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Abstract
We prove that every finitely-generated right-angled Artin group embeds into some Brin—
Thompson group nV. It follows that any virtually special group can be embedded into

some nV, a class that includes surface groups, all finitely-generated Coxeter groups, and
many one-ended hyperbolic groups.
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1. Introduction

The Brin—Thompson groups nV are a family of higher-dimensional generalizations of
Thompson’s group V, defined by Brin in [4]. In this paper we prove the following theorem.

THEOREM 1. For any finite simple graph ', there exists an n > 1 so that the right-angled
Artin group Ar embeds intonV .
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Here Ar is the group with one generator for each vertex of I', where two generators
commute if the corresponding vertices are connected by an edge (see [5]). Note that the
only right-angled Artin groups that embed into Thompson’s group V are direct products of
free groups [2, 6].

Combining our results with those in [2] gives us the following theorem.

THEOREM 2. For any finite simple graph T, there exists an n > 1 with the following
properties:

(1) the restricted wreath product nV : Ar = (@Arn V) X Ar embeds intonV,

(2) if G is any group that has a subgroup of finite index that embeds into Ar, then G
embeds intonV .

Proof. Statement (i) follows from the fact that our embedding of Ar into nV is demonstra-
tive in the sense of [2]. Statement (ii) follows from the fact that nV : H embeds into nV for
any finite group H (since H is demonstrable for nV'), together with the Kaloujnine-Krasner
theorem [13].

Many different groups are known to embed (or virtually embed) into right-angled Artin
groups, including the “virtually special” groups of Haglund and Wise [9]. It follows from
Theorem 1 that all such groups embed into some n V. Here is a partial list of such groups:

(1) all finitely generated Coxeter groups [10];

(2) many word hyperbolic groups, including all hyperbolic surface groups [15], and all
one-relator groups with torsion [16];

(3) all graph braid groups [8];
(4) all limit groups [16];

(5) many 3-manifold groups, including the fundamental groups of all compact
3-manifolds that admit a Riemannian metric of nonpositive curvature [14], as well as
all finite-volume hyperbolic 3-manifolds [1].

In addition, it follows from some recent work of Bridson [3] that there exists an n > 1 such
that nV has unsolvable isomorphism and subgroup membership problems for its finitely
presented subgroups, and also has a finitely presented subgroup with unsolvable conjugacy
problem.

Our proof shows that A embeds intonV forn = |V | 4 | E€|, where V is the set of vertices
of I' and E¢ is the set of complementary edges, i.e. the set of all pairs of generators that do
not commute. Kato has subsequently strengthened this result to n = | E¢| [11]. Kato’s bound
is not sharp, and it remains an open problem to determine the smallest n for which a given
right-angled Artin group embeds into nV'.

2. Background and notation

We will need to consider a certain generalisation of the groups nV. Given finite alphabets
¥y, ..., Xy, the corresponding Cantor cube is the product

X=%E"x---xX,
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where X denotes the space of all infinite strings of symbols from ;. Given any tuple
(oep, ..., 00y), where each «; is a finite string over %;, the corresponding subcube of X
is the collection of all tuples (xi,...,x,) € X for which each x; has «; as a prefix.
There is a canonical homeomorphism between any two such subcubes given by prefix
replacement, i.e.

(ap X1, ooy X,) = (Br-Xi, oo, By - Xn),

where - denotes concatenation of strings.

A homeomorphism £ of X is called a rearrangement if there exist partitions Dy, ..., Dy
and Ry, ..., R, of X into finitely many subcubes such that 2 maps each D; to R; by
the canonical homeomorphism. The rearrangements of X form a group under composi-
tion, which we refer to as X V. The case where X = ({0, 1}*)" gives the Brin—Thompson
groupnV.

The following proposition is easy to prove using complete binary prefix codes.

PROPOSITION 3. If X =X{ x --- x X2 is any Cantor cube, then XV embeds into the
Brin—-Thompson group n'V .

Next we need a version of the ping-pong lemma for actions of right-angled Artin groups.
The following is a slightly modified version of the ping-pong lemma for right-angled Artin
groups stated in [7] (also see [12]).

THEOREM 4 (Ping-pong lemma for right-angled Artin groups). Let Ar be a right-angled
Artin group with generators g1, . .., g, acting on a set X. Suppose that there exist subsets
{STY_, and {S7Y'_, of X, with S; = S;" U S;, satisfying the following conditions:

(1) &(S") S S} and g7'(S7) S 8] forall i;

(2) ifgi and g; commute (withi # j), then g;(S;) = S;;

(3) ifgi and g; do not commute, then g;(S;) C Si+ and gi_l(Sj) cS;

(4) there exists a point x € X — | J]_, Si such that g;(x) € SiJr and gi_] (x)e S foralli.

Then the action of Ar on X is faithful.

Indeed, if U is any subset of X — U?:l S; such that g; (U) C Si+ and gi_l(x) € S, , then all
of the sets {g(U) | g € Ar} are disjoint. In the case where X is a topological space and U is
an open set, this means that the action of A on X is demonstrative in the sense of [2].

3. Embedding right-angled Artin groups

Let Ar be a right-angled Artin group with generators gy, ..., g,. For convenience, we
assume that none of the generators g; lie in the center of Ar. For in this case Ar = AL, x Z
for some right-angled Artin group Ay, with fewer generators, and since sV x Z embeds
in sV, any embedding A, — kV yields an embedding A — kV.

Let P be the set of all pairs {i, j} for which g;g; # g;gi, and note thateachi € {1, ..., n}
lies in at least one element of P. Let X be the following Cantor cube:

X = ]_[{o, 1}° x 1_[ {i, j, 9y°.
i=1 {

i,jleP

https://doi.org/10.1017/50305004119000112 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004119000112

228 JAMES BELK, COLLIN BLEAK AND FRANCESCO MATUCCI

We claim that A embeds into XV, and hence embeds into kV for k =n + | P|.
We begin by establishing some notation:

(i) for each point x € X, we will denote its components by {x;}ic(1,....»y and {x;; }ii, j1eps

(i) given any i € {1,...,n} and o € {0, 1}*, let C;(«) be the subcube consisting of
all x € X for which x; begins with «. Let L;,: X — C;(x) be the canonical
homeomorphism, i.e. the map that prepends « to x;;

(iii)) foreachi e {l, ..., n}, let P; be the set of all j for which {i, j} € P, and let S; be
the subcube consisting of all x € X such that x;; begins with i for all j € P;. Let
F;: X — §; be the canonical homeomorphism, i.e. the map that prepends i to x;; for
each j € P;;

@av) letS;; = F;(S;) = Fl.z(X), i.e. the subcube consisting of all x € X such that x;; begins
with ii for each j € P;.

Now, for each i € {1, ..., n}, define a homeomorphism /;: X — X as follows:

(1) h; maps X — S; to (S; — S;;) N C;(10) via L; 19 o F;;
(i1) h; is the identity on S;;;
(iii) h; maps (S; — S;;)) N Ci(1) to (S; — S;;) N C;(11) via L; ;3
(iv) h; maps (S; — S;;) N C;(01) to X — S; via 1'7[‘1 o L;&l;
(v) h; maps (S; — S;;) N C;(00) to (S; — S;;) N C;(0) via L;&.

Note that the five domain pieces form a partition of X, and each is the union of finitely
many subcubes. Similarly, the five range pieces form a partition of X, and each is the
union of finitely many subcubes. Since each of the maps is a restriction of a canonical
homeomorphism, it follows that #; is an element of X V.

Note that for each i, j € {1, ..., n}, if g; and g; commute, then so do /; and /. Thus we
can define a homomorphism ®: Ar — XV by ®(g;) = h; for each i.

PROPOSITION 5. The homomorphism ® is injective.

Proof. For each i, let S[Jr =38 NCi(1), and let S; =S, N C;(0). These two sets form a
partition of S;, with

h(SH=SNC(ADHCS and  h7'(S) =S NC(00)C S .

Now suppose we are given two generators g; and g;. If g; and g; commute, then clearly
hi(S;) = S;.If g; and g; do not commute, then S; € X — S;, and therefore 4,(S;) C S;" and
hi'(S) CS;.

Finally, let x be an point in X such that x;; starts with ¢ for all {i, j} € P. Then x €
X — §; forall i, so h;(x) € Si+ and hi_1 (x) € S;. The homomorphism & is thus injective by
Theorem 4.

This proves Theorem 1. Further, as observed at the end of Section 2, this embedding is
demonstrative in the sense of [2].
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this paper.
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