We call S′
n, n ≥ 0, the dual random walk of Sn, n ≥ 0. Let q′ = q/c = P(X ′ = −1).
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Lemma 3:

E[X ′] < 0.

Proof: This follows from Lemma 2 by noting that

0 > g′(c) = E[XcX−1] = c−1E[X ′]. �

Results corresponding to those of the previous section, which assumed a negative
mean, can be obtained by making use of the duality relationship. Let

v′ = −E[X ′]
and

σ ′2 = Var(X ′);

additionally, let T ′
r = inf(n : S′

n = −r).

Proposition 7:

E[Tr |Tr < ∞] = r

v′ ,

Var(Tr |Tr < ∞) = rσ ′2

v′3 .

Proof: For any set of outcomes Xi = xi, i = 1, . . . , n, that result in Tr = n, we have
that

P(Xi = xi, i = 1, . . . , n) = crP(X ′
i = xi, i = 1, . . . , n),

which implies that

P(Tr = n) = crP(T ′
r = n).

Summing over n gives that

P(Tr < ∞) = cr . (2)

Now,

E[T k
r |Tr < ∞] =

∑
n

nkP(Tr = n|Tr < ∞)

=
∑

n

nkP(Tr = n)/P(Tr < ∞)

=
∑

n

nkP(T ′
r = n)

= E[(T ′
r)

k].
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Hence, from Lemma 1,

E[Tr |Tr < ∞] = r

v′
and

E[T 2
r |Tr < ∞] =

( r

v′
)2 + rσ ′2

v′3 ,

which yields the result. �

Now, let F0 and F ′
0 denote the times of the first return to state 0 for the random

walk process and for its dual.

Proposition 8:

(a)

P(Sn �= 0, n ≥ 1) = v′;

(b)

E[F0|F0 < ∞] = σ ′2

v′(1 − v′)
.

Proof: For any set of outcomes Xi = xi, i = 1, . . . , n, that result in F0 = n, we have
that

P(Xi = xi, i = 1, . . . , n) = P(X ′
i = xi, i = 1, . . . , n),

showing that

P(F0 = n) = P(F ′
0 = n).

Summing the preceding over all n shows that

P(F0 < ∞) = P(F ′
0 < ∞).

or

P(Sn �= 0, n ≥ 1) = P(S′
n �= 0, n ≥ 1),

which, by Proposition 1, yields (a). The preceding also implies that

E[F0|F0 < ∞] = E[F ′
0|F ′

0 < ∞]
and so (b) follows from Proposition 5. �

Now, let Lr and L′
r denote the times of the last return to state −r for the random

walk process and for its dual.

Proposition 9:

E[Lr |Tr < ∞] = r

v′ + σ ′2

v′2 , r ≥ 0.
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Proof: For any set of outcomes Xi = xi, i = 1, . . . , n, that result in Sn = r, we have
that

P(Xi = xi, i = 1, . . . , n) = crP(X ′
i = xi, i = 1, . . . , n).

Thus, using Proposition 8,

P(Lr = n) = P(Sn = r)v′ = crP(S′
n = r)v′ = crP(L′

r = n).

Thus,

E[Lr |Tr < ∞] =
∑

n

nP(Lr = n)/cr = E[L′
r]

and the result follows from Proposition 4. �

Proposition 10: With λk being the probability that k is the first positive value of the
random walk,

λk = 1

q

∞∑
r=k

cr−k+1P(X = r).

Proof: With λ′
k being the corresponding probability for the dual process, duality gives

that

λk = c−kλ′
k .

Hence, from Proposition 5,

λk = c−kP(X ′ ≥ k)

q′

= c−k+1P(X ′ ≥ k)

q

= 1

q

∞∑
r=k

cr−k+1P(X = r).
�

Corollary 2: If T = min(n : Sn > 0) is the first time that the random walk becomes
positive, then

E[T ] = c

q(1 − c)
.
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Proof: With � equal to the first positive value of the random walk,

E[�] =
∞∑

k=1

kλk

=
∞∑

k=1

k
1

q

∞∑
r=k

cr−k+1P(X = r)

= 1

q

∞∑
r=1

crP(X = r)
r∑

k=1

kc−k+1

= 1

q

∞∑
r=1

crP(X = r)
1 + r/cr+1 − (r + 1)/cr

(1 − 1/c)2

= 1

q

(
c

1 − c

)2 ∞∑
r=1

P(X = r)

(
cr + r

c − (r + 1)

)

= 1

q

(
c

1 − c

)2
[ ∞∑

r=1

P(X ′ = r) +
(

1 − c

c

)
(E[X] + q) −

∞∑
r=1

P(X = r)

]

= 1

q

(
c

1 − c

)2 [
1 − P(X = 0) − q

c
+

(
1 − c

c

)

× (E[X] + q) − 1 + P(X = 0) + q

]

= cE[X]
q(1 − c)

.

The result now follows upon applying Wald’s equation to the identity

� =
T∑

i=1

Xi.
�

Examples:

• Suppose X = Y − 1, where Y is Poisson with mean λ > 1. Then c would be
the smallest positive solution of

eλ(c−1) = c.

For instance, suppose λ = 2. Then c ≈ 0.20319. Since q = e−2,

E[T ] = e2 c

1 − c
≈ 1.8842.
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• Suppose X = Y − 1, where Y is geometric with parameter p∗ < 1/2. Then
c = p∗/(1 − p∗) and, because q = p∗,

E[T ] = 1

1 − 2p∗ .

• If P(X = −1) = .7 = 1 − P(X = 3), then c ≈ 0.8795 and

E[T ] = 10

7

c

1 − c
≈ 10.4268.

Proposition 11:

(a) P(Sn ≥ 0, for all n ≥ 1) = 1 − c;

(b) P(Sn ≥ 1, for all n ≥ 1) = q

(
1 − c

c

)
.

Proof: Duality shows that

P(Sn = −1 for some n) = cP(S′
n = −1 for some n) = c

which proves (a). To prove (b), condition on X1 and use (a):

P(Sn ≥ 1, for all n ≥ 1)

=
∑
k>0

P(X = k)(1 − ck)

=
∑
k>0

P(X = k) −
∑
k>0

P(X ′ = k)

= 1 − q − P(X = 0) − (1 − q′ − P(X ′ = 0)

= q′ − q = q

(
1

c
− 1

)
.

�

Corollary 3: If W = min(k > 0 : Sk ≥ 0), then

E[W ] = 1

1 − c
= 1

P(Sn ≥ 0 for all n)
.

Proof: With T equal to the time to reach a positive value, conditioning on X1 yields

E[W ] = 1 + qE[T ]

and the result follows from Corollary 2 and Proposition 11. �
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4. ADDITIONAL RESULTS

In this section we again suppose that P(X ≥ −1) = 1 and that P(X = −1) > 0, but
we put no restrictions on E[X] (which can be zero, positive, negative, or plus infinity).

Let Ni(n) be the number of time periods spent in state i during times 0, . . . , n. (So,
N0(n) is 1 plus the number of returns to state 0 in the first n transitions.) Our main result
in this section is that, conditional on Sn = −j, the random variables Ni(n), 0 ≤ i ≤ j,
all have the same distribution. Indeed, if we let Tj(m) denote the time of the mth visit
to state −j and let it be ∞ if the process spends less than m periods in state −j, then
we have the following theorem.

Theorem 1: For 0 ≤ i ≤ j and n ≥ j,

P(Ni(n) = m|Sn = −j) = P(Tj(m) = n)

P(Sn = −j)
.

To prove Theorem 1, we need some lemmas.

Lemma 4: For j > 0,

P(Sk < 0, k = 1, . . . , n − 1, Sn = −j) = P(Tj = n).

Proof:

P(Sk < 0, k = 1, . . . , n − 1, Sn = −j)

= P(Sn − Sk > −j, k = 1, . . . , n − 1, Sn = −j)

= P(Xk+1 + · · · + Xn > −j, k = 1, . . . , n − 1, Sn = −j)

= P(X1 + · · · + Xn−k > −j, k = 1, . . . , n − 1, Sn = −j)

= P(Tj = n),

where the third equality used that X1, . . . , Xn and Xn, . . . , X1 have the same joint
distribution. �

Lemma 5: With p(m, r) = P(Sr = 0, N0(r − 1) = m − 1), we have

P(Tj(m) = n) =
∑

r

P(Tj = n − r)p(m, r).

Proof: This follows immediately upon conditioning on the time of the first visit to
state j. �

Proof of Theorem 1: We need to verify that

P(Ni(n) = m, Sn = −j) = P(Tj(m) = n). (3)
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Case 1: 1 ≤ i < j: Conditioning on Ti and Ti(m) gives that

P(Ni(n) = m, Sn = −j)

=
∑

t,r

P(Ni(n) = m, Sn = −j|Ti = t, Ti(m) = t + r)

× P(Ti = t, Ti(m) = t + r)

=
∑

t,r

P(Ni(n) = m, Sn = −j|Ti = t, Ti(m) = t + r)P(Ti = t)p(m, r)

=
∑

t,r

P(Sk < 0, k = 1, . . . , n − r − t, Sn−r−t = i − j)P(Ti = t)p(m, r)

=
∑

t,r

P(Tj−i = n − r − t)P(Ti = t)p(m, r) (by Lemma 4)

=
∑

r

p(m, r)
∑

t

P(Tj−i = n − r − t)P(Ti = t)

=
∑

r

p(m, r)P(Tj = n − r)

= P(Tj(m) = n),

where the final equality used Lemma 5.

Case 2: i = 0 < j: Conditioning on T0(m), the time of the mth visit to 0 and then
using Lemma 4 yields

P(N0(n) = m, Sn = −j)

=
∑

r

P(N0(n) = m, Sn = −j|T0(m) = r)P(T0(m) = r)

=
∑

r

P(Sk < 0, k = 1, . . . , n − r − 1, Sn−r = −j)p(m, r)

=
∑

r

P(Tj = n − r)p(m, r) (by Lemma 4)

= P(Tj(m) = n).

Case 2: i = j > 0: In this case, it follows by definition that

P(Ni(n) = m, Sn = −j) = P(Tj(m) = n),

which completes the proof of Theorem 1. �

Corollary 4: For 0 ≤ i ≤ j,

P(Ni(n) = 1|Sn = j) = j/n.
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Proof: The proof follows from Theorem 1 upon applying the HTT. �

The next result generalizes a well-known result for the symmetric random walk.

Theorem 2: Let Nj denote the number of visits to state −j prior to returning to zero.
(If the walk never returns to zero, then Nj is just the number of visits to −j.) Then, for
j > 0.

E[Nj] = 1 if E[X] ≤ 0,

E[Nj] = c j if E[X] > 0,

where c is such that 0 < c < 1 and E[c X ] = 1.

Proof: It follows from Lemma 4 that

E[N] =
∞∑

n=1

P(Tj = n) = P(Tj < ∞)

and the result follows Lemma 2. �

Acknowledgment
Mark Brown was supported by the National Security Agency, under grant H98230-06-01-0149.

References

1. Asmussen, S. (2003). Applied probability and queues, 2nd ed. New York: Springer.
2. Brown, M. & Shao, Y.S. (1987). Identifying coefficients in the spectral representation for first passage

time distributions. Probability in the Engineering and Informational Sciences 1: 69–74.
3. Feller, W. (1968). An introduction to probability theory and its applications. New York: John Wiley

and Sons.
4. Jagers, P. & Lageras, A. (2008). General branching processes conditioned on extinction are still

branching processes. Electronic Communications in Probability 13: 540–547.
5. Kendall, D.G. (1956). Deterministic and stochastic epidemics in closed populations. In Proceedings of

the third Berkeley symposium on mathematical statistics and probability, Vol. 4. Berkeley: University
of California Press, 149–165.

6. Fill, J.A. On hitting times and fastest strong stationary times for skip-free chains. Journal of Theoretical
Probability 23: 587–600.

7. Grimmett, G.R. & Stirzaker, D.R. (2001). Probability and random processes, 3rd ed. Oxford University
Press.

8. Karlin, S. & Taylor, H.M. (1981). A second course in stochastic processes. NewYork: Academic Press.
9. Latouche, G. & Ramaswami,V. (1999). Introduction to matrix analytic methods in stochastic modeling.

Philadelphia, PA: SIAM/Alexandria, VA: American Statistical Association.
10. Latouche, G., Jacobs, P.A., & Gaver, D.P. (1984). Finite Markov chain models skip-free in one direction.

Naval Research Logistics Quarterly 31(4): 571–588.
11. Waugh, W.A. O’N. (1958). Conditioned Markov processes. Biometrika 45(1/2), 241–249.
12. Ross, S.M. (2006). Intrduction to probability models, 9th ed. San Diego, CA: Academic Press.
13. Ross, S. & Peköz, E.A. (2007). A second course in probability. Boston, MA: Probability Bookstore.

Available form www.ProbabilityBookstore.com
14. van der Hofstad, R. & Keane, M. (2008). An elementary proof of the hitting time theorem. American

Mathematical Monthly Vol. 115(8): 753–756.

https://doi.org/10.1017/S0269964810000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964810000136

