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Abstract. Let 0 be a finitely generated group acting by probability measure-preserving
maps on the standard Borel space (X, µ). We show that if H ≤ 0 is a subgroup with
relative spectral radius greater than the global spectral radius of the action, then H acts with
finitely many ergodic components and spectral gap on (X, µ). This answers a question of
Shalom who proved this for normal subgroups.
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1. Introduction
Let (X, B, µ) be a standard Borel probability space. Let L2(X)= L2(X, B, µ) denote
the space of square integrable measurable real functions on X and let L2

0(X)⊆ L2(X) be
the subspace of functions with zero integral. Let Aut(X, µ) denote the Polish group of
µ-preserving Borel isomorphisms of (X, B, µ).

Let λ be a Borel probability measure on Aut(X, µ). One can associate the averaging
operator Mλ : L2(X)→ L2(X) defined by

( f Mλ)(x)=
∫

a∈Aut(X,µ)
f (xa) dλ(a) ( f ∈ L2(X), x ∈ X).

Let the top of the spectrum of λ be

ρ+(λ)= ρ+(X, B, µ, λ)= sup
06= f ∈L2

0(X)

〈 f Mλ, f 〉
〈 f, f 〉

and let the norm of λ be

ρ(λ)= ‖Mλ‖ = sup
0 6= f ∈L2

0(X)

√
〈 f Mλ, f Mλ〉

〈 f, f 〉
.
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Then we have
0≤ ρ+(λ)≤ ρ(λ)≤ 1.

The operator Mλ is self-adjoint when λ is symmetric, that is, λ= λ−1 where λ−1 is
obtained by composing λ with the inverse map. In general, we have ρ(λ)2 = ρ+(λλ−1).
The inequality ρ+(λ)≥ 0 is proved in Proposition 6.

A particularly interesting case comes from probability-measure-preserving (p.m.p.)
actions of discrete groups. Let 0 be a countable group and let λ be a symmetric probability
measure on 0 such that the support of λ generates 0. The averaging operator Mλ now
naturally acts on l2(0) and is self-adjoint. Let the spectral radius of λ be

ρ(λ)= sup
0 6= f ∈l2(0)

〈 f Mλ, f 〉
〈 f, f 〉

= ‖Mλ‖ = lim
n→∞

2n
√

pe,e,2n

where pe,e,k is the probability of return for the λ-random walk on 0 in k steps. A p.m.p.
action ϕ of 0 on (X, B, µ) is a homomorphism from 0 to Aut(X, µ). The push-forward
ϕ(λ) is a Borel probability measure on Aut(X, µ) and the action ϕ has spectral gap
if and only if ρ+(ϕ(λ)) < 1, assuming λ is symmetric and its support generates 0. In
Proposition 11 we show that

ρ(λ)≤ ρ+(ϕ(λ)).

Let H be an arbitrary subgroup of 0 and let λ be a symmetric probability measure on
0. Then Mλ also acts on l2(H\0) where H\0 is the set of right cosets of H in 0. Let the
relative spectral radius be

ρ(0, H, λ)= sup
0 6= f ∈l2(H\0)

〈 f Mλ, f 〉
〈 f, f 〉

= lim
n→∞

2n
√

pe,H,2n = ‖Mλ‖

where pe,H,n is the probability that the λ-random walk of length n starting at e ends in H .
We have

ρ(λ)≤ ρ(0, H, λ)≤ 1.

The quantity ρ(0, H, λ) can be thought of as the dimension of H in 0.
Our first theorem says that when H ≤ 0 is too big compared to a p.m.p. action ϕ of 0,

it can not effectively ‘hide in the action’. For a finite symmetric set S of 0 let λS denote
the uniform probability measure on S.

THEOREM 1. Let 0 be generated by the finite symmetric set S and let ϕ be a p.m.p. action
of 0. Then for every subgroup H of 0 with

ρ(0, H, λS) > ρ
+(ϕ(λS))

there exists a finitely generated subgroup H ′ of H such that H ′ has finitely many ergodic
components and H ′ acts on each component with spectral gap.

Theorem 1 answers a question of Shalom, who proved it in the case when H is normal
in 0 [Sha].

We use a different approach from Shalom, one that also provides an explicit generating
set for H ′ and effective bounds on the expansion properties of this generating set.
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The proof of Theorem 1 uses geometric expansion. Let λ be a Borel probability measure
on Aut(X, µ). For a Borel subset Y ∈ B let

eλ(Y )=
∫

a∈Aut(X,µ)
µ(Y a�Y ) dλ(a)= 〈χY Mλ, χY c 〉

be the probability that a λ-random edge starting at Y leaves Y . Let the expansion constant
of λ be

h(λ)= h(X, B, µ, λ)= inf
{

eλ(Y )
µ(Y )(1− µ(Y ))

∣∣∣∣Y ∈ B, 0< µ(Y ) < 1
}
.

We call the system λ an expander if h(λ) > 0. Adapting Cheeger’s inequalities for group
actions in [LyN, Theorem 3.1] gives the estimates

1− h(λ)≤ ρ+(λ)≤ 1− h(λ)2/8.

In particular, λ is an expander if and only if ρ+(λ) < 1. See Proposition 5 for details.
The core of Theorem 1 is a general result saying that every large enough convex part of

an expander measure keeps expanding, at least on small enough subsets. A Borel subset
Y ∈ B is λ-invariant if eλ(Y )= 0. When Y is λ-invariant and µ(Y ) > 0, we can naturally
restrict λ to Aut(Y, (1/µ(Y ))µ). We say that Y is λ-ergodic if Y is λ-invariant and every
λ-invariant Borel subset Z ⊆ Y satisfies µ(Z)= 0 or µ(Y�Z)= 0.

In the following we do not assume λ and λi to be symmetric.

LEMMA 2. Let λ be a Borel probability measure on Aut(X, µ) with ρ = ρ+(λ), let κ > ρ
and let us decompose

λ= κλ1 + (1− κ)λ2

where the λi are Borel probability measures on Aut(X, µ). Then every λ1-invariant Borel
subset Y ∈ B of positive measure satisfies

µ(Y )≥
κ − ρ

1− ρ
.

Also, for every Borel subset Y ∈ B with

0< µ(Y )≤
1
2
κ − ρ

1− ρ

we have
eλ1(Y )
µ(Y )

≥
1
2
κ − ρ

κ
.

In particular, one can decompose

X =
n⋃

i=1

X i

(
n ≤

1− ρ
κ − ρ

)
where the X i are λ1-ergodic Borel subsets of positive measure, and λ1 on X i has spectral
gap (1≤ i ≤ n).
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It is natural to ask whether the explicit bounds on eλ1 for small subsets Y as above lead
to explicit bounds on ρ+(X i , B, µ, λ1) in Theorem 2. Even in the case when λ is finitely
supported and X stays λ1-ergodic, the answer is negative in general as follows from the
work of this author and Elek [AbE]. It is shown there that one can build actions where
small sets expand uniformly, but the global spectral gap of the action becomes arbitrarily
small. However, when X is homogeneous enough, one can indeed get such explicit bounds.
The nicest case is when X = G is a compact topological group and µ is the normalized
Haar measure. In this case, G acts on X by p.m.p. maps from both the left and the right,
and the two actions commute. The following theorem concentrates on the case when G is
connected and κ ≥ 2ρ+(λ).

COROLLARY 3. Let G be a compact, connected topological group with normalized Haar
measure µ. Let λ be a Borel probability measure on G and let κ ≥ 2ρ+(λ) > 0. Let us
decompose

λ= κλ1 + (1− κ)λ2

where the λi are Borel probability measures on G. Then G is λ1-ergodic and we have

ρ+(λ1) < 1−
1

512

(
ρ+(λ)

log2(2/ρ+(λ))

)2

.

In Corollary 13 we also state a version that estimates the spectral radius ρ(λ1) in terms
of ρ(λ). These estimates have been used in the recent paper of Lindenstrauss and Varju
[LiV]. Note that when G is not connected, in particular, when it is a profinite group, one
can still get an explicit, but significantly weaker estimate on the spectral gap on the ergodic
components of λ1, using the machinery introduced by this author and Elek in [AbE].

Theorem 1 translates to the following result in terms of profinite actions and property
(τ ). For a finite d-regular graph G let ρ+(G) denote the largest non-trivial eigenvalue of
the Markov (random walk) operator on G.

THEOREM 4. Let 0 be a group generated by the finite symmetric set S. Let (0n) be a chain
of finite index subgroups in 0 and let

ρ+ = sup ρ+(Sch(0/0n, S))

where Sch(0/0n, S) is the Schreier graph of the coset action on 0/0n . If H ≤ 0 is a
subgroup such that

ρ(0, H, λS) > ρ
+

then there exists a finitely generated subgroup H ′ ≤ H such that (H ′ ∩ 0n) has property
(τ ) in H ′. If the 0n are normal in 0, then there exists M > 0 such that |0 : H ′0n|< M.

Recall that a chain of subgroups (0n) in 0 has Lubotzky’s property (τ ) if the profinite
action of 0 on the projective limit of Sch(0/0n, S) has spectral gap. A special case of
Theorem 4 is Shalom’s theorem [Sha]: he assumes ρ+ = ρ(TS) and that H is a non-trivial
normal subgroup of 0. Here TS is the |S|-regular tree. Indeed, in this case, by Kesten’s
theorem [Kes], 0 must be a free product of cyclic groups and so H is non-amenable,
which, again using Kesten’s theorem, implies ρ(0, H, λS) > ρ

+.
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A major motivation of Shalom’s result was to find infinite index subgroups of arithmetic
groups that have property (τ ) with respect to its congruence subgroups. An early
provocative question in this direction was the so-called 1-2-3 problem of Lubotzky.
In the last decade, this arithmetic direction has seen enormous activity, started in the
breakthrough works of Helfgott [Hel] and Bourgain and Gamburd [BoG] and continued
in a series of deep papers. See [BoG], [BoV], [GoV], [PySz] and [BGT] for the
latest developments. In particular, property (τ ) is now known to hold for a large class
of arithmetic lattices in semisimple Lie groups acting on their congruence completion,
assuming H is Zariski dense. We do not expect that Theorems 1 and 4 will say much
that is new in this direction, because it seems rather non-trivial to effectively estimate
the spectral gap of a profinite action. An advantage of our result is that it substitutes
the arithmetic language, namely Zariski density and congruence subgroups with a simple
spectral condition, in the spirit of Gamburd [Gam], but in the discrete setting.

1.1. Ramanujan actions. Let λ be a symmetric probability measure on the countable
group 0 and let ϕ be a p.m.p. action of 0. We call the triple (0, λ, ϕ) Ramanujan if
ρ(λ)= ρ+(ϕ(λ)). Theorem 1 implies that, for a Ramanujan action, every subgroup H
where ρ(0, H, λ) > ρ(0, 1, λ) acts with finitely many ergodic components and spectral
gap on each components. These actions seem to be tight in many other senses. For instance,
a recent theorem of this author, Glasner and Virag [AGV] plus an even more recent result
of Bader, Duchesne and Lecureux [BDL] imply that, for such actions, the stabilizer of
a µ-random x ∈ X in 0 lies in the amenable radical of 0 almost surely (a.s.). Indeed,
as we show in Proposition 11, ρ+(ϕ(λ))≥ ρ(0, H, λ) where H is a typical stabilizer.
Being Ramanujan then implies that ρ(0, H, λ)= ρ(λ), which by [AGV] implies that H is
amenable a.s. Now [BDL] implies that every stabilizer of a p.m.p. action that is amenable
a.s. lies in the amenable radical.

Straightforward examples for Ramanujan actions are non-trivial Bernoulli actions (or, in
other words, independent and identically distributed processes) of 0 [KeT]. Note that for a
Bernoulli action of 0, every infinite subgroup H acts ergodically and the restricted action
is also a Bernoulli; in particular, it has spectral gap if and only if H is non-amenable.
So for Bernoulli actions Theorem 1 does not give much that is new. Another, quite
non-trivial example comes from the Lubotzky–Philips–Sarnak construction [LPS] that
produces Ramanujan profinite actions for free groups, for suitable ranks and the standard
generating set. Recently, Backhausz, Szegedy and Virag [BSV] analyzed the behavior of
local algorithms using the notion of a Ramanujan graphing. The connection is that when
λ= λS for a symmetric generating set, the triple (0, λ, ϕ) is encoded in a graphing.

This paper is organized as follows. In §2 we define the basic notions and prove some
general lemmas on expansion and spectral gap. In particular, we prove Lemma 8, a weaker
substitute for Schmidt’s lemma [Sch] for probability measures on Aut(X, µ). Section 3
contains the proofs of Lemma 2 and Theorem 1. In §4 we prove Corollaries 3 and 13 and
discuss profinite and Ramanujan actions.
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2. Preliminaries
In this section we define the basic notions and state some general lemmas.

We start with a proposition that is well known in Riemannian geometry and finite graph
theory under the name Cheeger inequalities. For the non-trivial part we use the exposition
by Lyons and Nazarov [LyN].

PROPOSITION 5. Let (X, B, µ) be a standard Borel probability space and let λ be a Borel
probability measure on Aut(X, µ). Then we have

1− h(λ)≤ ρ+(λ)≤ 1−
h(λ)2

8
.

Proof. For Y ∈ B let fY = χY − yχX and let y = µ(Y ). Then f ∈ L2
0(X, µ) and

eλ(Y )= 〈χY Mλ, χX − χY 〉 = y(1− y)− 〈 fY Mλ, fY 〉.

This gives

h(λ)≥
eλ(Y )

y(1− y)
= 1−

〈 fY Mλ, fY 〉

〈 fY , fY 〉
≥ 1− ρ+(λ).

For the other inequality, see e.g. [LyN, Theorem 3.1], where this is proved in the case
when λ is the uniform measure on a finite subset S of Aut(X, µ). The proof therein goes
through without difficulty by formally changing

1
|S|

∑
s∈S

(·) to
∫

Aut(X,µ)
(·) dλ

everywhere. �

Curiously, we did not find a non-probabilistic proof for the following.

PROPOSITION 6. Let (X, B, µ) be a standard Borel probability space and let λ be a Borel
probability measure on Aut(X, µ). Then ρ+(λ)≥ 0.

Proof. We can assume that X is the unit circle and µ is the normalized Lebesque measure.
Let d be the normalized distance on X , so that the length of X is 1. Let B(x, r) be the ball
of radius r around x .

For a parameter r > 0 let us define the random vector

fr = χB(x,r) − χB(y,r)

where x, y are independent µ-random elements of X . Then fr ∈ L2
0(X, µ), 〈 fr , fr 〉 ≤ 4r

and
P(〈 fr , fr 〉< 4r)≤ 4r.

Let γ ∈ Aut(X, µ) be fixed. The expected measure of the intersection B(x, r) ∩
B(y, r)γ can be computed by fixing y and only using B(y, r)γ that has µ-measure 2r .
This gives

E(µ(B(x, r) ∩ B(y, r)γ ))= 4r2.

This implies

〈 frγ, fr 〉 ≥ −µ(B(x, r) ∩ B(y, r)γ )− µ(B(x, r)γ ∩ B(y, r))
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which yields
E(〈 frγ, fr 〉)≥−8r2.

Let gr = fr conditioned on d(x, y)≥ 2r . This implies 〈gr , gr 〉 = 4r. The probability of
this event is (1− 4r), so using |〈 frγ, fr 〉| ≤ 4r , we have

E(〈grγ, gr 〉)≥−
1

1− 4r
(8r2
+ 16r2)=−

24r2

1− 4r
.

Let γ ∈ Aut(X, µ) be λ-random, independent of gr . We get

Egr (〈gr Mλ, gr 〉)= EgrEγ (〈grγ, gr 〉)= EγEgr (〈grγ, gr 〉)≥−
24r2

1− 4r
.

In particular, for every r > 0 there exists g ∈ L2
0(X, µ) such that

〈gMλ, g〉
〈g, g〉

≥
−24r
1− 4r

.

Letting r tend to zero implies ρ+(λ)≥ 0. �

We will use the following easy lemma multiple times. We omit the proof.

LEMMA 7. Let (X, B, µ) be a standard Borel probability space and let λ be a Borel
probability measure on Aut(X, µ). Then for all Y, Z ∈ B we have

eλ(Y ∩ Z)≤ eλ(Y )+ eλ(Z).

Similarly, eλ(Y\Z)≤ eλ(Y )+ eλ(Z).

In the following lemma we prove that for an ergodic measure, if all small sets expand,
then the measure is an expander. For p.m.p. actions of countable groups, this is proved e.g.
in [AbE], using Schmidt’s lemma [Sch]. Since we could not find a version of this lemma
for Borel measures on Aut(X, µ), we give a direct proof here that is of a combinatorial
nature.

LEMMA 8. Let (X, B, µ) be a standard Borel probability space. Let λ be an ergodic Borel
probability measure on Aut(X, µ). Assume that there exists c, c′ > 0 such that for every
Y ∈ B with 0< µ(Y ) < c we have

eλ(Y )
µ(Y )(1− µ(Y ))

> c′.

Then ρ+(λ) < 1.

Proof. Let us define the function F : [0, 1] → [0, 1] as

F(y)= inf{eλ(Y ) | Y ∈ B, µ(Y )= y}.

Then F(0)= F(1)= 0 and F is symmetric to 1/2. For all Y, Z ∈ B with Y ∩ Z =∅ we
have

|eλ(Y ∪ Z)− eλ(Y )| ≤ eλ(Z)≤ µ(Z) (Sub)

which implies that

|F(y + z)− F(y)| ≤ z (y ∈ [0, 1], z ∈ [0, 1− y]).
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In particular, F is continuous on [0, 1]. By the assumption of the lemma, we have

F(y) > c′y > 0 (0< y < c).

Let
r =min{y ∈ (0, 1] | F(y)= 0} and ε0 =max{F(y) | 0≤ y ≤ r}.

For 0≤ ε < ε0 let

g(ε)=min{z | F(y)≥ ε for all y ∈ [z, r − z]}.

Since F(0)= F(1)= 0, limε→0 g(ε)= 0. Let ε1 > 0 such that for all 0< ε ≤ ε1 we have
g(ε)≤ r/3.

Let Y, Z ∈ B with µ(Y )= µ(Z)= r such that

eλ(Y ), eλ(Z)≤ ε/2≤ ε1/2.

Using Lemma 7, we have

ε ≥ eλ(Y )+ eλ(Z)≥ eλ(Y ∩ Z)≥ F(µ(Y ∩ Z))

which, by the definition of g, implies that

µ(Y ∩ Z)≤ g(ε) or µ(Y ∩ Z)≥ r − g(ε).

The assumption g(ε)≤ r/3 ensures that the above two possibilities are mutually exclusive.
Let ε1 > ε2 > . . . be a positive sequence converging to 0. Since F(r)= 0, for all n ≥ 1

there exists Yn ∈ B such that µ(Yn)= r and eλ(Yn)≤ εn/2. By the above, for every pair
of integers n < m exactly one of the following holds:

µ(Yn ∩ Ym)≤ g(εn) or µ(Yn ∩ Ym)≥ r − g(εn).

We call Yn and Ym overlapping if µ(Yn ∩ Ym)≥ r − g(εn).
We claim that there exists an infinite subsequence of (Yn) such that all pairs in

the subsequence are overlapping. Let us assume not. Then the graph defined on {Yn}

by the overlapping relation does not admit an infinite complete subgraph, so by the
infinite Ramsey theorem, it admits an infinite empty subgraph. Let m > 2/r and choose
Yn1 , . . . , Ynm from this subgraph such that g(εni ) < r/(2(m − 1)) (1≤ i ≤ m). Then the
sets

Yni

∖⋃
j 6=i

Yn j

are mutually disjoint of measure at least r/2, and thus the sum of their measures is at
least mr/2> 1, a contradiction. The claim holds. By passing to this subsequence we can
assume that (Yn) is totally overlapping.

Let us endow the set of measurable subsets of (X, B, µ)modulo nullsets with the usual
metric

d(Y, Z)= µ(Y\Z ∪ Z\Y ).

By the above, for all n < m we have

d(Yn, Ym)≤ 2g(εn).
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That is, in the metric d , Yn forms a Cauchy sequence. Since d defines a complete metric
space, there exists Y ∈ B such that d(Y, Yn)→ 0. However, by (Sub), eλ is continuous
with respect to d , so we have

µ(Y )= r and eλ(Y )= lim
n→∞

eλ(Yn)≤ lim
n→∞

εn/2= 0.

By the ergodicity of λ, this implies that r = 1.
In particular, F(y) > 0 for c ≤ y ≤ 1− c and so h(λ) > 0 and by Lemma 5, we have

ρ+(λ) < 1. �

In the proof of Theorem 1 we use the known trick of making λ (and the associated
random walk) lazy, by averaging it with λe, the Dirac measure on the identity element.
This gives us the following advantages.

LEMMA 9. Let λ be a symmetric Borel probability measure on Aut(X, µ) and let

λ′ = 1
2λ+

1
2λe.

Then
1
2ρ
+(λ)+ 1

2 = ρ
+(λ′)= ‖Mλ′‖ = ‖Mn

λ′‖
1/n (n ≥ 1)

and
h(λ′)= 1

2 h(λ).

Proof. The spectrum of Mλ′ lies in [0, 1] and so ρ+(λ′)= ‖Mλ′‖ = ‖Mn
λ′
‖

1/n . By
definition, we have

eλ′(Y )= 1
2 eλ(Y )

for all Y ∈ B which implies h(λ′)= 1
2 h(λ). �

The first part of the following lemma can be found e.g. in [AbN]. We thank Varju for
pointing out the second part.

LEMMA 10. Let G be a compact topological group with normalized Haar measure µ and
let A, B ⊆ G be measurable subsets of positive measure. Let g be a µ-random element of
G. Then the expected value

E(µ(Ag ∩ B))= µ(A)µ(B).

When G is connected, for every k ≥ 2, there exists g1, . . . , gk ∈ G such that

µ

( k⋂
i=1

Agi

)
= µ(A)k .

Proof. Let
U = {(a, g) ∈ G × G | a ∈ A, ag ∈ B}.

Then U is measurable in G × G and using Fubini’s theorem, we get

µ(A)µ(B)=
∫

a∈A
µ(a−1 B)= µ2(U )=

∫
g∈G

µ(Ag ∩ B)= E(µ(Ag ∩ B)).
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Let g1, . . . , gk ∈ G be independent µ-random elements and let Y =
⋂k

i=1 Agi . By
induction on k, we have

E(µ(Y ))= µ(A)k .

By the connectedness of G, the set of possible values for µ(Y ) is a connected subset of R.
Hence, it must contain µ(A)k . �

3. Measure-preserving actions
This section contains the results on p.m.p. actions and, in particular, we prove Lemma 2
and Theorem 1.

We start by showing that for a p.m.p. action the local spectral radius is less than or equal
to the global one.

PROPOSITION 11. Let 0 be a countable group and let λ be a symmetric probability
measure on 0. Let ϕ be a p.m.p. action of 0. Then

ρ+(ϕ(λ))≥ ρ(λ).

Proof. Both ρ and ρ+(ϕ(·)) are continuous for the l1 distance on the space of probability
measures on 0, so we can assume that λ is supported on the finite symmetric set S. For
x ∈ X let Hx = Stab0(x) be the stabilizer of x in 0 and let x0 be the orbit of x under 0.
We have

ρ(λ)= lim
n→∞

2n
√

pe,e,2n ≤ lim
n→∞

2n
√

pe,Hx ,2n = ρ(0, Hx , λ).

In particular, we get that, for µ-almost every x ∈ X , the norm of Mλ acting on l2(x0)
is at least ρ(λ). (Note that when λ generates 0, by the ergodicity of ϕ(λ), this norm is
independent of x , but we will not use this.)

For B ⊆ 0 let x B = {xb | b ∈ B}. Let ε > 0. Then for every x ∈ X there exists a
minimal n(x) ∈ N and a function fx : x Sn(x)

→Q such that 〈 fx , fx 〉 = 1,∑
y∈Sn(x)

fx (y)= 0 and 〈 fx Mλ, fx 〉> ρ(λ)− ε.

Since n(x) is a measurable function of x , we can choose fx to be a measurable function
of x , say, by listing all the fx with zero sum and norm 1 and taking the first one satisfying
the inequality. We get that there exists a Borel subset Y ∈ B with µ(Y ) > 0 and n > 0 and
such that for all x ∈ Y we have n(x)= n. By a standard argument, by passing to a subset
of positive measure, we can also assume that

y1Sn+1
∩ y2Sn+1

=∅ (y1, y2 ∈ Y, y1 6= y2). (Dis)

Let F : X→Q be defined by

F(z)=
{

fy(z), z ∈ ySn, y ∈ Y,
0 otherwise.

By the above, F is well defined, F ∈ L2
0(X, µ) and

〈F, F〉 =
∫

y∈Y
〈 fy, fy〉 dµ= µ(Y ).
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Also, by (Dis), Mλ acts separately on the ySn+1 (y ∈ Y ), and thus

〈F Mλ, F〉 =
∫

y∈Y
〈 fy Mλ, fy〉 dµ > (ρ(λ)− ε)µ(Y ).

This implies ρ+(ϕ(λ))≥ ρ(λ)− ε. �

We now prove Lemma 2 saying that a large enough convex part of an expander measure
keeps being an expander on its ergodic components.

Proof of Lemma 2. Let ρ = ρ+(λ). Fix Y ∈ B, let y = µ(Y ) and let eλ1 = eλ1(Y ).
Let f : X→ R be defined as

f (x)=
{

1− y, x ∈ Y,
−y, x /∈ Y.

Then f ∈ L2
0(X, µ) and 〈 f, f 〉 = y(1− y).

For a ∈ Aut(X, µ) let
δa = δa(Y )= µ(Y a�Y ).

Then we have

〈 f a, f 〉 = (y − δa)(1− y)2 − 2δa y(1− y)+ (1− y − δa)y2
= y(1− y)− δa

and using δa ≤ y this gives

y(1− y)= 〈 f, f 〉 ≥ 〈 f a, f 〉 = y(1− y)− δa ≥−y2.

Using the decomposition of λ, we have∫
a∈Aut(X,µ)

〈 f a, f 〉 dλ(a)= κ
∫

a∈Aut(X,µ)
〈 f a, f 〉 dλ1(a)

+ (1− κ)
∫

a∈Aut(X,µ)
〈 f a, f 〉 dλ2(a)

≥ κ

∫
a∈Aut(X,µ)

〈 f a, f 〉 dλ1(a)− (1− κ)y2

=−(1− κ)y2
+ κy(1− y)− κ

∫
a∈Aut(X,µ)

δa dλ1(a)

= y(κ − y)− κeλ1 .

By the definition of ρ we have∫
a∈Aut(X,µ)

〈 f a, f 〉 dλ(a)≤ ρ〈 f, f 〉 = ρy(1− y).

Putting together the two inequalities we get

y(κ − y)− κeλ1 ≤ ρy(1− y)

which yields
eλ1

y
≥
κ − ρ

κ
− y

(
1− ρ
κ

)
. (Exp)
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In particular, if

0< y <
κ − ρ

1− ρ
then eλ1 > 0, so Y can not be λ-invariant. This implies that we can decompose

X =
n⋃

i=1

X i

(
n ≤

1− ρ
κ − ρ

)
where the X i are λ1-ergodic Borel subsets of positive measure.

Using (Exp) again, for

0< y ≤
1
2
κ − ρ

1− ρ
we get

eλ1

y
≥

1
2
κ − ρ

κ
.

In particular, there exists c, c′ > 0 such that for each X i (1≤ i ≤ n) and every Y ⊆ X i with
0< µ(Y )≤ c we have eλ1/y ≥ c′. By Lemma 8 this implies that λ1 has spectral gap on
the X i . The lemma holds.

We are ready to prove the main theorem of the paper.

Proof of Theorem 1. Let
λ′ = 1

2λS +
1
2λe.

Then ϕ(λ′)= 1
2ϕ(λS)+

1
2λe, and by Lemma 9 we have

ρ(0, H, λ′)− ρ+(ϕ(λ′))= 1
2 (ρ(0, H, λ′)− ρ+(ϕ(λ′))) > 0. (A)

Recall that
ρ(0, H, λ′)= lim

n→∞
2n
√

pe,H,2n

where
pe,H,n =

∑
h∈H

pe,h,n =
∑
h∈H

〈χe Mn
λ′ , χh〉

is the probability that the λ′-random walk of length n starting at e ends at H . By (A) there
exists an even integer n such that

pe,H,n > ρ
+(ϕ(λ′))n .

Fix this n. Let λ be the n-fold convolution of λ′. That is, λ({g})= pe,g,n (g ∈ 0). Let
κ = λ(H). By Lemma 9 we have

κ = pe,H,n > ρ
+(ϕ(λ′))n = ρ+(ϕ(λ)).

Since Mλ is self-adjoint, we have

ρ+(λ)= ρ+(λ′)n = ‖Mλ′‖
n .

Let the measures λ1 and λ2 on 0 be defined by

λ1(g)=


1
κ
λ(g), g ∈ H,

0, g /∈ H,
and λ2(g)=

0, g ∈ H,
1

1− κ
λ(g), g /∈ H.
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That is, we decompose λ according to 0 = H ∪ (0\H). Then the λi are symmetric
probability measures on 0 and we have

λ= κλ1 + (1− κ)λ2

which implies
ϕ(λ)= κϕ(λ1)+ (1− κ)ϕ(λ2).

Let ρ = ρ+(ϕ(λ)). Applying Lemma 2 on this convex sum, we get the decomposition

X =
n⋃

i=1

X i

(
n ≤

1− ρ
κ − ρ

)
where the X i are ϕ(λ1)-ergodic Borel subsets of positive measure, and the restriction of
ϕ(λ1) on X i has spectral gap (1≤ i ≤ n).

Since λ′ is supported on S ∪ {e}, the support T of λ1 is contained in H ∩ (S ∪ {e})n

and, in particular, it is finite. Let H ′ ≤ H be the subgroup generated by T . Then H ′ acts
on X i with spectral gap (1≤ i ≤ n).

Remark. We expect that finitely many bad eigenvalues will not disturb Theorem 1. More
precisely, we can define the essential top of the spectrum of λ as the infimum of ρ+(λ)
acting on the ortho-complements of finite dimensional Mλ-invariant subspaces of L2(X).
Theorem 1 should then work with the essential top of the spectrum as input.

4. Homogeneous and profinite actions
In this section we prove Corollary 3 and some versions of it using the norm instead of ρ+.
Then we translate Theorem 1 to the profinite setting to obtain Theorem 4.

Proof of Corollary 3. Let X = G with the standard Borel sets and let µ be the normalized
Haar measure on G. Then G acts on itself from the left by µ-preserving maps, so λ gives
a Borel measure on Aut(X, µ). Let ρ = ρ+(λ) > 0.

Applying Lemma 2 we can decompose

G =
n⋃

i=1

X i

(
n ≤

1− ρ
κ − ρ

)
where the X i are λ1-ergodic Borel subsets of positive measure, and λ1 on X i has spectral
gap (1≤ i ≤ n). Since the right and left G-actions commute, for all g ∈ G and 1≤ i ≤ n,
X i g is also λ1-ergodic. By Lemma 10 there exists g ∈ G such that µ(X1 ∩ X1g)=
µ(X1)

2. Since µ(X1 ∩ X1g) is also λ1-ergodic, we have µ(X1)= 1 and so G is λ1-
ergodic.

Again using Lemma 2 and κ ≥ 2ρ > 0 we get that for every Borel subset Y ∈ B with

0< µ(Y )≤
1
2
ρ ≤

1
2
κ − ρ

1− ρ
(Small)

we have

eλ1(Y )≥
1
2

(
1−

ρ

κ

)
µ(Y )≥

1
4
µ(Y ). (Exp1)

https://doi.org/10.1017/etds.2018.63 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.63


878 M. Abért

Let Z ∈ B with 0< µ(Z)≤ 1/2. Then there exists k such that
1
2µ(Z)ρ ≤ µ(Z)

k
≤

1
2ρ.

By Lemma 10 there exists g1, . . . , gk ∈ G such that for Y =
⋂k

i=1 Zgi we have µ(Y )=
µ(Z)k .

Using Lemma 7 and (Exp1) we get

keλ1(Z)≥ eλ1(Y )≥
1
4µ(Y )=

1
4µ(Z)

k
≥

1
8ρµ(Z)

which gives
eλ1(Z)

µ(Z)(1− µ(Z))
≥

ρ

8k(1− µ(Z))
>
ρ

8k
≥

ρ

8 log2(2/ρ)
.

Since Z was arbitrary and eλ1(Z)= eλ1(Z
c), this yields

h(λ1)≥
ρ

8 log2(2/ρ)

which, by Proposition 5, implies

ρ+(λ1)≤ 1−
h(λ1)

2

8
≤ 1−

1
512

(
ρ+(λ)

log2(2/ρ+(λ))

)2

.

The corollary holds.

With a more careful analysis one can certainly shave off the constant 512. It is not clear
whether the log factor can be omitted here. The square comes from playing back and forth
between ρ+ and h, and thus using both Cheeger inequalities.

Now we prove a version that uses κ in the estimate but in turn allows ρ+(λ)= 0.

LEMMA 12. Let G be a compact, connected topological group with normalized Haar
measure µ. Let λ be a Borel probability measure on G and let κ > 2ρ+(λ). Let us
decompose

λ= κλ1 + (1− κ)λ2

where the λi are Borel probability measures on G. Then G is λ1-ergodic and we have

ρ+(λ1) <

(
1−

1
211

(
κ

log2(4/κ)

)2)1/2

.

The proof is identical to the proof of Corollary 3 above, except that in (Small) we change
µ(Y )≤ ρ/2 to µ(Y )≤ κ/4 and then throughout the whole proof, we use κ/2 instead of ρ
everywhere.

This leads to the following corollary, which uses ρ instead of ρ+ both as input and
output. Note that the paper [LiV] uses this form.

COROLLARY 13. Let G be a compact, connected topological group with normalized
Haar measure µ. Let λ be a Borel probability measure on G and let κ > 2ρ(λ). Let us
decompose

λ= κλ1 + (1− κ)λ2

where the λi are Borel probability measures on G. Then G is λ1-ergodic and we have

ρ(λ1) < 1−
1

211

(
κ

log2(4/κ)

)2

.
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Proof. For g ∈ G let λg denote the g-translate of λ. Then we have

ρ+(λg)≤ ρ(λ) (g ∈ G).

Using Lemma 12 on λg, λ1g and λ2g we get

ρ+(λ1g) < r = 1−
1

211

(
κ

log2(4/κ)

)2

.

Let f ∈ L2
0(X, µ) with 〈 f, f 〉 = 1. Then

〈 f Mλ1 , f g−1
〉 = 〈 f Mλ1g, f 〉< r.

This yields

〈 f Mλ1 , f Mλ1〉 =

∫
〈 f Mλ1 , f g−1

〉 dλ1(g) < r

implying
ρ(Mλ1) < r1/2.

The corollary holds. �

Remark. Let 0 be a countable group and let λ be a symmetric probability measure on 0
with averaging operator Mλ acting on l2(0). In the paper we implicitly use the fact that
ρ+(λ)= ‖Mλ‖. The fact itself is folklore, but we found a couple of incomplete proofs in
the literature, so we include a sketch here. Let µ be the spectral measure of Mλ. Then,
for all k ≥ 0, the kth moment of µ equals pe,e,k , the probability of return in k steps for
the λ-random walk on 0. In particular, all the moments of µ are non-negative. This easily
implies that the top of the support of µ is at least the absolute value of the bottom of the
support, which then implies ρ+(λ)= ‖Mλ‖.

We are ready to prove Theorem 4.

Proof of Theorem 4. Let X denote the boundary of the coset tree of 0 with respect to (0n).
This is the inverse limit of the coset spaces 0/0n (see [AbN] for an exposition). Note that
when the 0n are normal, X equals the profinite completion of 0 with respect to (0n). Then
0 acts on X by a p.m.p. action. This action is always ergodic and has spectral gap if and
only if (0n) has property (τ ) in 0.

Let λ be the uniform measure on the symmetric set S. Since L2(X) as a 0-space is the
union of L2(0/0n), we have

ρ+(λ)= sup ρ+(0/0n, λ)

where ρ+(0/0n, λ) is the top of the spectrum of λ acting on L2
0(0/0n). Similarly, we

have ρ(λ)= sup ρ(0/0n, λ).
Since ρ(0, H, λ) > ρ+, we can apply Theorem 1 and get that there exists a finitely

generated subgroup H ′ ≤ H such that X has finitely many ergodic H ′-components and
H ′ acts on each component with spectral gap. This is equivalent to saying that there exists
M > 0 such that the action of H ′ on 0/0n has at most M orbits and uniform spectral gap
(n ≥ 0). In particular, (H ′ ∩ 0n) has property (τ ) in H ′. When the 0n are normal in 0,
the coset action of H ′ on 0/0n is fixed-point-free and the number of its orbits equals the
index |0 : H ′0n|.
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When the 0n are not normal and the finite actions of 0 are far from regular, we do not
expect that the index stays bounded in general. Random actions on rooted trees, in the
spirit of [Gla], may give counterexamples.
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