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Granular flows such as landslides, debris flows and avalanches are systems of particles
with a large range of particle sizes that typically segregate while flowing. The physical
mechanisms responsible for this process, however, are still poorly understood, and
there is no predictive framework for ascertaining the segregation behaviour of a
given system of particles. Here, we provide experimental evidence of individual large
intruder particles being attracted to a fixed point in a dry two-dimensional flow of
particles of otherwise uniform size. A continuum theory is proposed which captures
this effect using only a single fitting parameter that describes the rate of segregation,
given knowledge of the bulk flow field. Predictions of the continuum theory are
compared with the experimental findings, both for the typical location and velocity
field of a range of intruder sizes. For large intruder particle sizes, the continuum
model successfully predicts that a fixed point attractor will form, where intruders are
drawn to a single location.

Key words: granular media, granular mixing, pattern formation

1. Introduction
Granular materials are inherently difficult to mix. When agitated, it is common

for particles of differing size, density or shape to separate autonomously (Brown
1939). This effect is termed segregation, and is a common feature of many natural
and industrial granular flows such as landslides (Zhang et al. 2011), debris flows
(Iverson 2003), snow avalanches (Bartelt & McArdell 2009) and industrial operations
(Williams 1976). When granular material is tapped or vibrated, this same observation
is often referred to as the ‘Brazil nut effect’, where large particles (Brazil nuts
being the largest nut in a bag of mixed nuts) rise to the top of a system of smaller
particles (Möbius et al. 2001). A proposed mechanism responsible for this segregation,
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for which there are many competing propositions (Knight, Jaeger & Nagel 1993;
Hong, Quinn & Luding 2001; Huerta & Ruiz-Suárez 2004), is the formation of new
voids during movement of the grains (Savage & Lun 1988). If the system is being
compressed, particles will attempt to move into these new void spaces. As it is easier
for a small particle to fill a void than a larger one, there is a preference for small
particles to accumulate in areas of relatively high void formation (Fan & Hill 2011).

The Brazil nut effect, originally explained in terms of the local rearrangement of
particles, was subsequently found to also be induced by the convection of the bulk
particles (Knight et al. 1993). In these cases, bulk convection eventually carried all of
the particles towards the top of the system, but large intruder particles were somehow
trapped there. In other geometries, a coupling of advection and segregation has been
observed (Khakhar, McCarthy & Ottino 1997; Hill et al. 1999a,b). In the context of
gravity currents, we often observe a collection of the largest particles at the snout
of the flow, i.e. at the furthest point downslope, with medium sized particles at the
free surface, and fines accumulated at the base of the flow (Gray & Ancey 2009).
Laterally, large grains are deposited to form levees, due to an interaction between
vertical segregation and lateral advection, which strongly affect the dynamics of the
flow (Johnson et al. 2012; Woodhouse et al. 2012; Baker, Johnson & Gray 2016).
We know therefore that complex segregation patterns generally evolve in all of the
available spatial dimensions of a given flow, and that we cannot simply decouple the
segregation dynamics from the bulk flow. Direct measurement of the motion of each
grain during oscillatory shear of a bidisperse mixture using refractive index matched
scanning has shown that individual particles segregate at a velocity that depends on
their size, with small particles moving in large steps and larger particles at a more
constant rate (van der Vaart et al. 2015).

The first theoretical models of segregation by size in granular flows described the
system using statistical mechanics or by applying kinetic theory to sparse granular
flows (Jenkins & Mancini 1987; Savage & Lun 1988; Jenkins & Mancini 1989). More
recently, the kinetic theory description of segregation has been extended to dense flows
(Jenkins & Yoon 2002). Other models have diverged in methodology, describing the
segregation phenomenon using continuum mechanics (Dolgunin & Ukolov 1995; Gray
& Thornton 2005; Gray & Ancey 2011; Marks, Rognon & Einav 2012; Hill & Tan
2014; Tunuguntla, Bokhove & Thornton 2014). These continuum models in general
have assumed that the direction of segregation is known a priori, where large particles
go ‘up’ and small particles go ‘down’ (or vice versa). Efforts have been made to
describe the direction of segregation in more complex systems, but only insofar as
segregation is allowed in a single direction (Gray & Kokelaar 2010; Fan & Hill 2011;
Hill & Tan 2014). Additionally, the coupling of orthogonal advection and segregation
has been studied (Thornton & Gray 2008; Gajjar et al. 2016).

A typical assumption in such models is that the medium is a mixture, where each
constituent phase of the mixture is composed of particles with a uniform size. In
Gray & Thornton (2005), a keen insight was made that if the stress of the mixture
was not carried proportionately by each phase, this stress imbalance would cause
segregation. Recently, measurement of the micro-mechanical behaviour of these
systems has shown that there are two subcategories of this stress, the contact stress
and the kinetic stress, and that they are distributed between grains differently. The
intrinsic contact stress, which comes from sustained contacts between particles, has
been shown to be equal among the phases, and so cannot be driving segregation (Fan
& Hill 2011; Voivret 2013; Weinhart et al. 2013; Staron & Phillips 2015). The other
component of stress in granular systems, which comes from the collision of particles,
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is known as the kinetic stress in direct analogy to turbulence in fluid flows. The same
micro-mechanical investigations have found that this component of the stress does
indeed vary with particle size, although the magnitude of this stress is in general
much smaller than the contact stress. This implies that while stationary, the system
is at equilibrium and segregation will not occur, but during motion, when the kinetic
stress is non-zero, segregation is promoted. The specification of kinetic stress-induced
segregation was first included in a continuum model in Fan & Hill (2011), and later
modified in Weinhart et al. (2013), Hill & Tan (2014), where the effects of stress
partitioning were examined in detail.

Here, we show using a continuum model that if the relative magnitude of the kinetic
stress is a function of the grainsize, then we can describe both the time-averaged
and the fluctuating components of the segregation velocity purely using kinematic
variables – namely the velocity and kinetic stress of an equivalent monodisperse
system. We go on to present a simple two-dimensional experiment where such
kinematic observations can be made, and then compare predictions and observations
of the segregation behaviour of individual intruder particles in two spatial dimensions.

In the following, the kinetic stress arguments presented in Hill & Tan (2014) will
be extended to a polydisperse (many sized) material. This serves several important
purposes. Firstly, by including the physical size of the constituent particles in
the analytic description, we can create a framework that genuinely predicts the
behaviour of arbitrary mixtures of particles, rather than having to measure a new
fitting parameter for each pair of constituents. Secondly, this method removes the
binning effects associated with the assumption that each constituent is represented
by a single particle size, rather than a narrow distribution, as shown in Marks
et al. (2012). Finally, a polydisperse material can be extended to additionally treat
other mechanisms, such as grain crushing, as shown in Marks & Einav (2015), and
agglomeration and melting.

2. Continuum model

As has been shown previously (Marks et al. 2012), the analytic description of
a mixture of arbitrarily sized particles can be concisely stated in the context of
population balance equations (Ramkrishna 2000). Such a theoretical description is
constructed from a five-dimensional space, comprised of external space x = {x, y, z},
time t and an internal coordinate s, which describes the grainsize of the particles. A
polydisperse granular material can then be described as a single material, with an
additional property φ(x, s, t) that is a probability density function which characterises
the grainsize distribution at any point in space. For example, if the material segregates
perfectly by size, the grainsize distribution will approach a delta function. As in
mixture theory (Morland 1992), we maintain a distinction between the partial value
of a property, which is the amount of that property within a representative volume
element, and the intrinsic value, which is the density of that property per unit
concentration.

For the polydisperse granular material described here, the partial density of the
material, ρ(x, s, t), is defined as the mass of particles in the grainsize interval [s, s+
ds] per unit volume of the mixture. The volume fraction of each grainsize is defined
by the probability density function φ= ρ/ρ∗, where

∫
φ ds= 1 and ρ∗ is the intrinsic

density, defined as ρ∗ = ρMη, where ρM is the material density and η is the total
solid fraction of all grains. As we will here only consider the case of a material
with varying size, but equal in all other properties, we set ρM to be independent of s.
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Finally, the bulk density is defined as ρ̄ =
∫
ρ ds = ρ∗. Similarly, partial, intrinsic

and bulk contact stress are defined by σ = φσ ∗ and σ̄ =
∫

σ ds, respectively. Using
this notation, we can formulate conservation of momentum for this system, following
arguments in Bedford & Drumheller (1983), and further detailed in appendix A, as

D(ρu)
Dt
= ρg− φ∇ · σ ∗ + ρ̄β, (2.1)

where u(x, s, t) = {ux, uy, uz} is the velocity field, g the acceleration due to gravity,
D/Dt the material derivative, ∇· the divergence operator in external space x and
β(x, s, t) is an interaction term which describes how momentum is exchanged
between different grainsizes, where by definition β̄ =

∫
β ds = 0, such that there is

no net momentum flux into or out of the flowing material due to particle interactions.
Following Hill & Tan (2014), we can then decompose the velocity field into a mean
and fluctuating part as u = 〈u〉 + u′, respectively, where 〈u〉 = 1/T

∫ t+T/2
t−T/2 u dt, for

some appropriate time window T , as

D
Dt

(
ρ〈u〉 + ρu′

)
= ρg− φ∇ · σ ∗ + ρ̄β. (2.2)

We now take a time average of (2.2), again over the same time window, and allow
for the fact that in general time averages of products of fluctuating quantities do not
vanish (and dropping the 〈〉 notation for terms other than u). We additionally assume
that the flow is incompressible (isochoric), which after some rearrangement yields

D(ρ〈u〉)
Dt

= ρg− φ∇ · σ ∗ −∇ · σk + ρ̄β, (2.3)

where ⊗ is the dyadic product, σk = ρ〈u′ ⊗ u′〉 is the partial kinetic stress, which
represents the additional stress induced by particle collisions and we have assumed
that for all variables other than the velocity field, their fluctuations are uncorrelated.
We note at this stage some recent measurements of the stress scaling between
different sizes of grains in a polydisperse mixture. Several authors have found that
the intrinsic contact stress in both a stationary (Voivret 2013) and flowing (Hill &
Tan 2014; Staron & Phillips 2015) medium is independent of grainsize, such that
σ ∗(x, s, t) ≡ σ̄ (x, t). Conversely, it appears that the kinetic stress is a function of
the grainsize, such that there is some scaling law, which is as yet unknown, which
characterises how these stresses are carried (Hill & Tan 2014). In direct analogy to
Marks et al. (2012), we here close the system of equations by assuming that the
intrinsic kinetic stress scales with the bulk kinetic stress as σ ∗k = f (x, s, t)σ̄k, where f
defines the scaling law for kinetic stress, and we require that

∫
φf ds= 1 to conserve

bulk momentum. Using these definitions, we integrate (2.3) over s, retrieving the bulk
behaviour of the mixture, and find that

D(ρ̄ū)
Dt
= ρ̄g−∇ · σ̄ −∇ · σ̄k, (2.4)

where ū =
∫
φ〈u〉 ds. This recovers the usual statement of conservation of bulk

momentum, such as shown in Hill & Tan (2014). We further define the time-averaged
segregation velocity as û = 〈u〉 − ū, and using this definition we substitute (2.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

41
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.419


506 B. Marks, J. A. Eriksen, G. Dumazer, B. Sandnes and K. J. Måløy

into (2.3), while also setting ∇(φf ) · σ̄k=0, following the same logic as in appendix A
leading to (2.2) where a similar term created spurious additional diffusion, giving

D(ρû)
Dt
+ ρ̄ū

Dφ
Dt
= φ(1− f )∇ · σ̄k + ρ̄β. (2.5)

A further constitutive assumption is required to close the system, which is the
selection of an appropriate interaction term, β. As in Gray & Thornton (2005), we
assume a linear drag between different species, such that species which flow faster
or slower than the bulk velocity will feel a drag force, so that

β =−φcû, (2.6)

where c is a parameter which controls the magnitude of the drag force, with units of
inverse time. The direct measurement of c has not been attempted here, but could be
done using the method proposed in Guillard, Forterre & Pouliquen (2016). At steady
state (when ∂φ/∂t = 0 and ∂ û/∂t = 0), under the assumption that the time-averaged
segregation velocity is small compared to the bulk velocity (û� ū), it can be shown
from conservation of mass that both terms on the left-hand side of (2.5) vanish, as
shown in appendix B. Under these conditions, û reduces to

û=
1− f
ρ̄c
∇ · σ̄k. (2.7)

This relation allows for prediction of the segregation velocity for particles of any
size if the bulk kinetic stress field is known. This further implies that any particles
which are subject to less than the average kinetic stress, i.e. f < 1, will segregate in
the direction of the bulk kinetic stress gradient, while those that fluctuate more than
the average will segregate against it.

Qualitatively, equation (2.7) predicts the segregation observed during inclined chute
flow, where there exists a kinetic stress gradient perpendicular to the slope, and we
observe large particles accumulating at the free surface. Additionally, as shown in Hill
& Tan (2014), this term predicts well the behaviour in vertical chute flow.

In the following, we describe an experimental apparatus wherein we measure
time-averaged and fluctuation velocities of a closed system of particles subject to
continuous shear in a perpetual avalanche geometry. We firstly measure the velocity
fields of a monodisperse set of particles, and then using the relation (2.7), predict
the velocity fields of arbitrarily sized intruder particles, and compare these with
experimental measurements of the behaviour of intruder particles. Because complex
feedback mechanisms exist between the grainsize distribution and the bulk kinetic
stress (Jenkins & Mancini 1987), we probe the system at limφ→δ(s−s̄), i.e. the limit
where a single intruder particle is introduced to a field of monodisperse particles of
grainsize s̄, where s̄=

∫
φs ds.

3. Experiment
The experimental apparatus consists of two glass plates, separated 3.20± 0.10 mm

apart, sitting 0.2 mm above a GT2 timing belt, 6 mm wide, with teeth 2 mm
deep, as shown in figure 1. A single layer of nylon particles, with bulk density
0.92 g cm−3, laser cut into regular pentagonal prisms, with height 3.0 ± 0.1 mm,
is placed within the void between the two glass plates, pentagonal sides facing
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Front view Side view

FIGURE 1. (Colour online) Schematic of the front and side views of the perpetual
avalanche experimental apparatus. A single layer of pentagonal prism-shaped particles are
held between two glass plates and sheared from below by a conveyor belt. The system
is tilted with respect to gravity such that the base of the system is parallel to the free
surface.

the glass. Pentagons are used so that a very narrow range of sizes (measured by
micrometer to have side lengths 3.90 ± 0.10 mm) does not cause crystallisation.
Rigid walls are placed at each end of the cell, perpendicular to the timing belt,
spaced L= 496.0± 1.0 mm apart, such that the particles cannot leave the cell. A DC
motor is used to turn the timing belt, and the subsequent motion of the belt causes
the particles to be sheared. At low shear rates, intermittent avalanches are observed at
the free surface. With increasing belt velocity, there is a transition from intermittent
to continual avalanching. Further increase of the belt velocity creates a gaseous state,
where particles are rarely in contact, near both the timing belt and the free surface.
A similar experimental geometry was used in Perng, Capart & Chou (2006), where
the kinematics of the flow in such a geometry were studied in detail. This is a
two-dimensional analogue of the experimental apparatus described in Gajjar et al.
(2016), where index matching was used to observe similar breaking size-segregation
waves in three dimensions.

Here we report on experiments at a single belt velocity of ub=0.190±0.010 m s−1,
slope angle of 29.8 ± 0.2◦ (as close as possible to the dynamic angle of repose at
this velocity, adjusting the slope manually until this condition was reached) and filling
depth of H ≈ 100 mm, or approximately 30 pentagonal circumradii. At this state the
inertial number is I = 2ubs̄/(H

√
gH)≈ 0.016 (assuming no slip between the conveyor

belt and the flow, as observed experimentally), in the dense fluid regime, and we
observe a continuous avalanche with minimal saltation of particles at the free surface
and relatively uniform packing fraction throughout the flow, such that the assumption
of isochoric flow is reasonable. We record with a Photron SA5 high-speed camera
at 1000 frames per second, and a resolution of 1024 × 256 pixels, and use PIVlab
(Thielicke & Stamhuis 2014) to measure coarse-grained velocity fields from 210 000
pairs of recorded images, with pairwise spacing of 0.001 s, covering a time span
of 3.5 min. These measured velocity fields have a spatial resolution of 1.9 mm. By
averaging in time, we are able to retrieve both 〈u〉 and u′. Due to the steady nature of
the flow in this geometry, we are able to average over the full duration of recording to
recover time-averaged properties. The relevant continuum fields are shown in figure 2,
which summarises the kinematics of the system.

3.1. Segregation patterns
We now consider the case of single nylon pentagonal intruder particles flowing
within a mass of monodisperse particles. By filming at 30 fps, for 100 000 frames
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FIGURE 2. Steady state distributions of a flow of uniformly sized particles. (a) Time-
averaged downslope velocity, ūx (m s−1). (b) Time-averaged cross-slope velocity, ūz
(m s−1). (c) Magnitude of the shear strain rate, |γ̇ | (1 s−1). (d) Kinetic pressure, tr(σ̄k)/2
(m2 s−2). The black pentagon indicates the physical size of the particles in the experiment.

(approximately 600 belt rotations) we collect a probability density map for the
location of the centroid of a given intruder particle. The maps do not depend on
the initial positions of the intruder particle, and have been averaged over several
initial positions. Such maps are shown for a range of intruder sizes s, with s/s̄= 4.9,
3.4, 2.1, 1.6 and 1.2, in figure 3. Intruder particles close to the size of the bulk
particles do not segregate significantly, and as the intruder size increases, its location
localises onto a fixed point on the right-hand side of the cell. Phenomenologically,
we expect that a large particle will ‘rise’ when sheared, and so will flow towards
the top right corner, where it will be subducted towards the left-going flow at the
base. Subsequently, it will escape the rapid flow near the timing belt, doing so faster
for larger intruders, forming a breaking size-segregation wave (Gajjar et al. 2016).
Larger particles are then predicted to do smaller and smaller cycles at the right-hand
side, which we observe in figure 3. The white lines on figure 3(a) depict streamlines
of the time-averaged velocity of the intruder particle, 〈u〉, as measured directly from
particle tracking. For a video of this behaviour, please see the supplementary material
available at https://doi.org/10.1017/jfm.2017.419.

We note that the large particles are attracted to a region of low shearing, whilst
the smaller particles are repelled from it. Whether this behaviour is coincidental, or
the signature of a competing mechanism for causing segregation, is at this stage
unknown. Further work is required to investigate this possible alternative mechanism
for segregation.

4. Theoretical prediction
Given that we have measurements of the mean and fluctuating velocities, we can

predict the velocity of an intruder particle using (2.7) as

u= ū+
1− f
ρ̄c
∇ · σ̄k + u′, (4.1)

once we have defined f . Let us consider the collision of two grains a and b of radius
1 and R, respectively, and with the same density. Conservation of linear momentum
in the centre-of-momentum reference frame implies that the velocities of each particle
after impact are related by va =−RDvb, where D is the dimension. A small particle
(R < 1) will therefore have a higher fluctuating velocity than a larger one, and we
can assume that f is a decreasing function of s, normalised such that

∫
φf ds=1.
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FIGURE 3. Locations and velocities of single intruder particles. (a) Normalised
two-dimensional histogram of centroid of intruder particle. Top to bottom, the cases of
an intruder particle with size s/s̄= 4.9, 3.4, 2.1, 1.6 and 1.2, as shown to scale by the
black pentagons. White lines are streamlines of corresponding time-averaged velocity of
intruder particles as measured from experiment. (b) Normalised two-dimensional histogram
of location of numerical tracer particles after 100 s of flow. White lines are streamlines of
time-averaged velocity profile predicted using (2.7) from data recorded without an intruder
particle, as shown in figure 2. For all cases c= 22 Hz.

This effect has been observed both numerically and experimentally in bidisperse
systems varying in size, for both sparse and dense regions of flow (Hill & Zhang
2008; Staron & Phillips 2015). Under these conditions, we expect that the kinetic
stress field scales such that small particles ( f > 1) advect against the kinetic stress
gradient and large particles ( f < 1) advect with it. We therefore choose to define f
as f = s̄H/s, where s̄H = 1/

∫
(φ/s) ds is the harmonic mean grainsize. This simplistic

assumption satisfies the two requirements outlined above. Additionally it qualitatively
reproduces the asymmetry found from direct numerical measurement, see appendix C.
We can then predict the flow field of an arbitrarily sized intruder particle by assigning
the value of c, which here we take to be c = 22 Hz, which produces a reasonably
good visual agreement with the experimental observations.

Figure 3(b) shows predictions for the velocity field and histogram of position of
the intruder using (4.1) and the fields shown in figure 2. To make this prediction, we
require additionally a value for the fluctuating component of the velocity, u′. Because
of the definition of f , we can additionally relate u′ to experimental measurements
of the monodisperse particles, by randomly drawing from a Maxwell–Boltzmann
distribution with root-mean-squared velocity equal to |u′| =

√
f |ū′|, being applied in

a random direction at each time increment. All fields are described using third-order
spatial interpolation and fourth-order Runge–Kutta temporal integration. Initially,
200 000 markers are spread throughout the system, and a histogram of their locations
after 100 s of flow is shown on figure 3(b). It is evident that the continuum theory
successfully predicts that segregation drives a single large intruder particle towards a
fixed point attractor.
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FIGURE 4. (Colour online) Predicting segregation using information from the
monodisperse case shown in figure 2. Prediction of the intruder velocity field for
a large particle with s = 3s̄, and the physical size indicated by the black pentagon.
Inset: maximum finite-time Lyapunov exponent integrated forwards in time over 45 s.

A further prediction of the velocity field for an intruder particle of size s = 3s̄
is shown in figure 4. This velocity field has near zero divergence everywhere
inside the domain of the experimental apparatus, and it is therefore interesting to
analyse how particles are found to accumulate in a single region. For this reason,
the finite-time Lyapunov exponent (calculated as FTLE = ln(

√
λ)/|T|, where λ is

the maximum eigenvalue of the right Cauchy–Green deformation tensor and T is
the time interval, see equation (12) from Shadden, Lekien & Marsden (2005)) is
shown in the inset of figure 4, computed using third-order spatial interpolation
of the predicted time-averaged velocity field 〈u〉 and fourth-order Runge–Kutta
temporal integration, integrated forwards in time over 45 s. Positive and negative
finite-time Lyapunov exponents represent sources and sinks of particles, respectively.
The negative value covering most of the domain indicates that large particles are
predicted to converge towards the fixed point attractor at the centre of the inset. The
larger the intruder particle, the more it is attracted towards this attractor, as shown
in figure 3. Observations of a similar spiral pattern were made in three-dimensional
flows in Johnson et al. (2012). This behaviour may explain the rather perplexing
results of Thomas (2000), where systematic forensic excavation of segregating chute
flows found moderately large particles (up to a size ratio of 3.5) at the surface,
with even larger particles trapped below the surface, possibly due to a breaking
size-segregation wave. This inference must be treated with caution, however, as the
emplacement process of such particles is hard to discern by examining the deposit
(Branney & Kokelaar 1992).

5. Conclusions
We have here shown a new analytic description of grainsize segregation in

flowing granular systems. Under the assumption that segregation is driven by
kinetic stress gradients, predictions of segregation patterns were made using purely
kinematic descriptors. We observed the formation of a fixed point attractor for large
intruder particles in the theoretical predictions in the studied geometry. Additionally,
experimental evidence of such segregation has been shown and compared with the
theoretical predictions. The theory presented here is relevant to a large number
of particulate flows, which for the first time is applicable to flows in which the
direction of segregation is a function of the local flow conditions, and may follow
complex paths in three spatial dimensions. This will be applicable to many natural
and industrial flows, such as avalanche flow, levee formation and silo discharge. This
new description of the segregation mechanism is also applicable to vibrated systems,
such as the Brazil nut effect, where it is understood that there exist complex feedback
mechanisms between segregation and bulk convection.
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Appendix A
Following Ramkrishna (2000), we consider the particle state domain that contains

the space domain Λr whose elements are the three-dimensional vectors, x= (x, y, z), as
well as the grainsize domain Λs whose elements are scalars s. Assuming that particles
do not change size, mass and momentum conservation in the entire domain can be
written as

d
dt

∫
Λs(t)

∫
Λr (t)

ρ dx ds= 0, (A 1)

d
dt

∫
Λs(t)

∫
Λr (t)

ρu dx ds=
∫
Λs(t)

∫
Λr (t)

F dx ds, (A 2)

where F(x) is the total force per unit volume, which will be discussed below. Using
a generalisation of Reynold’s transport theorem to general vector spaces, and because
the domain of these integrals is arbitrary and the integral is continuous, we can
express the mass and momentum conservation in their local form as

∂ρ

∂t
+∇·(ρu)= 0, (A 3)

∂

∂t
(ρu)+∇·(ρu⊗ u)= F, (A 4)

where ∇= ∂/∂x+ ∂/∂y+ ∂/∂z is the differential operator and ⊗ is the outer product.
These two equations constitute a general framework that can describe the segregation
dynamics of polydisperse granular material with a continuous grainsize distribution.
Typically, three forces are considered to act on the granular assembly – a gravitational
body force, a stress gradient and an interaction term, as

F= ρg+∇ · σ + ρ̄β. (A 5)

The nature of the stress gradient used above deserves further investigation. We
decompose this partial stress gradient as

∇ · σ = φ∇ · σ ∗ + (∇φ) · σ ∗. (A 6)

Each of the terms contributes towards particle motion. The first term on the
right-hand side causes particles to move if there is a stress gradient acting on
that material, whilst the second represents stress-induced diffusion of particles. Under
isotropic loading (∇ ·σ ∗=0), it is clearly unphysical for particles to diffuse due to this
term, and so we choose to set this second term to zero, as done for immiscible fluid
mixtures in Bedford & Drumheller (1983). This yields the statement of conservation
of momentum (2.1) used in the main text.
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FIGURE 5. (Colour online) Relative partial stress fractions as a function of volume
fraction for bidisperse mixtures. Blue lines represent the smaller phase and red lines the
larger phase, with the size contrast between the two being sb/sa= 1.5, 3, 10, 100 and 1000.

Appendix B

Conservation of mass, equation (A 3), can be time averaged and integrated over all
sizes to give

∂ρ̄

∂t
+∇ · (ρ̄ū)= 0. (B 1)

Substituting this back into (A 3) and assuming u ≈ ū, we recover Dφ/Dt = 0. As
we have already assumed an incompressible (isochoric) flow field, we can state that
Dρ/Dt = 0, which can be time averaged and then integrated over all sizes to yield
Dρ̄/Dt = 0. Together, these two relations imply that ∇ · ū = ∇ · û = 0. By further
assuming that ∂ û/∂t = 0, we can state that Dû/Dt = 0. Under these conditions, the
left-hand side of (2.5) can be expressed as

D(ρû)
Dt
+ ρ̄ū

Dφ
Dt
= ρ̄φ

�
�
�Dû

Dt
+ ρ̄û

�
��

Dφ
Dt
+ φû

�
��

Dρ̄
Dt
+ ρ̄ū

�
��

Dφ
Dt
= 0. (B 2)

Appendix C

The kinetic stress scaling function assumed here, f = s̄H/s, reproduces the behaviour
noted in Tunuguntla, Weinhart & Thornton (2016), where the relative partial kinetic
stress fractions scale in an asymmetric manner with particle size. To make such a
comparison, we can investigate the case of a bidisperse grainsize distribution, with
two constituents ν = a and b, such that φ(s)= Φaδ(s− sa)+ Φbδ(s− sb), where Φν

is the volume fraction of constituent ν, Φb = 1 − Φa and δ is the delta function.
We can then evaluate both f a

= Φaf (s = sa) and f b
= Φbf (s = sb), and plot them

against their respective volume fraction, as shown in figure 5. The values of kinetic
stress imbalance agree well with measured values, as obtained via discrete element
simulations, see figure 8 from Tunuguntla et al. (2016). Values are shown for size
ratios up to 1000 for illustrative purposes only. The validity of the scaling law for
size ratios larger than those explored here is purely conjecture.
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