Mathematical Proceedings of the Cambridge Philosophical Society

Vol. 169

September 2020

Part 2

225

Math. Proc. Camb. Phil. Soc. (2020), **169**, 225–229 © Cambridge Philosophical Society 2019 doi: 10.1017/S0305004119000112 First published online 23 April 2019

Embedding right-angled Artin groups into Brin-Thompson groups

BY JAMES BELK, COLLIN BLEAK†

University of St Andrews e-mail: jmb42@st-andrews.ac.uk

AND FRANCESCO MATUCCI‡

University of Campinas e-mail: francesco@ime.unicamp.br

(Received 7 November 2016; revised 14 December 2018)

Abstract

We prove that every finitely-generated right-angled Artin group embeds into some Brin– Thompson group nV. It follows that any virtually special group can be embedded into some nV, a class that includes surface groups, all finitely-generated Coxeter groups, and many one-ended hyperbolic groups.

2010 Mathematics Subject Classification: 20F65 (Geometric Group Theory); 20F36 (Braid groups, Artin groups); 20E07 (subgroup theorems; subgroup growth)

1. Introduction

The *Brin–Thompson* groups nV are a family of higher-dimensional generalizations of Thompson's group V, defined by Brin in [4]. In this paper we prove the following theorem.

THEOREM 1. For any finite simple graph Γ , there exists an $n \ge 1$ so that the right-angled Artin group A_{Γ} embeds into nV.

[†] The first and second authors have been partially supported by EPSRC grant EP/R032866/1 during the creation of this paper.

‡ The third author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni (GNSAGA) of the Istituto Nazionale di Alta Matematica (INdAM) and gratefully acknowledges the support of the Fundação para a Ciência e a Tecnologia (FCT projects UID/Multi/04621/2013 (CEMAT-Ciências) and PEst-OE/MAT/UI0143/2014).

226 JAMES BELK, COLLIN BLEAK AND FRANCESCO MATUCCI

Here A_{Γ} is the group with one generator for each vertex of Γ , where two generators commute if the corresponding vertices are connected by an edge (see [5]). Note that the only right-angled Artin groups that embed into Thompson's group V are direct products of free groups [2, 6].

Combining our results with those in [2] gives us the following theorem.

THEOREM 2. For any finite simple graph Γ , there exists an $n \ge 1$ with the following properties:

- (1) the restricted wreath product $nV \wr A_{\Gamma} = (\bigoplus_{A_{\Gamma}} nV) \rtimes A_{\Gamma}$ embeds into nV;
- (2) *if G is any group that has a subgroup of finite index that embeds into* A_{Γ} *, then G embeds into* nV*.*

Proof. Statement (i) follows from the fact that our embedding of A_{Γ} into nV is *demonstrative* in the sense of [2]. Statement (ii) follows from the fact that $nV \ge H$ embeds into nV for any finite group H (since H is demonstrable for nV), together with the Kaloujnine-Krasner theorem [13].

Many different groups are known to embed (or virtually embed) into right-angled Artin groups, including the "virtually special" groups of Haglund and Wise [9]. It follows from Theorem 1 that all such groups embed into some nV. Here is a partial list of such groups:

- (1) all finitely generated Coxeter groups [10];
- (2) many word hyperbolic groups, including all hyperbolic surface groups [15], and all one-relator groups with torsion [16];
- (3) all graph braid groups [8];
- (4) all limit groups [16];
- (5) many 3-manifold groups, including the fundamental groups of all compact 3-manifolds that admit a Riemannian metric of nonpositive curvature [14], as well as all finite-volume hyperbolic 3-manifolds [1].

In addition, it follows from some recent work of Bridson [3] that there exists an $n \ge 1$ such that nV has unsolvable isomorphism and subgroup membership problems for its finitely presented subgroups, and also has a finitely presented subgroup with unsolvable conjugacy problem.

Our proof shows that A_{Γ} embeds into nV for $n = |V| + |E^c|$, where V is the set of vertices of Γ and E^c is the set of complementary edges, i.e. the set of all pairs of generators that do *not* commute. Kato has subsequently strengthened this result to $n = |E^c|$ [11]. Kato's bound is not sharp, and it remains an open problem to determine the smallest n for which a given right-angled Artin group embeds into nV.

2. Background and notation

We will need to consider a certain generalisation of the groups nV. Given finite alphabets $\Sigma_1, \ldots, \Sigma_n$, the corresponding **Cantor cube** is the product

$$X = \Sigma_1^{\omega} \times \cdots \times \Sigma_n^{\omega},$$

where Σ_i^{ω} denotes the space of all infinite strings of symbols from Σ_i . Given any tuple $(\alpha_1, \ldots, \alpha_n)$, where each α_i is a finite string over Σ_i , the corresponding **subcube** of X is the collection of all tuples $(x_1, \ldots, x_n) \in X$ for which each x_i has α_i as a prefix. There is a **canonical homeomorphism** between any two such subcubes given by prefix replacement, i.e.

$$(\alpha_1 \cdot x_1, \ldots, \alpha_n \cdot x_n) \mapsto (\beta_1 \cdot x_1, \ldots, \beta_n \cdot x_n),$$

where \cdot denotes concatenation of strings.

A homeomorphism *h* of *X* is called a *rearrangement* if there exist partitions D_1, \ldots, D_k and R_1, \ldots, R_k of *X* into finitely many subcubes such that *h* maps each D_i to R_i by the canonical homeomorphism. The rearrangements of *X* form a group under composition, which we refer to as *XV*. The case where $X = (\{0, 1\}^{\omega})^n$ gives the Brin–Thompson group *nV*.

The following proposition is easy to prove using complete binary prefix codes.

PROPOSITION 3. If $X = \Sigma_1^{\omega} \times \cdots \times \Sigma_n^{\omega}$ is any Cantor cube, then XV embeds into the Brin–Thompson group nV.

Next we need a version of the ping-pong lemma for actions of right-angled Artin groups. The following is a slightly modified version of the ping-pong lemma for right-angled Artin groups stated in [7] (also see [12]).

THEOREM 4 (Ping-pong lemma for right-angled Artin groups). Let A_{Γ} be a right-angled Artin group with generators g_1, \ldots, g_n acting on a set X. Suppose that there exist subsets $\{S_i^+\}_{i=1}^n$ and $\{S_i^-\}_{i=1}^n$ of X, with $S_i = S_i^+ \cup S_i^-$, satisfying the following conditions:

- (1) $g_i(S_i^+) \subseteq S_i^+ \text{ and } g_i^{-1}(S_i^-) \subseteq S_i^- \text{ for all } i;$
- (2) if g_i and g_j commute (with $i \neq j$), then $g_i(S_j) = S_j$;
- (3) *if* g_i and g_j do not commute, then $g_i(S_j) \subseteq S_i^+$ and $g_i^{-1}(S_j) \subseteq S_i^-$;
- (4) there exists a point $x \in X \bigcup_{i=1}^{n} S_i$ such that $g_i(x) \in S_i^+$ and $g_i^{-1}(x) \in S_i^-$ for all i.

Then the action of A_{Γ} *on* X *is faithful.*

Indeed, if U is any subset of $X - \bigcup_{i=1}^{n} S_i$ such that $g_i(U) \subseteq S_i^+$ and $g_i^{-1}(x) \in S_i^-$, then all of the sets $\{g(U) \mid g \in A_{\Gamma}\}$ are disjoint. In the case where X is a topological space and U is an open set, this means that the action of A_{Γ} on X is demonstrative in the sense of [2].

3. Embedding right-angled Artin groups

Let A_{Γ} be a right-angled Artin group with generators g_1, \ldots, g_n . For convenience, we assume that none of the generators g_i lie in the center of A_{Γ} . For in this case $A_{\Gamma} \cong A'_{\Gamma'} \times \mathbb{Z}$ for some right-angled Artin group $A'_{\Gamma'}$ with fewer generators, and since $sV \times \mathbb{Z}$ embeds in sV, any embedding $A'_{\Gamma'} \to kV$ yields an embedding $A_{\Gamma} \to kV$.

Let *P* be the set of all pairs $\{i, j\}$ for which $g_i g_j \neq g_j g_i$, and note that each $i \in \{1, ..., n\}$ lies in at least one element of *P*. Let *X* be the following Cantor cube:

$$X = \prod_{i=1}^{n} \{0, 1\}^{\omega} \times \prod_{\{i, j\} \in P} \{i, j, \emptyset\}^{\omega}.$$

228 JAMES BELK, COLLIN BLEAK AND FRANCESCO MATUCCI

We claim that A_{Γ} embeds into XV, and hence embeds into kV for k = n + |P|. We begin by establishing some notation:

- (i) for each point $x \in X$, we will denote its components by $\{x_i\}_{i \in \{1,...,n\}}$ and $\{x_{ij}\}_{\{i,j\} \in P}$;
- (ii) given any $i \in \{1, ..., n\}$ and $\alpha \in \{0, 1\}^*$, let $C_i(\alpha)$ be the subcube consisting of all $x \in X$ for which x_i begins with α . Let $L_{i,\alpha} \colon X \to C_i(\alpha)$ be the canonical homeomorphism, i.e. the map that prepends α to x_i ;
- (iii) for each $i \in \{1, ..., n\}$, let P_i be the set of all j for which $\{i, j\} \in P$, and let S_i be the subcube consisting of all $x \in X$ such that x_{ij} begins with i for all $j \in P_i$. Let $F_i: X \to S_i$ be the canonical homeomorphism, i.e. the map that prepends i to x_{ij} for each $j \in P_i$;
- (iv) let $S_{ii} = F_i(S_i) = F_i^2(X)$, i.e. the subcube consisting of all $x \in X$ such that x_{ij} begins with *ii* for each $j \in P_i$.

Now, for each $i \in \{1, ..., n\}$, define a homeomorphism $h_i: X \to X$ as follows:

- (i) h_i maps $X S_i$ to $(S_i S_{ii}) \cap C_i(10)$ via $L_{i,10} \circ F_i$;
- (ii) h_i is the identity on S_{ii} ;
- (iii) $h_i \text{ maps } (S_i S_{ii}) \cap C_i(1) \text{ to } (S_i S_{ii}) \cap C_i(11) \text{ via } L_{i,1};$
- (iv) h_i maps $(S_i S_{ii}) \cap C_i(01)$ to $X S_i$ via $F_i^{-1} \circ L_{i,01}^{-1}$;
- (v) $h_i \text{ maps } (S_i S_{ii}) \cap C_i(00) \text{ to } (S_i S_{ii}) \cap C_i(0) \text{ via } L_{i,0}^{-1}$.

Note that the five domain pieces form a partition of X, and each is the union of finitely many subcubes. Similarly, the five range pieces form a partition of X, and each is the union of finitely many subcubes. Since each of the maps is a restriction of a canonical homeomorphism, it follows that h_i is an element of XV.

Note that for each $i, j \in \{1, ..., n\}$, if g_i and g_j commute, then so do h_i and h_j . Thus we can define a homomorphism $\Phi: A_{\Gamma} \to XV$ by $\Phi(g_i) = h_i$ for each i.

PROPOSITION 5. The homomorphism Φ is injective.

Proof. For each *i*, let $S_i^+ = S_i \cap C_i(1)$, and let $S_i^- = S_i \cap C_i(0)$. These two sets form a partition of S_i , with

 $h_i(S_i^+) = S_i \cap C_i(11) \subseteq S_i^+$ and $h_i^{-1}(S_i^-) = S_i \cap C_i(00) \subseteq S_i^-$.

Now suppose we are given two generators g_i and g_j . If g_i and g_j commute, then clearly $h_i(S_j) = S_j$. If g_i and g_j do not commute, then $S_j \subseteq X - S_i$, and therefore $h_i(S_j) \subseteq S_i^+$ and $h_i^{-1}(S_j) \subseteq S_i^-$.

Finally, let x be an point in X such that x_{ij} starts with \emptyset for all $\{i, j\} \in P$. Then $x \in X - S_i$ for all i, so $h_i(x) \in S_i^+$ and $h_i^{-1}(x) \in S_i^-$. The homomorphism Φ is thus injective by Theorem 4.

This proves Theorem 1. Further, as observed at the end of Section 2, this embedding is demonstrative in the sense of [2].

Acknowledgements. We are grateful to T. Koberda for comments on an early draft of this paper.

REFERENCES

- [1] I. AGOL. The virtual Haken conjecture. Doc. Math. 18 (2013), 1045–1087.
- [2] C. BLEAK & O. SALAZAR-DÍAZ. Free products in R. Thompson's group V. Trans. Amer. Math. Soc. 365.11 (2013), 5967–5997.
- [3] M. BRIDSON. On the subgroups of right-angled Artin groups and mapping class groups. Math. Res. Lett. 20.2 (2013), 203–212.
- [4] M. BRIN. Higher dimensional Thompson groups. Geom. Dedicata 108 (2004), 163–192.
- [5] R. CHARNEY. An introduction to right-angled Artin groups. Geom. Dedicata 125.1 (2007), 141–158.
- [6] N. CORWIN & K. HAYMAKER. The graph structure of graph groups that are subgroups of Thompson's group V. Internat. J. Algebra Comput. **26**.8 (2016), 1497–1501.
- [7] J. CRISP & B. FARB. The prevalence of surface groups in mapping class groups. Preprint.
- [8] J. CRISP & B. WIEST. Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. *Algebr. Geom. Topol.* 4.1 (2004), 439–472.
- [9] F. HAGLUND & D. WISE. Special cube complexes. Geom. Funct. Anal. 17.5 (2008), 1551–1620.
- [10] F. HAGLUND & D. WISE. Coxeter groups are virtually special. Adv. Math. 224.5 (2010), 1890–1903.
- [11] M. KATO. Embeddings of right-angled Artin groups into higher dimensional Thompson groups. J. Algebra Appl. 17.8 (2018), 1850159.
- [12] T. KOBERDA. Ping-pong lemmas with applications to geometry and topology. *IMS Lecture Notes*, Singapore (2012).
- [13] M. KRASNER & L. KALOUJNINE. Produit complet des groupes de permutations et problème d'extension de groupes. III. Acta Sci. Math. (Szeged) 14 (1951), 69–82.
- [14] P. PRZYTYCKI & D. WISE. Mixed 3-manifolds are virtually special. J. Amer. Math. Soc. **31**.2 (2018), 319–347.
- [15] H. SERVATIUS, C. DROMS & B. SERVATIUS. Surface subgroups of graph groups. Proc. Amer. Math. Soc. 106.3 (1989), 573–578.
- [16] D. WISE. The structure of groups with a quasiconvex hierarchy. Preprint (2011).