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Based on a similarity between piston-mode sloshing in a two-dimensional rectangular
moonpool and a small-amplitude oscillatory flow through a slot in a slatted screen,
a pressure discharge in the moonpool opening is theoretically quantified. This makes
it possible, by changing the dynamic free-surface condition inside the moonpool, to
account for the vortex-induced damping and thereby to modify the inviscid potential
flow statement. The present paper is an important addition to Faltinsen et al. (J. Fluid
Mech., vol. 575, 2007, pp. 359–397), where a discrepancy between the potential flow
theory and model tests was reported. New calculations are supported by the earlier
model tests of the authors as well as numerical data obtained by means of viscous
solvers.

Key words: interfacial flows (free surface), surface gravity waves, waves/free-surface flows

1. Introduction

Three- and two-dimensional piston-type resonant sloshing in moonpools (vertical
openings through the decks and hulls of ships or barges) were extensively studied
for about three decades – theoretically, numerically and experimentally. The
focus has been on the forced vertical body oscillations without an incident wave.
Faltinsen, Rognebakke & Timokha (2007) reported model tests and a semi-analytical
frequency-domain solution for a linear two-dimensional rectangular moonpool problem.
The high accuracy in a uniform metric was provided by a domain-decomposition
method that accounts for the singular behaviour of the inviscid potential velocity field
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at the sharp edges. The results were supported by model tests for the piston-mode
resonance frequency, but the theoretical steady-state wave response was larger than
in experiments. The discrepancy was explained by the vortex shedding at the sharp
edges that led to non-negligible damping, which had been discussed earlier by Fukuda
(1977) and Molin et al. (2002). This means that modelling the piston-mode sloshing
requires applying a viscous solver in, at least, a domain which covers the moonpool
opening. Using viscous solvers in the moonpool problem has become a popular
approach in computational fluid dynamics (see e.g. Kristiansen & Faltinsen 2008;
2010; Kristiansen, Sauder & Firoozkoohi 2013; de Vries et al. 2013; Heo et al.
2014; Fredriksen, Kristiansen & Faltinsen 2015 and references therein), which has
indeed produced rather good agreement with experiments.

On the other hand, adopting viscous solvers may, generally speaking, make the
computational procedures time-consuming; therefore, when the task is a parameter
study, the moonpool problem continues to be solved by semi-analytical methods,
normally those based on the inviscid potential flow statement (Zhang & Bandyk 2013;
Zhou 2013; Zhou, Wu & Zhang 2013; Liu & Li 2014; McIver 2014). As discussed by
Molin et al. (2002, 2009), Faltinsen et al. (2007) and Faltinsen & Timokha (2009),
this statement could be successfully modified to account for the vortex-induced
damping by quantifying the pressure discharge in the moonpool opening. The principal
difficulty is that the pressure discharge (drop) coefficient is unknown a priori. An
important question is: how can this coefficient be estimated without conducting
dedicated model tests? The authors had no good idea in 2006–2007 when working
on the paper Faltinsen et al. (2007).

In 2010–2011, Faltinsen, Firoozkoohi & Timokha (2011) successfully studied the
liquid sloshing dynamics in a tank with a slatted screen, where an analogous pressure
discharge condition was employed to modify the inviscid potential flow model. Flows
through such screens are well studied experimentally, and there are various empirical
formulas, tables and relations (see e.g. Blevins 1992) representing, for oscillatory
motions, the pressure drop coefficient K as a function of the screen shape, solidity
ratio Sn and Keulegan–Carpenter number Kc.

In the present paper (which could be considered an extra section of Faltinsen
et al. 2007), by making use of a similarity we discovered between the piston-mode
sloshing in a two-dimensional rectangular moonpool and oscillatory flows through a
slot in a slatted screen, we determine artificial Sn and Kc values and, by applying
a known dependence K = K(Sn, Kc) for screens, quantify the pressure discharge
in the moonpool opening. By incorporating the pressure discharge condition into
the statement of Faltinsen et al. (2007) (so that the dynamic free-surface condition
in the moonpool opening is modified) and the solution method, we recompute the
aforementioned steady-state wave response. The new results are supported by our
previous model tests and by the numerical viscous solutions obtained in Kristiansen
& Faltinsen (2008, 2012).

2. Statement

Following Faltinsen et al. (2007), we consider two-dimensional Oz̄-symmetric
steady-state surface waves excited by small-amplitude vertical harmonic motions of
two rigidly connected rectangular hulls, η3(t) = −η3a cos(σ t), in finite-depth water
as shown in figure 1(a). The potential inviscid motions of incompressible liquid are
assumed. The non-dimensional statement takes the gap width L1 as the characteristic
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FIGURE 1. Sketch of (a) the dimensional moonpool and (b) the left part of the L1-scaled
symmetric liquid domain.

dimension and 1/σ as the characteristic time. This leads to the non-dimensional
variables

x= x̄
L1
, z= z̄

L1
, t=σ t̄, Λ= σ

2L1

g
, ψ(x, z, t)= ψ̄(x̄, z̄, t̄)

L2
1σ

, p(x, z, t)= p̄(x̄, z̄, t̄)
ρgL1

(2.1a−f )
(with the dimensional variables marked by an overbar), where g is the gravity
acceleration, ψ(x, z, t) and p(x, z, t) are the non-dimensional velocity potential and
pressure, respectively, ρ is the liquid density, g is the gravitational acceleration and
ε = η3a/L1� 1. As a consequence, the distance between the rectangular bodies and
the Oz-axis becomes 1/2, the non-dimensional water depth is h = h̄/L1, and the
scaled dimensions of the stationary immersed rectangular body are d = d̄/L1 in the
vertical (draft) direction and B = B̄/L1 = b̄/L1 − 1/2 in the horizontal direction. The
left normalized liquid domain is shown in figure 1(b).

At a certain forcing frequency σ∗ (non-dimensional Λ∗ = σ 2
∗L1/g by (2.1)), a

resonant piston-mode sloshing occurs between the hulls. The inviscid potential flow
statement well predicts Λ∗, which can be computed using the method of Faltinsen
et al. (2007), for example, or approximated by the formula of Molin (2001). When
deriving the latter formula, Molin artificially extended the rectangular hulls left and
right to infinity but inserted two sinks at ±b∗ (with b∗ > b) on the extended hull
bottom. The b∗ value is unknown a priori. When taking b∗ = b, the Molin formula
gives a rough prediction of Λ∗. However, if we already know Λ∗ (computed by
another method), we can find

b∗ = 2 exp
(
(Λ−1
∗ − d)π− 3

2

)
> b (2.2)

by inverting the formula (see equation (4.12) in Faltinsen et al. 2007). Molin’s
solution will then give an approximation of the resonant piston-mode flows in the
vicinity of the opening. Far from the opening, this approximation fails since it is
assumed that there are no free-surface waves at infinity.

Figure 2 gives a schematic comparison of the local (at the opening) Molin’s
piston-type sloshing (panel b) and an oscillatory steady-state flow through a slot in
the slatted screen with a uniform (non-dimensional) harmonic approach velocity of
U(t) (panel a). The free surface in (b) remains far from the edges (provided by a
finite draft d) so that the liquid flux per half-period is much less than the mean
liquid volume inside the opening. Looking for a similarity in (a) implies the same
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FIGURE 2. Simplified schematic representations of: (a) small-amplitude oscillatory
steady-state liquid motions through a slot of a slatted screen; (b) piston-mode sloshing in a
rectangular moonpool according to the approximation of Molin (2001). The latter implies
artificial sinks at (±b∗,−d) and an extended solid hull bottom for b< |x|, z=−d. Fluid
particles do not cross the lines x=±b∗, z<−d and b∗< |x|< b, z=−d (excluding ends).
Within the framework of our averaged pressure discharge approach, the vortex shedding
from the sharp edges is assumed to be located mainly in zones Z (i.e. two zones and one
zone in cases (a) and (b), respectively). Dashed streamline components mark differences
between (a) and (b) that disappear as the opening is approached, i.e. when z→−d, z<−d
and −b∗ < x< b∗.

for the liquid flux through a single slat, which is only possible for relatively small
flux-velocity amplitudes and non-small slat thicknesses 2d. One can then introduce a
fictitious almost-flat interface in the slot between the upper and lower liquid domains.
The interface oscillates about the mean level z = 0 and remains far away from the
edges. The lower/upper liquid flow (separated by this interface) displays a similarity
to the piston-type sloshing. Streamlines are shown by solid and dashed lines, with the
solid lines demonstrating the flow similarity close to the openings. The flow separates
at the inlet to the moonpool and at the outlet/inlet of the screen opening. We simplify
the details of the vorticity field due to flow separation by locating it principally in
zones Z. Our primary objective is to express the consequence of flow separation in
terms of a space-averaged (mean) pressure discharge across the moonpool without
giving details on the vorticity field, which can in reality be rather complicated.

For the screen flow in figure 2(a), there is an analogy to b∗ at the middle of the
slat, implying no cross-flows through the vertical lines x = ±b∗ which confine the
liquid flux through the chosen central slot. The solidity ratio is defined via b∗ as Sn=
(2b∗ − 1)/(2b∗). If u0(t) is the mean non-dimensional vertical (flux) velocity through
the slot, i.e. u0(t) =

∫ 1/2
−1/2 v(x, t) dx, then the harmonic non-dimensional approach

velocity can be expressed as U(t)= u0(t)/(2b∗) and the Keulegan–Carpenter number
as Kc = 2πŪa/(2σ b̄∗) = πu0a/(2b2

∗), where the overbars imply dimensional values,
Ūa = ū0a/(2b̄∗) (the dimensional amplitude of Ū(t)) and u0a = 2b̄∗Ūa/(L2

1σ) is the
non-dimensional amplitude. When following standard definitions, the spatial mean
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pressure discharge between the upper (–) and lower (+) liquid domains at each slot
of the slatted screen is

1p̄= p̄+(t)− p̄−(t)= 1
2
ρK(Sn,Kc)Ū(t)|Ū(t)|

= 1
8b2∗

ρK
(

2b∗ − 1
2b∗

,
πu0a

2b2∗

)
ū0(t)|ū0(t)|, (2.3a)

1p= p+(t)− p−(t)= 1
8b2∗

ΛK
(

2b∗ − 1
2b∗

,
πu0a

2b2∗

)
u0(t)|u0(t)| (2.3b)

(see equation (15) in Faltinsen et al. 2011) in the dimensional and non-dimensional
(according to (2.1)) statements, respectively, where ρ is the liquid density. The
right-hand side of (2.3) shows that the pressure discharge depends on the mean flux
velocity. Faltinsen et al. (2011) demonstrated that, for sloshing problems, dealing
with a complex non-uniform approach velocity field keeps the formulas applicable
when these are based on the flux velocity u0(t).

Figure 2(b) schematically shows small-amplitude oscillatory flows associated
with the piston-mode sloshing in a rectangular moonpool within the approximation
framework of Molin (2001) and compares them with those in figure 2(a). In both
cases, liquid particles have zero horizontal velocity component along the lines
x = ±b∗, y < −d and b < |x| < b∗, z = −d. In other words, the particles do not
cross the vertical lines due to a symmetry (in the case of a) and because of the
sinks at x = ±b∗ (in the case of b), causing the particles to move along these
lines. A difference is that liquid comes from infinity in case (a) but there are two
sinks in case (b) and, as a consequence, the dashed streamline components do not
coincide. However, the dashed streamline components disappear when approaching
the structures (without ends), i.e. z → −d, z < −d and −b∗ < x < b∗; therefore,
one can say that the local velocity fields are similar at the openings (only solid
streamline parts appear there). Moreover, the total liquid flux through the openings
on −1/2< x< 1/2 (or through the structure for −b∗ < x< b∗, without ends) is also
determined by the same integral, u0(t) =

∫ 1/2
−1/2 v(x, t) dx. Accounting for this local

similarity (close to the openings) implies that the meanings of Sn = (2b∗ − 1)/(2b∗)
and Kc=πu0a/(2b2

∗) look similar in cases (a) and (b). Thus, if we know the function
K = (Sn,Kc) for the screen case (a), we can use it to describe the pressure discharge
in the moonpool opening IV – within the 1/2 multiplier in (2.3b) since case (b) is
characterized by a single zone Z: 1p(t)|moonpool =1p(t)/2.

The following equation and boundary conditions with respect to ψ(x, z, t) remain
unchanged and can be taken from Faltinsen et al. (2007) (see the notation in
figure 1b):

∇2ψ = 0 in Q0,
∂ψ

∂n
= 0 on SB + S+ SS,

∂ψ

∂z
= ε sin t on SD, (2.4a−c)

Λ
∂2ψ

∂t2
+ ∂ψ
∂z
= 0 on Σ01, (2.5)

ψ ∼ F(K x+ t, z) as x→−∞, ψ(x, z, t+ 2π)≡ψ(x, z, t), (2.6a,b)

where Σ01 is the unperturbed free surface outside the moonpool opening, S represents
the mean wetted vertical walls of the stationary rectangle, SB is the horizontal
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seabed, SD is the bottom of the rectangular body, SS is the artificial vertical wall
caused by the Oz-symmetry and n is the outer normal to the fluid boundary. The
periodicity condition at infinity in (2.6) implies that we look for the steady-state
periodic solution. The wavenumber K and function F are unknown and should be
found together with ψ .

Within the framework of our averaging pressure discharge technique, 1p(t)|moonpool
occurs at the keel level T3, i.e. between domains III and IV in figure 1(b). It leads
to a time-dependent jump of the velocity potential which can be excluded (making
ψ continuous at T3) via the standard substitution ψ |IV :=ψ |IV +C(t) with appropriate
C(t). Derivations show that by proceeding in this way one changes the linear dynamic
free-surface condition on Σ02:

Λ
∂ψ

∂t
+ f = 1

16b2∗
Λ∗K

(
2b∗ − 1

2b∗
,
πu0a

2b2∗

)
u0(t)|u0(t)| where

∂ψ

∂z
= ∂f
∂t

(2.7)

is the kinematic condition (which remains unchanged) on Σ02, with z= f (x, t) defining
the free-surface elevation and with the x-averaged flux velocity given by

u0(t)= 2
∫ 0

−1/2

∂ψ

∂z
(x,−d, t) dx− ε sin t, u0a = max

06t<2π
|u0(t)|. (2.8a,b)

Because we construct the theory to be applicable in a neighbourhood of Λ∗, we use
Λ∗ instead of Λ in front of the nonlinear term in (2.7).

The difference between (2.4)–(2.8) and the standard free-surface problem (see
Faltinsen et al. 2007) lies in the framed nonlinear integral term in the dynamic
free-surface condition (2.7). A similar modified dynamic free-surface condition
was used by Molin et al. (2009) (‘fictitious plate model’) and Newman (2003)
(‘lid methods’). Our statement suggests that we know a priori the non-dimensional
resonant frequency Λ∗, that b∗ is computed from (2.2) and that Λ is close to Λ∗.
Obtaining Λ∗ implies finding Λ for which the maximum wave response of (2.4)–(2.8)
occurs without the framed term.

3. Numerical steady-state solution

Suggesting the equivalent linearization method, we will focus on finding the
cos t and sin t harmonic components of the steady-state solution of (2.4)–(2.8).
Supplementary materials (available at http://dx.doi.org/10.1017/jfm.2015.234) provide
analytical and numerical details of the method of Faltinsen et al. (2007) and
present its modifications due to the extra nonlinear quantity in (2.7). We adopt
the Baines–Peterson–Weisbach formula (Weisbach 1855; Baines & Peterson 1951)

K =K(Sn)=
(

1
C0(1− Sn)

− 1
)2

, C0 = 0.405 exp(−πSn)+ 0.595, (3.1a,b)

which expresses the pressure drop coefficient as a function of Sn> 0.3 (controlled in
numerical examples). The formula assumes that K does not depend on the Keulegan–
Carpenter number Kc. Faltinsen et al. (2011) successfully applied it to study sloshing
in a screen-equipped tank. Improvement of (3.1) to include the Kc effect was recently
discussed by Hamelin et al. (2013).

Comparisons of our new computations (solid lines) with experimental measurements
(empty symbols) and nonlinear viscous simulations (filled symbols) are presented in
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FIGURE 3. Experimental case 1 of Faltinsen et al. (2007) (B= 1, d= 1 and h= 5.72222):
(a,c) theoretical and experimental maximum wave elevations of the piston-mode sloshing
and the maximum wave elevations at x=w11= 3.88889, scaled by the forcing amplitude;
(b,d) the corresponding phase shifts relative to the input sinusoidal motions of the hulls.
In all panels the amplitude and phase results are plotted against Λ, for a non-dimensional
forcing amplitude of (a,b) ε = 0.013889; (c,d) ε = 0.027778. The experimental data are
taken from Faltinsen et al. (2007):A, the measured maximum steady-state wave elevations
inside the moonpool opening in (a,c) and the corresponding phase shifts in (b,d);E, the
measured maximum wave elevations and phase shifts at x = 3.88889; C, the measured
maximum elevations inside the opening filtered against the reflection effect of the outgoing
wave (Kristiansen & Faltinsen 2008). The dashed lines are taken from Faltinsen et al.
(2007) and represent the inviscid potential flow prediction. The solid lines represent our
computations accounting for the sin t and cos t harmonics. Other numerical results are
marked by filled triangles; they are taken from Kristiansen & Faltinsen (2008), who used
a vortex-tracking model to account for the vortex-shedding effect at the lower moonpool
edges.

figures 3–6. In addition, the dashed lines denote numerical results from Faltinsen et al.
(2007). We focus on the maximum wave amplitude inside the moonpool opening, the
maximum steady-state wave elevations far from the hulls (at the control point x=w11)
and the corresponding phase shifts (with respect to the sin t forcing). More details on
the experimental cases, viscous solvers and notation used can be found in Faltinsen
et al. (2007), Kristiansen & Faltinsen (2008, 2012) and Fredriksen et al. (2015).

Figure 3 focuses on the experimental case 1 of Faltinsen et al. (2007), where,
under the same geometric input parameters, two different forcing amplitudes were
tested. The caption explains the notation used. One should note that the measured
maximum wave elevation inside the moonpool opening is, according to Kristiansen
& Faltinsen (2008), affected by the wave reflection from a wall in the experimental
wave basin. Other measurements, namely the maximum wave elevation at w11 and the
phase shifts, were virtually uninfluenced by the reflection. Thus, along with symbols
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FIGURE 4. Same as figure 3(a,c) except that the comparison is with experimental data
reported by Kristiansen & Faltinsen (2012) (empty symbols). Following the original
experimental publication, the amplitude and phase-shift results are plotted against the
dimensional forcing period T . The solid symbols show the numerical results of Kristiansen
& Faltinsen (2012), obtained by applying a viscous solver to the liquid domain in the
vicinity of the hulls:q, maximum wave elevation;u, phase shift.
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FIGURE 5. Same as figure 3 but for the experimental case 2 of Faltinsen et al. (2007)
(with d= 1.5).

A representing the actual measurements of maximum wave elevation in the moonpool
opening, we have introduced inverted symbolsC to denote filtered output signals that
are believed not to be affected by the reflection. Furthermore, Kristiansen & Faltinsen
(2008) conducted nonlinear simulations that accounted for the vortex shedding at
the sharp lower edges of the rigid hulls. Their numerical results are shown by filled
triangles: the symbols s represent numerical maximum wave elevations inside the
moonpool opening, and the symbols q mark numerical results for the phase shifts.
What we see from the figure is that our new theoretical results are in satisfactory
agreement with both the experiments and the computations of Kristiansen & Faltinsen
(2008).
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FIGURE 6. Same as in figure 3 but for the experimental case 3 of Faltinsen et al. (2007)
(B= 1, d= 0.5, h= 2.86111, ε = 0.006944 and w11= 1.94444).

Kristiansen & Faltinsen (2012) reported additional (control) model tests with the
same geometrical and physical input parameters as in case 1 of Faltinsen et al.
(2007). These model tests aimed at minimizing the aforementioned reflection effect.
Kristiansen & Faltinsen (2012) also proposed a domain-decomposition method which
suggests applying a nonlinear viscous solver to the fluid domain in the vicinity of
the hull. We compare our theoretical output (solid lines) with the inviscid potential
flow solution (dashed lines) and these additional experimental and viscous numerical
results in figure 4. We see that our new approximation of the steady-state solution
agrees satisfactorily with both experimental and numerical values.

To complete the validation procedure, we compare our new theoretical predictions
with experimental cases 2 and 3 from Faltinsen et al. (2007) in figures 5 and 6. Again,
our approximation shows satisfactory agreement with the model tests and the nonlinear
simulations by Kristiansen & Faltinsen (2008), especially for case 3.

4. Conclusions

Describing the piston-mode resonant sloshing in a moonpool may involve inviscid
potential flow solvers (see Zhang & Bandyk 2013; Zhou 2013; Zhou et al. 2013; Liu
& Li 2014; McIver 2014 and references therein), which give an accurate prediction
of the resonant frequencies but, unfortunately, overpredict the steady-state resonant
response. One reason for this discrepancy is the damping due to the vortex shedding at
the lower moonpool edges. Getting an accurate theoretical prediction of the resonance
response involves using viscous solvers in the liquid domain in the vicinity of the hull.
Kristiansen & Faltinsen (2008, 2012) and Fredriksen et al. (2015) (two-dimensional
moonpool), Kristiansen et al. (2013) (three-dimensional moonpool) and many other
authors have proposed appropriate solvers. However, the inviscid potential flow model
remains popular when the main task is a parameter study and employing the viscous
solvers may be non-efficient. Following Molin et al. (2002, 2009) and Newman
(2003), one could introduce the pressure discharge condition in the cross-section of
the moonpool opening to improve the inviscid statement. The problem consists of
estimating the pressure drop coefficient without performing dedicated model tests.
Such an estimation is proposed in the present paper for finite draft-to-opening-width
ratios based on a similarity between small-amplitude harmonic flows through a slot of
a slatted screen and the approximation of Molin (2001) for the piston-mode sloshing
in a rectangular moonpool. Comparing our numerical results with the experimental
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data of Faltinsen et al. (2007) and numerical results from Kristiansen & Faltinsen
(2008, 2012) showed satisfactory agreement. This validates our estimate.

Our analysis deals with the two-dimensional rectangular moonpool. We believe that
it can be generalized to other moonpool shapes, including three-dimensional ones,
provided that: (i) the moonpool walls away from a local edge zone (associated with Z
in figure 2) are vertical, so that the Ox-symmetry projection of the moonpool opening
in figure 2(b) yields the corresponding fictitious slot shape in figure 2(a); (ii) the
empirical function K =K(Sn,Kc) exists for this fictitious slot shape; and (iii) Molin’s
formula (Molin 2001; Molin et al. 2009) can be generalized to the needed moonpool
shape. For the three-dimensional case, condition (iii) is the most difficult one, since
generally speaking one should operate with a curve instead of a single number b∗,
and the multiplicity of the resonant frequencies matters. A dedicated study should be
conducted to find more precise formulas K =K(Sn,Kc) that reflect the Kc effect and
to validate them by using empirical values of K established in experiments (e.g. by
Molin et al. 2009). Another requirement (or limitation) consists of having an inviscid
potential solver for the modified problem (2.4)–(2.8). The solver can be based on
either a semi-analytical scheme of Faltinsen et al. (2007) type or boundary/finite
element algorithms (see e.g. Uzair & Koo 2012; Feng & Bai 2015).

It also remains to generalize the procedure to a free-floating body with a moonpool
in incident waves. This was done experimentally and numerically with a combined
potential flow and near-field viscous flow solver by Fredriksen et al. (2015) for a
similar two-dimensional section. In that case, the maximum piston-mode oscillations
occur not at the piston-mode resonance frequency but at a nearby heave resonance
frequency caused by the presence of the moonpool.
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