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SUMMARY
An S-R-S (Spherical-Revolute-Spherical) redundant manipulator is similar to a human arm
and is often used to perform dexterous tasks. To solve the inverse kinematics analytically, the
arm-angle was usually used to parameterise the self-motion. However, the previous studies have
had shortcomings; some methods cannot avoid algorithm singularity and some are unsuitable for
configuration control because they use a temporary reference plane. In this paper, we propose
a method of analytical inverse kinematics resolution based on dual arm-angle parameterisation.
By making use of two orthogonal vectors to define two absolute reference planes, we obtain two
arm angles that satisfy a specific condition. The algorithm singularity problem is avoided because
there is always at least one arm angle to represent the redundancy. The dual arm angle method
overcomes the shortcomings of traditional methods and retains the advantages of the arm angle.
Another contribution of this paper is the derivation of the absolute reference attitude matrix, which
is the key to the resolution of analytical inverse kinematics but has not been previously addressed.
The simulation results for typical cases that include the algorithm singularity condition verified our
method.

KEYWORDS: Redundant manipulators; Analytical inverse kinematics; Arm-angle parameterisation;
Algorithm singularity; Redundancy resolution.

1. Introduction
A redundant seven-degrees-of-freedom (DOF) manipulator has great advantages over a non-redundant
six-DOF manipulator in obstacle avoidance,1 joint torque optimisation,2 failure-tolerant control,3,4

singularity handling5 and other factors.6 The redundancy can also be used to minimise the reaction
torque for a space manipulator.7 Generally, the methods of kinematic redundancy resolution can be
placed into two categories: methods that specify secondary tasks and methods that optimise some
performance indices.8,9 The well-known manipulators that have been launched to the international
space station, including the Special Purpose Dexterous Manipulator,10 the European Robotic Arm11

and the Space Station Remote Manipulator System (also called Candarm212), are all seven-DOF
serial manipulators. The Lightweight Robot13 designed by the DLR (German Aerospace Center) is
also a redundant manipulator.

A commonly used class of redundant manipulators has joints that are arranged to form a shoulder,
elbow and wrist. The shoulder joints (joints 1 through 3) and wrist joints (5 through 7) can be
regarded as virtual spherical joints because the three consecutive joint axes intersect at a single
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point. Moreover, any two adjacent joint axes are perpendicular. S-R-S structures14 such as the DLR
Lightweight Robot13 are similar to human arms. Soechting15 and Liu and Todorov16 studied the
modelling and control of human arm movement in manipulator kinematics and dynamics. To supply
the basis for the trajectory planning and motion control of this class of redundant manipulators, the
inverse kinematics problem must be solved.

In contrast to a six-DOF manipulator, a redundant manipulator has infinite configurations for a
given end-effector pose (position and attitude). Therefore, a parameter must be defined to describe
the redundancy. Lee and Bejczy17 proposed a joint parameterisation method, but the selection of an
appropriate joint is difficult. Moradi and Lee18 defined the redundancy circle and used a position on
the circle as the redundancy parameter. Based on the description of the human arm’s posture, Asfour
and Dillmann19 analytically solved the inverse kinematics of a humanoid robot arm. Tondu20 used the
shoulder abduction angle (i.e., θ1 for the given manipulator) as the redundancy parameter and derived
the closed-form inverse kinematics for an anthropomorphic arm. The above methods can be classified
as joint parameterisation approaches or Cartesian space self-motion parameterisation methods. For
the former, a certain joint displacement is itself regarded as the redundancy parameter. The selection
of the angle for the parameterisation is difficult. It cannot uniquely represent the redundancy of the
manipulator. In contrast, self-motion parameterisation is specialised to a specific arm and seems to
be unsuitable for S-R-S manipulators.21

The arm angle proposed by Kreutz-Delgado22 is a better parameter for describing the self-motion
of a generic anthropomorphic manipulator. It specifies the unique elbow position for a given hand
pose. However, algorithm singularity exists when the fixed vector used to define the reference plane
and the axis connecting the shoulder and wrist are collinear, which means that the reference plane
is indeterminate. To handle this problem, Shimizu21 used a temporary arm plane to define the arm
angle. They constructed a virtual non-redundant manipulator by setting the value of θ3 to 0. The arm
plane formed by the virtual non-redundant manipulator was considered to be the reference plane. It
is possible to avoid algorithm singularity. However, each specified pose has eight solutions for the
virtual non-redundant manipulator; the arm plane is not unique. The eight solutions determine four
potential arm planes (see Section 3). As the reference plane is not absolute, it is not suitable for
configuration control.

In this paper, we propose an analytical inverse kinematics resolution method based on dual arm-
angle parameterisation that overcomes shortcomings such as algorithm singularity and a temporary
reference plane while retaining the advantages of arm-angle parameterisation. The dual arm angle is
an extension of the arm angle. Two orthogonal vectors are selected as reference vectors to define two
reference planes. Two arm angles, which are the angles between the arm plane and the two reference
planes, are obtained. These two arm angles satisfy a specific constraint condition, so they are called
a “dual arm angle”. Because the wrist point cannot lie on the two reference vectors at the same time,
there is always a reasonable reference plane and a corresponding arm angle that can be used as the
redundancy parameter. Therefore, the algorithm singularity problem is avoided. Another contribution
of this study is the derivation of the absolute reference elbow attitude matrix 0 Rψ=0

3 (the 0 R0
3 in ref.

[21] is a relative reference attitude gained by setting θ3 = 0; here 0 Rψ=0
3 is the absolute reference

attitude), which is the key to the resolution of analytical inverse kinematics but was not addressed in
our previous paper.21

2. Modelling of S-R-S Redundant Manipulators
The joint layout of an S-R-S redundant manipulator is shown in Fig. 1. For some applications, such
as space construction, an additional link offset can be added to the elbow to increase the range of
movement. A more general model is used to describe a class of redundant manipulators with similar
joint structure. The D–H frames are shown in Fig. 2, and their parameters are listed in Table I.
The simplest case, d4 = 0, is very similar to a human arm. For a practical example, the following
parameters are used in this paper:

d1 = d7 = 0.3, d2 = d6 = 0.0, d3 = d5 = 0.7, d4 = −0.3. (1)

https://doi.org/10.1017/S0263574715000284 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000284


Dual arm-angle parameterisation and its applications 2671

Table I. D–H parameters of the S-R-S manipulator with an offset elbow.

link i θi(◦) αi(◦) ai(m) di(m)

1 −90 90 0 d1 = 0.3
2 180 90 0 0
3 0 −90 0 d3 = 0.7
4 0 90 0 d4 = −0.3
5 0 −90 0 d5 = 0.7
6 0 90 0 0
7 −90 0 0 d7 = 0.3

7θ

6θ

5θ

4θ

3θ
2θ

1θ

0∑

7∑

Fig. 1. Joint layout of the S-R-S redundant manipulator.

Fig. 2. D–H frames of the S-R-S manipulator with an offset elbow.

Based on the D–H notation, the homogeneous transformation matrix i−1T i between adjacent
frames can be given as follows:

i−1T i=
[

i−1 Ri
i−1 P i

0 1

]
=

⎡
⎢⎣

cθi
−sθi

cαi
sθi

sαi
aicθi

sθi
cθi

cαi
−cθi

sαi
aisθi

0 sαi
cαi

di

0 0 0 1

⎤
⎥⎦ , (2)

where θi is the ith joint angle, i−1 Ri denotes the orientation of the ith frame relative to the (i−1)th
frame and i−1 P i is the position vector of the ith frame’s origin, expressed in the (i−1)th frame.
Moreover,

{
sθi

= sin (θi) , cθi
= cos (θi)

sαi
= sin (αi) , cαi

= cos (αi)
. (3)
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Fig. 3. Definition of the arm plane.

The pose (orientation and position) of the end-effector frame (i.e., the seventh frame 7) with respect
to the base frame (frame 0) can be expressed as:

0T 7 = 0T 1
1T 2 · · · 6T 7 = fkine (�) =

[
0 R7

0 P7

0 1

]
, (4)

where � is a column vector composed by the θ1 ∼ θ7, fkine() is the forwards kinematics function, 0 R7

is the attitude transformation matrix and 0 P7 is the position vector of the end-effector with respect to
the base frame, Frame 0.

For practical applications, the joint angles should be determined for control when 0T 7 is given.
The solution is expressed as:

� = ikine
(

0T 7
)
, (5)

where ikine() is the inverse kinematics function. This paper will derive the analytical expressions for
Eq. (5).

3. Arm-Angle Parameterisation Method

3.1. Arm plane and arm angle
According to the characteristics of an S-R-S manipulator, the three-axis joints of the shoulder (joints
1 through 3) and the wrist (joints 5 through 7) intersect at one point and form the equivalent of a
spherical joint. The intersection points are denoted by S and W, respectively. In addition, the origin of
the 3rd frame, located on the elbow (joint 4), is denoted by E. As shown in Fig. 3, the plane SEW is
then defined as the arm plane.22 The special case in which S, E and W are collinear is not considered
in this paper.

Given a reference plane, the angle between the reference plane and the arm plane is defined as the
arm angle ψ , which is used to represent the self-motion. We can simplify the kinematic analysis and
configuration control for various purposes by choosing any plane of interest as the reference plane.
Without loss of generality, the line SW is used as one line on the reference plane; only one more point
(denoted as Q) not on the line is then needed to determine the reference plane, which is represented
as SQW. The relationship between the reference plane, arm plane and arm angle is shown in Fig. 4.
For the convenience of discussion, we define some vectors as follows:
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Fig. 4. Definition of the arm angle.

Fig. 5. Projection of the arm plane SEW.

w: A vector from point S to point W;

e: A vector from point S to point E;

V : The vector from point S to point Q in the reference plane;

k, p: The vectors that are perpendicular to w in the reference plane SQW and the arm plane SEW, respectively.

ni , oi , ai (i = 0, 1, · · · , 7): The unit vectors of the x-, y- and z-axes of the ith frame, xi , yi , and zi ;

P i (i = 0, 1, . . . , 7): The position vector of the origin of the ith frame.

If a vector is described in the jth (j = 0, 1, . . . , 7) frame, the superscript “j” will be used. For example, 0w

shows that the vector w is described in frame 0.

According to the configuration of the SRS manipulators (see Fig. 2), the vector 0w can be
determined according to the end-effector’s pose 0T 7, i.e.,

0w = 0 P7 − [
0 0 d1

]T − 0 R7
[

0 0 d7
]T

. (6)

3.2. Resolutions of joint angles
3.2.1. Determination of the elbow joint angle. To separate the elbow joint angle, we project the arm
plane to the plane perpendicular to the axis of joint 4. The projected plane is denoted as S⊥E⊥W
(see Fig. 5), and the lengths of the projected links are S⊥E⊥ = d3, E⊥W = d5. According to the
Pythagorean theorem, we know that S⊥W 2 = |w|2 − d2

4 .
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Fig. 6. Two solutions of the elbow joint angle.

Using the cosine law for the triangle S⊥E⊥W, we have

β = acos

(
S⊥E2

⊥ + E⊥W 2 − S⊥W 2

2S⊥E·E⊥W

)
= acos

(
d2

3 + d2
5 + d2

4 − |w|2
2d3d5

)
. (7)

There are two cases for resolving θ4, which is shown in Fig. 6. For the first case,

θ4 = π

2
+ β + π

2
= π + β. (8)

For the second case,

θ4 = 2π −
(π

2
+ β + π

2

)
= π − β. (9)

It can be seen that the elbow joint angle is independent of the arm angle. Given the pose of the
end-effector, we can obtain two resolutions for θ4 as follow:

θ4 = π ± β = π ± acos

(
d2

3 + d2
5 + d2

4 − |w|2
2d3d5

)
. (10)

3.2.2. Determination of the shoulder joint angles. Given the arm-angle ψ , the transformation matrix
that represents the rotation of angle ψ about the vector w is as follow:

0 Rψ = I3 + [
0w×] sin ψ + [

0w×]2
(1 − cos ψ) , (11)

where the left superscript “0” indicates the reference frame, I3 is a 3 × 3 identity matrix and 0w× is
the skew symmetric matrix of 0w,

for 0w =
⎡
⎣w1

w2

w3

⎤
⎦ , 0w× =

⎛
⎝ 0 −w3 w2

w3 0 −w1

−w2 w1 0

⎞
⎠ . (12)
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When ψ = 0, the orientation of frame 3 relative to frame 0 is denoted by 0 Rψ=0
3 and is called the

shoulder reference attitude matrix. For a given value of ψ , the orientation of the frame 3 relative to
frame 0 can be calculated as follows:

0 R3 = 0 Rψ
0 Rψ=0

3 . (13)

Substituting Eq. (11) into Eq. (13) yields

0 R3 = As sin ψ + Bs cos ψ + Cs =
⎡
⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ , (14)

where As = [
0w×] 0 Rψ=0

3 , Bs = − [
0w×]2 0 Rψ=0

3 and Cs =
(

I3 + [
0w×]2

)
0 Rψ=0

3 . If asij and bsij ,

respectively, represent the element of the ith row and jth of the matrix As and Bs , the (i, j) element
of 0 R3 can be calculated as follows according to Eq. (14)

rij = asij sψ + bsij cψ + csij , (15)

where sψ = sin ψ, cψ = cos ψ . From the definition of the rotation matrix, we have

0 R3 = 0 R1
1 R2

2 R3 =
⎡
⎣ s1s3 + c1c2c3 −c1s2 s1c3 − c1c2s3

−c1s3 + s1c2c3 −s1s2 −c1c3 − s1c2s3

c3s2 c2 −s2s3

⎤
⎦ . (16)

Combining Eqs. (14) and (16), the following result is obtained:

⎡
⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ =

⎡
⎣ s1s3 + c1c2c3 −c1s2 s1c3 − c1c2s3

−c1s3 + s1c2c3 −s1s2 −c1c3 − s1c2s3

c3s2 c2 −s2s3

⎤
⎦ . (17)

Comparing the elements from (1, 2) and (2, 2),

s2 =
√

r2
12 + r2

22 or s2 = −
√

r2
12 + r2

22. (18)

We can then obtain two solutions for θ2 combing Eqs. (17) and (18):

θ2 = atan2

(√
r2

12 + r2
22, r32

)
or θ2 = atan2

(
−
√

r2
12 + r2

22, r32

)
. (19)

Based on the calculated value for θ2, the following results are obtained:

{
s1 = − (

as22sψ + bs22cψ + cs22
)
/s2

c1 = − (
as12sψ + bs12cψ + cs12

)
/s2

, (20)

{
s3 = − (

as33sψ + bs33cψ + cs33
)
/s2

c3 = (
as31sψ + bs31cψ + cs31

)
/s2

. (21)

According to Eqs. (20) and (21), we can solve θ2 and θ3 using the “atan2()” function. To avoid the
numerical problems caused by s2 ≈ 0, the following equations are used:⎧⎪⎪⎨

⎪⎪⎩
θ1 = atan2

(− (
as22sψ + bs22cψ + cs22

)
s2,

− (
as12sψ + bs12cψ + cs12

)
s2
)

θ3 = atan2
(− (

as33sψ + bs33cψ + cs33
)

s2,(
as31sψ + bs31cψ + cs31

)
s2
) . (22)

https://doi.org/10.1017/S0263574715000284 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000284


2676 Dual arm-angle parameterisation and its applications

Fig. 7. Algorithm singularity of the S-R-S manipulator.

3.2.3. Determination of the wrist joint angles. The attitude rotation matrix from frame 3 to frame 4
is

3 R4 =
⎡
⎣ cθ4 −cα4sθ4 sα4sθ4

sθ4 cα4cθ4 −sα4cθ4

0 sα4 cα4

⎤
⎦ =

⎡
⎣ c4 0 s4

s4 0 −c4

0 1 0

⎤
⎦ . (23)

The attitude of frame 4 with respect to frame 7 is given by the following:

7 R4 = 0 RT
7

0 Rψ

(
0 Rψ=0

3

) (3 R4
) = Aw sin ψ + Bw cos ψ + Cw, (24)

where Aw = 0 RT
7

[
0w×] 0 Rψ=0

3

(
3 R4

)
, Bw = −0 RT

7

[
0w×]2 0 Rψ=0

3

(
3 R4

)
,

Cw = 0 RT
7

(
I3 + [

0w×]2
)

0 Rψ=0
3

(
3 R4

)
.

In contrast,

7 R4 = (
4 R5

5 R6
6 R7

)T =
⎡
⎣ c5c6c7 − s5s7 −c5c6s7 − s5c7 c5s6

s5c6c7 + c5s7 −s5c6s7 + c5c7 s5s6

−s6c7 s6s7 c6

⎤
⎦ . (25)

According to Eqs. (24) and (25), we can obtain, two groups of θ5, θ6 , θ7 as follow:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ6 = atan2

(
±
√(

aw13sψ + bw13cψ + cw13
)2 + (

aw23sψ + bw23cψ + cw23
)2

,

aw33sψ + bw33cψ + cw33
)

θ5 = atan2
((

aw23sψ + bw23cψ + cw23
)
s6,(

aw13sψ + bw13cψ + cw13
)
s6
)

θ7 = atan2
((

aw32sψ + bw32cψ + cw32
)
s6,

− (
aw31sψ + bw31cψ + cw31

)
s6
)

, (26)

where awij and bwij represent the element of the ith row and jth column of the matrices Aw and Bw,
respectively.

3.3. Existing problems for the previous methods
3.3.1. Algorithm singularity22. According to the definitions of the reference plane and the arm angle
in Fig. 4, we notice that when the point W is located on the straight line along vector V (as shown
in Fig. 7), the reference plane degenerates into a straight line. The arm-angle therefore loses its
definition, and the arm-angle parameterisation method fails to solve the joint angles. This situation
– algorithm singularity – is described in the literature,22 but no feasible methods of avoiding it have
been provided.

3.3.2. Only four solutions are determined for a given arm angle21. The resolution process of the
single arm-angle parameterisation method is shown in Fig. 8.
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Fig. 8. Process of the original arm parameterisation method.

Fig. 9. Absolute arm angle and relative arm angle.

We can see that the process only provides four sets of solutions. When the redundancy parameter
is selected, an S-R-S manipulator should have eight sets of solutions. That is to say, the traditional
method, presented by ref. [21], cannot supply all of the solutions for the inverse kinematics.

3.3.3. Relative reference plane and relative Arm Angle21. To avoid the algorithm singularity problem
mentioned above, Ref. [21] proposed a practical method that used a “floating” plane as the reference
plane. Fixing joint 3 at the zero position, θ3 = 0◦, the original seven-DOF manipulator degenerates into
a six-DOF manipulator with a configuration similar to that of a Programmable Universal Machine
for Assembly (PUMA)-type robot. It is very easy to solve the inverse kinematics of a six-DOF
manipulator. We can obtain eight sets of solutions for joints 1, 2 and 4 through 7 joints of the original
manipulator. The solved joint angles corresponding to θ3 = 0◦ are denoted θ0

1 , θ0
2 , . . . , θ0

7 The attitude
of frame 3 relative to frame 0 is then calculated according to the following equation:

0
rel R

0
3 = 0 R0

1
1·R0

2
2·R0

3, (27)

where the right superscript “0” of i R0
j indicates the special case that θ3 = 0. 0 R0

3 is a relative reference
attitude. In ref. [21], an arbitrary arm plane formed by any set of solutions of the case θ3 = 0◦ can be
selected as the reference plane, which is not a definite plane corresponding to a given end-effector’s
pose. Hence, it is a “relative” reference plane that has multiple alternatives and is not favourable for
configuration control.23 The angle between the practical arm plane and the relative reference plane is
then called the relative arm angle and is denoted by ψ̃ .

To solve this problem, we define the absolute reference plane according to a fixed reference frame
(such as x0y0z0) and the given end-effector’s pose. The angle between the practical arm plane and the
absolute reference plane is taken as the absolute arm angle and is denoted by ψ . Correspondingly,
the absolute reference attitude 0 Rψ=0

3 will be used instead of 0
rel R0

3.
The relationships of the absolute and relative reference planes and arm angles are shown in Fig. 9,

where

E0, E: the elbow points in the relative reference plane and the practical arm plane, respectively;
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p0, p: the perpendicular vectors of line SW through E0 and E, respectively; and

ψo: the angle from the absolute reference plane to the relative reference plane.

According to the definitions of the angles between two planes, we can establish the equation as
follows:

ψ = ψo + ψ̃. (28)

4. Dual Arm-Angle Parameterisation Without Algorithm Singularity
From the analysis above, some cases will occur in which point W is located on the line along
the reference vector V . Algorithm singularity always exists for single arm-angle parameterisation
methods. Here, we propose the dual arm-angle concept and a corresponding parameterisation method
to fundamentally eliminate algorithm singularity. Two vectors (denoted V 1 and V 2) are selected as
the reference vectors, which form two reference planes with the vector w. The angles between the
arm plane SEW and the two reference planes are defined as the two arm angles. Because wrist point
W cannot lie on two lines at the same time, there is always an effective arm angle that can be used to
parameterise the self-motion. The intersection point of the two lines is wrist point S. The special case
in which point W coincides with point S is not considered. The inverse kinetics equation can then be
solved based on the effective arm angle.

Without loss of generality, we select two orthogonal vectors V 1 and V 2 as the reference vectors to
simplify the calculation. Here, the z0-axis and x0-axis are considered to be V 1 and V 2, respectively.
The corresponding arm angles are denoted by ψz and ψx . Because ψz and ψx are constrained by a
definite relationship, they are called dual arm angles.

4.1. Dual arm-angles ψz and ψx

As mentioned above, when the reference vector V is selected, the plane formed by V and point W is
the reference plane. According to Fig. 4 and previous definitions, the projection of vector e on vector
w is given by

d = ŵ
(
ŵTe

)
, (29)

where ŵ is the unit vector of w, ŵ=w/ ‖w‖. In this paper, ‖·‖ denotes the norm of a vector.
In the arm plane, the vector perpendicular to w is given by

p = e − d = (
I − ŵŵT ) e. (30)

Its unit vector p̂ is

p̂ = p
‖ p‖ . (31)

In contrast, in the reference plane, the vector vertical to w is calculated as follows:

n = (w × V ) × w = w × (w × V ) = w×w×V . (32)

The unit vector n̂ is

n̂ = n
‖n‖ . (33)

According to the properties of dot and cross products of vectors, the following results are obtained:

{
cψ = n̂T p̂
sψ = ŵT (n̂ × p̂) = ŵT (

n̂× p̂
) . (34)

Therefore,

ψ = atan2
(
sψ, cψ

) = atan2
(
ŵT (

V × p
)
, V T p

)
. (35)
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Fig. 10. Relationship between the arm angles.

Given the reference vector V , the corresponding arm angle can be calculated using Eq. (35).
To determine the dual arm angles, the z0-axis and the x0-axis are selected to form two reference

planes, denoted S z (SQ1W) and S x (SQ2W), respectively. If the z0-axis is chosen as the reference
axis, V=0a0 = [

0 0 1
]T

, then ψz can be calculated according to Eq. (35). Substituting V=0n0 =[
1 0 0

]T
for Eq. (35), ψx is determined. The concept of the dual arm angle is shown in Fig. 10.

4.2. Relationship of ψz and ψx

The vector w is known when the pose of the end-effector is given. As shown in Fig. 10, the vectors
n x and n z, respectively in the reference planes S x and S z, are both perpendicular to line SW. The
angle between the two reference planes (SQ1W and SQ2W), denoted ϕ, is determined by the two
vectors n x and n z. Its value is constant for a given end-effector pose. According to the geometry
shown in Fig. 10, the following relationship exists:

ψx = ψz + ϕ. (36)

For one of the arm angles, such as ψz, we can use the following scalar to judge whether the
algorithm singularity occurs:

ks = |w × V | , (37)

where the value of ks reflects the coincident degree. ks = 0 shows that the algorithm singularity occurs
with a single arm angle. The other arm angle should then be used to parameterise the redundancy
for solving the inverse kinematics. If the algorithm is realised using a programming language,
ks ≤ 1.00E−6 can be considered equal to zero.

4.3. Analytical inverse kinematics resolution
For a given end-effector’s pose, denoted by the homogeneous matrix 0T 7, the analytical inverse
kinematics resolution process based on the dual arm angle is shown in Figs. 11 and 12. The details
of the reference vector and arm angle (see Fig. 11) are as follows:

a) Choose the default reference vector V and give a desired corresponding arm angle ψ . In this
paper, the z0-axis of the base frame, frame 0, is the default reference vector. Then V=0a0, and ψ

is actually ψz;
b) Calculate the singularity condition parameter ks according to Eq. (37) and V , and the given

end-effector pose 0T 7;
c) If ks ≥ 1.00E−6, then algorithm singularity does not exist for ψz, V=0a0 and ψ = ψz; go to (f).

Otherwise, go to (d);
d) Choose V=0n0 (the unit vector of x0-axis), and take S z = S x, i.e., ϕ = 0;
e) Calculate ψx according to Eq. (36), and set ψ = ψx .
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Fig. 11. Judgment of the algorithm singularity.

Fig. 12. Process of the arm angle parameterisation.

f) The effective reference vector V and arm angle ψ are determined. They will be used in the
arm-angle parameterisation resolution, shown in Fig. 12.

The steps shown in Fig. 12 are as follows:

a) For the given pose of the end-effector 0T 7, two solutions of the elbow joint (θ4) are calculated
using Eq. (10);

b) The absolute shoulder reference attitude matrix 0 Rψ=0
3 is determined according to Eq. (47), based

on θ4 and V ;
c) Combining the calculated 0 Rψ=0

3 with the effective ψ , the shoulder and wrist joint angles are then
solved using Eqs. (19), (22) and (26).

The steps above show that there are generally eight sets of effective analytical solutions for the
dual arm-angle parameterisation method.
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Fig. 13. Geometric relationship for ψ = 0.

The choice between all possible inverse kinematics resolutions is very important. The determination
of a suitable solution from multiple solutions is a common problem in robotic kinematics. For real-time
application, we can determine a suitable solution based on the joint limit and the current or reference
configuration, as in the previous studies. We can also define three configuration flags (SHOULDER,
ELBOW and WRIST) to select the appropriate solutions for the shoulder, elbow and wrist joints,
respectively, as in ref. [24]. The motion planning method based on movement primitives,25 which is
based on the human arm triangle, can also be extended by use of the dual arm angle.

5. Calculation of Absolute Reference Plane and Shoulder Reference Attitude
It is obvious that the absolute reference attitude matrix 0 Rψ=0

3 is very important for the solution
process. However, this matrix is generally difficult to obtain and has not been supplied by the
previous studies. Here, we derive the analytical expression of 0 Rψ=0

3 for the case in which the pose
of the end-effector is specified. The details are given below.

When ψ = 0, the origin of frame 3 lies in the reference plane. The relationship is shown in Fig. 13,
where the symbols are defined as follows:

a) Eψ=0 represents the elbow point when the arm plane is coplanar with the reference plane (i.e.,
ψ = 0);

b) x
ψ=0
3 , y

ψ=0
3 , zψ=0

3 represent the coordinate axes of frame 3 when the arm plane is coplanar with the
reference plane (i.e., ψ = 0); their corresponding unit vectors are denoted by nψ=0

3 , oψ=0
3 , aψ=0

3 .
With the upper left “0”, 0nψ=0

3 , 0oψ=0
3 , 0aψ=0

3 represent the vectors expressed in frame {0}.
c) l = w × V is the unit vector orthogonal to the reference plane;
d) α is the angle from vector w to vector

−→
SEψ=0.

According to the cosine law:

α = acos
(
d2

3 + |ω|2 − (d2
4 + d2

5 )
)
/ (2d3 |ω|) . (38)

The vector w is collinear with −y
ψ=0
3 (i.e., −oψ=0

3 ) after rotating α around the vector l:

(
oψ=0

3

)
|ω| = −R (l, α) ·ω, (39)
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where R (l, α) = I3 + [
l×] sin (α) + [

l×]2
(1 − cos (α)) and

[
l×] denotes the skew-symmetric

matrix of the unit vector of l. Therefore, 0oψ=0
3 is given by

0oψ=0
3 = − R

(
0l, α

) ·0ω∣∣0ω∣∣ . (40)

Figure 13 shows that −d3oψ=0
3 + d4aψ=0

3 + d5aψ=0
4 = ω. When the vectors are described in the

frame {0}, the result is as follows:

−d3

(
0oψ=0

3

)
+ d4

(
0aψ=0

3

)
+ d5

(
0aψ=0

4

)
= 0ω. (41)

The vector 0aψ=0
4 can also be calculated using the attitude transformation:

0aψ=0
4 = 0 Rψ=0

3 ·3a4 = 0 Rψ=0
3

⎡
⎣ s4

−c4

0

⎤
⎦ = 0nψ=0

3 s4 − 0oψ=0
3 c4. (42)

Substituting Eq. (42) into Eq. (41) yields

d4

(
0aψ=0

4

)
+ d5

(
0nψ=0

3

)
s4 = 0ω + (d3 + d5c4)

(
0oψ=0

3

)
. (43)

Multiplying both sides of Eq. (43) by 0oψ=0
3 (based on 0oψ=0

3 × 0aψ=0
3 = 0nψ=0

3 ), we obtain

d4

(
0nψ=0

3

)
− d5s4

(
0aψ=0

3

)
=

(
0oψ=0

3

)
× 0ω. (44)

Because 0oψ=0
3 is determined according to Eq. (40), we can solve 0nψ=0

3 and 0aψ=0
4 by combining

Eq. (43) with Eq. (44). The results are as follows:

0nψ=0
3 =

d5s4

[
0ω + (d3 + d5c4)

(
0oψ=0

3

)]
+ d4

(
0oψ=0

3 × 0ω
)

d2
4 + (d5s4)2 , (45)

0aψ=0
3 =

d4

[
0ω + (d3 + d5c4)

(
0oψ=0

3

)]
− d5s4

(
0oψ=0

3 × 0ω
)

d2
4 + (d5s4)2 . (46)

The elbow reference attitude matrix 0 Rψ=0
3 can now be determined using the three unit vectors of

the x3-, y3- and z3-axis, shown respectively as Eqs. (45), (40) and (46):

0 Rψ=0
3 =

[
0nψ=0

3 , 0oψ=0
3 , 0aψ=0

3

]
. (47)

For the derivation above, vector V is a general symbol. It can be the unit vector of x0, y0, z0 or
another axis. Equation (47) is a general expression for an arbitrary reference vector.

The entire process is shown in Fig. 14.
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Fig. 14. Flowchart for the calculation of the shoulder reference attitude 0 Rψ=0
3 .

6. Case Study and Comparison Analysis

6.1. Typical cases without algorithm singularity
6.1.1. Proposed method. For a practical example, the homogeneous transformation matrix 0T 7,
representing the end-effector’s pose, is assumed to be

0T 7=

⎡
⎢⎣

0.2468 0.7497 0.6140 1.4248
0.8573 −0.4643 0.2223 0.0735
0.4517 0.4715 −0.7574 −0.3283

0 0 0 1

⎤
⎥⎦ . (48)

https://doi.org/10.1017/S0263574715000284 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000284


2684 Dual arm-angle parameterisation and its applications

The absolute reference plane and shoulder reference attitude matrix are calculated according to
the method introduced in Section 5.

First, vector 0w and elbow joint θ4 are determined according to Eqs. (6) and (10), respectively:

0w = 0 P7 − [
0 0 d1

]T − 0 R7
[

0 0 d7
]T = [1.2406, 0.0068, − 0.4011]T, (49)

θ4 = π ± acos

(
d2

3 + d2
5 + d2

4 − |w|2
2d3d5

)
⇒ θ4 = 5.4105 or θ4 = 0.8727. (50)

The reference vector 0V is chosen to be 0a0. According to Eq. (37), we can obtain ks > 0. The
absolute reference plane is then uniquely determined by the selected reference vector V and vector
0w. The normal vector 0l, which is perpendicular to the reference plane, is given by

0l = 0w × 0V = [0.0068, − 1.2406, 0]T. (51)

According to Eq. (38), α is calculated as follows:

α = acos

(
d2

3 + |ω|2 − (d2
4 + d2

5 )

2d3 |ω|

)
= 0.4907. (52)

Substituting Eqs. (49), (51) and (52) to Eq. (40), we can obtain

0oψ=0
3 = − R

(
0l, α

) ·0ω∣∣0ω∣∣ = [−0.6942, − 0.0038, 0.7198]T. (53)

Thus, the other two vectors, nψ=0
3 and aψ=0

3 , are deduced by substituting Eqs. (50) and (53) into
Eqs. (45) and (46). Corresponding to the two solutions of the elbow joint angle θ4, we can obtain two
shoulder reference attitude matrices as follows:

0 Rψ=0
3 =

⎡
⎣−0.6254 −0.6942 −0.3562

−0.4917 −0.0038 0.8708
−0.6059 0.7198 −0.3390

⎤
⎦ for θ4 = 5.4105, (54)

0 Rψ=0
3 =

⎡
⎣ 0.6308 −0.6942 −0.3466

−0.4848 −0.0038 −0.8746
0.6059 0.7198 −0.3390

⎤
⎦ for θ4 = 0.8727. (55)

The geometric relationship of the two cases of the shoulder in the absolute reference plane is
shown in Fig. 15.

It is obvious that the proposed method can be used to calculate the absolute reference plane and the
shoulder reference attitude without any assumptions. It is dependent only on the given end-effector
pose 0T 7 and a selected reference vector V .

For a given arm angle ψ , the corresponding joint angles are determined with the method proposed
above. Due to limitations in the length of this paper, two typical cases, ψ = 0◦ and ψ = 60◦, are
taken as examples.

There are eight solutions for each case. The results are listed in Tables II and III, respectively. All
of the solutions are verified using the forwards kinematics in Eq. (4) by comparing the calculated 0T 7

and that given by Eq. (48). It should be pointed out that all of the joint angles are mapped to (−180◦,
180◦).

6.1.2. Comparison with the previous method. In the previous method,21 Shimizu and Kakuya used a
relative reference plane determined by setting θ3 = 0◦. With the constraint θ3 = 0◦, the seven-DOF
redundant manipulator is degraded to a six-DOF PUMA-type manipulator. There are eight sets of
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Table II. Joint angles when ψ = 0◦.

I θ1 θ2 θ3 θ4 θ5 θ6 θ7

1 0.31 43.97 150.77 −50.00 17.77 49.36 136.90
2 0.31 43.97 150.77 −50.00 −162.23 −49.36 −43.10
3 −179.69 −43.97 − 29.23 −50.00 17.77 49.36 136.90
4 −179.69 −43.97 − 29.23 −50.00 −162.23 −49.36 −43.10
5 0.31 43.97 29.23 50.00 −170.07 60.82 84.33
6 0.31 43.97 29.23 50.00 9.93 −60.82 −95.67
7 −179.69 −43.97 −150.77 50.00 −170.07 60.82 84.33
8 −179.69 −43.97 −150.77 50.00 9.93 −60.82 −95.67

Table III. Joint angles when ψ = 60◦.

i θ1 θ2 θ3 θ4 θ5 θ6 θ7

1 28.34 60.29 −137.66 −50.00 −19.63 62.61 107.91
2 28.34 60.29 −137.66 −50.00 160.37 −62.61 −72.09
3 −151.66 −60.29 42.34 −50.00 −19.63 62.61 107.91
4 −151.66 −60.29 42.34 −50.00 160.37 −62.61 −72.09
5 28.34 60.29 100.79 50.00 153.01 43.74 57.09
6 28.34 60.29 100.79 50.00 −26.99 −43.74 −122.91
7 −151.82 −60.29 −79.21 50.00 153.01 43.74 57.09
8 −151.82 −60.29 −79.21 50.00 −26.99 −43.74 −122.91

x

x
z

z

xx

z

z

Fig. 15. Geometric relationship of two cases of the shoulder in the absolute reference plane.

solutions for the virtual non-redundant manipulator for a given 0T 7. An arm plane formed by one of
the eight solutions is then selected as the relative reference plane. The relative reference attitude is
then represented as 0

rel R
0
3.

For the same 0T 7 given in Eq. (48), the eight solutions for θ3 = 0◦ are calculated and listed in Table
IV. The relative shoulder reference attitude 0

rel R
0
3 corresponding to each solution is also calculated.

An angle (denoted as ψ0) exists between the relative reference plane and the absolute reference plane
defined in Section 5. The relationship is shown in Fig. 16.

For the eight solutions, ψ0 is calculated and listed in Table IV. We can see that there are four
possible cases for the relative plane and shoulder reference attitude. The previous method did not
supply an absolute, uniquely determined reference plane. It is therefore not intuitive or convenient
for practical application, especially the configuration control.
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Table IV. Eight solutions for θ3 = 0◦.

i θ1 θ2 θ3 θ4 θ5 θ6 θ7 ψ0
0
rel R

0
3

1 −13.68 96.57 0 −50.00 −115.99 23.69 45.10 −149.35

⎡
⎣−0.11 −0.97 −0.24

0.03 0.23 −0.97
0.99 −0.11 0.00

⎤
⎦

2 −13.68 96.57 0 −50.00 64.01 −23.69 −134.90 −149.35

3 −165.69 −46.57 0 −50.00 4.40 56.02 127.07 21.88

⎡
⎣−0.67 −0.70 −0.25

−0.17 −0.18 0.97
−0.73 0.69 0.00

⎤
⎦

4 −165.69 −46.57 0 −50.00 −175.60 −56.02 −52.93 21.88

5 −13.68 46.57 0 50.00 −156.09 63.02 95.70 −21.88

⎡
⎣ 0.67 −0.71 −0.24

−0.16 0.17 −0.97
0.73 0.69 0.00

⎤
⎦

6 −13.68 46.57 0 50.00 23.91 −63.02 −84.30 −21.88

7 −165.69 −96.57 0 50.00 31.64 6.97 98.08 149.35

⎡
⎣ 0.11 −0.96 −0.25

0.03 −0.25 −0.97
−0.99 −0.11 0.00

⎤
⎦

8 −165.69 −96.57 0 50.00 −148.36 −6.97 −81.92 149.35

Table V. All possible solutions when ψrel = 60◦.

i θ1 θ2 θ3 θ4 θ5 θ6 θ7

1 −29.05 73.95 52.67 −50.00 94.04 10.74 143.34
2 −29.05 73.95 52.67 −50.00 −85.96 −10.74 −36.66
3 150.95 −73.95 −127.33 −50.00 94.04 10.74 143.34
4 150.95 −73.95 −127.33 −50.00 −85.96 −10.74 −36.66

x

x

y y

z

x

Fig. 16. References established in two ways.

Only four solutions can be obtained by the previous method. Assuming that 0
rel R

0
3 is calculated

according to the first solution in Table IV and ψrel = 60◦, all of the possible joint angles are calculated
and listed in Table V. The solution is incomplete because the previous method only deals with one
condition for θ4. Therefore, another four sets of solutions corresponding to the other value of θ4

cannot be determined in this manner.
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Table VI. Joint angles without algorithm singularity.

i θ1 θ2 θ3 θ4 θ5 θ6 θ7

1 130.00 164.11 129.03 −20.33 161.94 32.98 −26.58
2 130.00 164.11 129.03 −20.33 −18.06 −32.98 153.42
3 −50.00 −164.11 −50.97 −20.33 161.94 32.98 −26.58
4 −50.00 −164.11 −50.97 −20.33 −18.06 −32.98 153.42
5 130.00 164.11 50.97 20.33 −125.45 62.88 −13.51
6 130.00 164.11 50.97 20.33 54.55 −62.88 166.49
7 −50.00 −164.11 −129.03 20.33 −125.45 62.88 −13.51
8 −50.00 −164.11 −129.03 20.33 54.55 −62.88 166.49

6.2. Algorithm singularity avoidance
6.2.1. The proposed method. Let the pose of the end effector 0T 7 be

0T 7=

⎡
⎢⎣

−0.5940 0.6806 −0.4290 −0.1287
−0.3835 −0.7083 −0.5926 −0.1778
−0.7072 −0.1875 0.6817 1.9148

0 0 0 1

⎤
⎥⎦ . (56)

Using 0T 7 given by Eq. (56), the position of the wrist point W is calculated and is found on the
z0-axis. If we solve the inverse kinematics using the traditional method based on a single arm angle,
algorithm singularity occurs and no feasible solutions are determined.

When the vectors w and z0-axis are coincident, an arbitrary plane containing the z0-axis can be
considered the reference plane S z. For convenience, we can choose the plane determined by the
z0-axis and the x0-axis as the reference plane. Then ϕ = 0 and ψz = ψx .

Taking ψx = −50◦ as the example, there are still eight sets of solutions for the given pose of the
end-effector. They are listed in Table VI.

6.2.2. Comparison with the previous method. For the end-effector pose 0T 7 given in Eq. (56),
algorithm singularity will occur if the previous method is used. This kind of algorithm singularity
appears when the end-effector pose 0T 7 is out of the workspace of the degenerated six-
DOF manipulator. The shoulder reference attitude cannot be calculated; hence, the arm-angle
parameterisation cannot be realised.

From the above examples, it is obvious that our proposed method is more general than the previous
method.

7. Conclusions
A class of redundant manipulators whose joints are arranged as an S-R-S structure are widely
used as anthropomorphic manipulators to perform tasks that require dexterity. Because of their
redundant joint, there are infinite resolutions of the position-level inverse kinematics for a specified
end-effector pose. To obtain the closed-form resolution, a certain parameter must be defined to
represent the redundancy. The arm angle is the most effective parameter and has been shown to be
equivalent to the redundancy of the manipulator. However, the existing algorithm singularity or lack
of an absolute reference plane restricts the practical applications. To overcome the shortcomings of
the previous methods while retaining the advantages of the arm angle, we propose the dual arm-
angle parameterisation method. Two orthogonal vectors are chosen as the reference vectors. Two
corresponding reference planes are constructed, and two arm angles that satisfy a certain condition
are then determined. Because there will be always at least a reasonable reference plane and an arm
angle, algorithm singularity is avoided. Moreover, both reference planes are absolute reference planes.
Hence, the arm angles can be used for configuration control. In addition, we supplied the analytical
expressions to calculate the absolute elbow reference attitude independent of the configuration of
the virtual non-redundant manipulator obtained by locking θ3 = 0. In the future, the dual arm-angle
parameterisation method will be extended to other types of redundant manipulators, including those

https://doi.org/10.1017/S0263574715000284 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000284


2688 Dual arm-angle parameterisation and its applications

with more than seven joints. Subjects for further study include configuration control and redundancy
resolution based on dual arm angles for arm motion analysis and real-time control.

Acknowledgements
This work was supported in part by the National Natural Science Foundation of China
(61175098, 51205078) and the Basic Research Program of Shenzhen (JCYJ20140417172417095,
JCYJ20130329153437293, JCYJ20140417172417129).

References
1. E. Yoshida, C. Esteves, I. Belousov, J. P. Laumond, T. Sakaguchi and K. Yokoi, “Planning 3D collision-free

dynamic robotic motion through iterative reshaping,” IEEE Trans. Robot. 24(5), 1186–1198 (2008).
2. K. Yoshida, R. Kurazume and Y. Umetani, “Torque optimisation control in space robots with a redundant

arm,” Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems, Osaka,
Japan, (1991) pp. 1647–1652.

3. K. M. Ben-Gharbia, “Kinematic design of redundant robotic manipulators for spatial positioning that are
optimally fault tolerant,” IEEE Trans. Robot. 29(5), 1300–1307 (2013).

4. H. Abdi, S. Nahavandi, Y. Frayman and A. A. Maciejewski, “Optimal mapping of joint faults into healthy
joint velocity space for fault-tolerant redundant manipulators,” Robotica 30(4), 635–648 (2012).

5. K. A. O Neil, Y. C. Cheng and J. Seng, “Removing singularities of resolved motion rate control of
mechanisms, including self-motion,” IEEE Trans. Robot. Autom. 13(5), 741–751 (1997).

6. K. Li and Y. Zhang, “State adjustment of redundant robot manipulator based on quadratic programming,”
Robotica 30(3), 477–489 (2012).

7. S. Cocuzza, I. Pretto and S. Debei, “Novel reaction control techniques for redundant space manipulators:
Theory and simulated microgravity tests,” Acta Astronaut. 68(11–12), 1712–1721 (2011).

8. J. Angeles and F. C. Park, “Performance Evaluation and Design Criteria,” In: Springer Handbook of
Robotics (Chapter 10), (B. Siciliano and O. Khatib, eds.) (Springer-Verlag, 2008) pp. 229–244.

9. S. Chiaverini, G. Oriolo and I. D. Walker, “Kinematically Redundant Manipulators,” In: Springer Handbook
of Robotics (Chapter 11), (B. Siciliano and O. Khatib, eds.) (Springer-Verlag, 2008) pp. 245–268.

10. E. Coleshill, L. Oshinowo, R. Rembala, B. Bina, D. Rey and S. Sindelar, “Dextre: Improving maintenance
operations on the international space station,” Acta Astronaut. 64(9–10), 869–874 (2009).

11. R. Boumans and C. Heemskerk, “European robotic arm for the international space station,” Robot. Auton.
Syst. 23(1–2), 17–27 (1998).

12. S. B. Nokleby, “Singularity analysis of the canadarm2,” Mech. Mach. Theory 42(4), 442–454 (2007).
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