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Abstract. This paper clarifies, revises, and extends the account of the transmission of
truthmakers by core proofs that was set out in chap. 9 of Tennant (2017). Brauer provided
two kinds of example making clear the need for this. Unlike Brouwer’s counterexamples to
excluded middle, the examples of Brauer that we are dealing with here establish the need for
appeals to excluded middle when applying, to the problem of truthmaker-transmission, the
already classical metalinguistic theory of model-relative evaluations.

§1. Introduction. In chap. 9 of Tennant (2017), an account was offered of the
logical consequence established by any core proof of a sequent Δ : ϕ, in terms of
transforming (model-relative) truthmakers for its premises Δ into a truthmaker for its
conclusion ϕ.

In this paper we describe two shortcomings of that account, and propose remedies
to ensure that the revised account applies as generally as was originally intended. One
of those remedies has as a corollary that one can extend the methods of truthmaker-
transformation so as to deal with the logical consequences that are established by
classical core proofs.

§2. Preliminaries. All chapter and page references, unless otherwise indicated, are
to Tennant (2017). This paper relies on the reader’s familiarity with the main concepts
deployed in that work. For reasons of space we refrain from reprising any of their
lengthy inductive definitions. Instead, we confine ourselves by giving page references
for all of the definitions that the reader might require.

1. Rules of inference for Core Logic (pp. 118–121 for natural deduction; pp. 128–
131 for sequent calculus).1

2. The inductively defined notion P(Π, ϕ,Δ), using those rules. In words: Π is a
(core) proof of the conclusion ϕ from the set Δ of premises (i.e., undischarged
assumptions).

3. Model-relative rules of verification and of falsification (pp. 70–72).2

4. The co-inductively defined notions

V(Π, ϕ,M,D)
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TRANSMISSION OF VERIFICATION 867

— Π is a verification of ϕ with respect to model M with domain D; and

F(Π, ϕ,M,D)

— Π is a falsification of ϕ with respect to model M with domain D, using those
rules. (p. 59 ff.)

We shall freely use the synonyms ‘truthmaker’ and ‘falsitymaker’ for
‘verification’ and ‘falsification’ respectively. Both kinds of construction are called
evaluations.3

5. Conditional M-relative constructs (p. 253). These are tree-like constructs which
include, as extremal cases, M-relative evaluations at one end, and, at the other
end, completely formal natural deductions in Core Logic.

6. The inductively defined notion [
Π,Σ

]M
,

where Π is an M-relative truthmaker (typically, for a premise of Σ) and the
argument Σ is a conditional M-relative construct. The reduct in question
is intended to be an M-relative truthmaker for the conclusion of Σ. (See
chapter 9.) The process of determining the reduct [Π,Σ]M is analogous to
the process of normalizing natural deductions (or eliminating cuts in sequent
proofs).

Main results proved in the book, which will be relied upon here, include the following:

1. Metatheorem 9: Modulo a metatheory which contains the mathematics of D-
furcating trees of finite depth, we have, for all models M with domain D,

∃Π V(Π, ϕ,M,D) ⇔ ϕ is true inM

where the right-hand side is in the sense of Tarski (p. 211).
2. Metatheorem 10 (Bivalence of Evaluation): for all ϕ, for all M interpreting the

primitives in ϕ, either there exists an M-relative verification of ϕ or there exists
an M-relative falsification of ϕ (p. 220).

In light of Metatheorem 9 just mentioned above, we can abbreviate both sides of its
biconditional in the same way. The notation

M � ϕ
was chosen for this purpose, in order to reserve the symbol |= for the relation of
logical consequence, which holds between a set Δ of sentences (the premises) and a
single sentence ϕ (the conclusion). With this choice of notation for ‘model M makes
sentence ϕ true’, and with the usual Frobenian understanding ofM � Δ, one can then
define classical logical consequence |= in the standard way as follows:

Definition 1. Δ |= � ≡df ∀M (M �Δ ⇒M ��).

3 There is no need to cover any of the existing literature on other kinds of truthmakers than
the formal kind at issue here, which has been explained in Tennant (2010, 2018).
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868 ETHAN BRAUER AND NEIL TENNANT

§3. Background. The foregoing definition of logical consequence makes it amount
to preservation of truth (in all models) from premises to conclusion. In any model, if
the premises are all true, then so is the conclusion.

Suppose now that we are dealing with only finitely many premises (as would be the
case with any proof). Let the statement of logical consequence under consideration
accordingly be

ϕ1, ... , ϕn |= �.
With truth-in-M consisting in the existence of an M-relative truthmaker for the
sentence in question, the quantificational structure of the definiens for logical
consequence (the right-hand side of Definition 1 above) is the following:

∀M ((∃Π1V(Π1, ϕ1,M,D) ∧ ··· ∧ ∃ΠnV(Πn, ϕn,M,D) ⇒ ∃ΠV(Π, �,M,D)).

Note the existentials. There is no express relation between any witness (V, say), to
the concluding existential (∃Π), and witnesses (V1, ... , Vn, say) to the existentials
(∃Π1, ... ,∃Πn) attesting to the truth-in-M of the premises ϕ1, ... , ϕn respectively. With
our analysis of truth as consisting in the existence of a truthmaker, however, the
question now arises: might it be possible to characterize the extent to which a witness
to the concluding existential can be concocted out of witnesses to the existentials
expressing the truth of the premises? Put another way, using terminology familiar to
the mathematical logician: might we be able to Skolemize the definiens (for logical
consequence) as follows?

∀M ∃f ∀Π1 ... ∀Πn((V(Π1, ϕ1,M,D) ∧ ··· ∧ V(Πn, ϕn,M,D))
⇒ V(f(Π1, ... ,Πn), �,M,D)).

The overarching aim of chapter 9 was to reveal the extent to which such Skolemization
can be effected, if one is in possession of a core proof of the conclusion� from premises
ϕ1, ... , ϕn. The aim was to show how, given—

• a core proof (not: classical core proof) Σ of the conclusion � from the premises
ϕ1, ... , ϕn;4

• a model M for the extralogical vocabulary involved; and
• respective M-relative verifications Π1, ... ,Πn of the premises ϕ1, ... , ϕn

—one can (eventually) ‘calculate’ an M-relative verification for the conclusion � of Σ.
This was the import of Metatheorem 12 (pp. 258–259).

§4. The problem to be addressed. There is a lacuna in the proof of Metatheorem
12 of Tennant (2017), and it is the aim of this study to fill it. It is located at the fourth
line of the list of Distribution conversions given on p. 256, in the lengthy inductive
definition of the reduct [Π,Σ]M (the superscript M subsequently being systematically
suppressed in the statements of conversions). Here is the culprit line:

[Π,→IΣ1] = {→I }[Π,Σ1].

4 We shall see by the end of this study, however, that the methods to be developed to handle
the second troublesome kind of example afford an extension to classical core proofs of the
recipe for transforming truthmakers for premises into truthmakers for conclusions.
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We shall call this particular Distribution conversion the inadequate conversion. It is
inadequate because it does not deal with the possibility that the antecedent of the
conditional conclusion of Σ might be an undischarged assumption of the immediate
subproof Σ1. And for this case the expression {→I }[Π,Σ1] is not defined. The required
adequate conversion needs to deal with this possibility. Otherwise that undischarged
assumption of Σ1 goes begging for a verification yet to be supplied. But if a falsification
is available instead (for, remember, evaluations here are with respect to a particular
model M), then it needs to be used for a terminal application of →-Verification via the
falsity (in M) of the antecedent. Details will emerge below.

It is important to stress for the reader, in advance, that all that is needed for the
required ‘fix’ of the proof of Metatheorem 12 is that the inadequate conversion be
replaced by an adequate one. This replacement does not occasion any further need for
alterations or additions to the original proof. For this reason, we shall avoid reprising
here any parts of that proof.

The driving idea behind the treatment of truthmaker transmission was the
‘Skolemizing’ one: that an M-relative verification for the conclusion � of a core proof
Σ would be intimately and organically determined by the given M-relative verifications
of the premises ϕ1, ... , ϕn of Σ, as well as by Σ itself. There could and would, in general,
be yet other M-relative verifications of the conclusion—indeed, a great many of them—
but these other M-relative verifications would not fall within the purview of possible
outcomes of the ‘calculation’ of an M-relative verification for the conclusion from the
given M-relative verifications of the premises of Σ, along with Σ.

The motivation was to show how certain ways of ‘seeing that the premises are true in
M’—that is, certain truthmakers for the premises—could be drawn upon, or exploited,
by the proof Σ so that they would be able to be transformed into a closely related way
of seeing that the conclusion of Σ is also true in M.

That one’s calculation according to the transformations given in chapter 9 will
always, in general, result in an M-relative verification for the conclusion of Σ turns out
to be overly optimistic, as an example of Brauer will in due course show. (The example,
as already intimated, involves the conditional.) The original treatment in chapter 9
succeeds in its aim if (but only if) the conditional is not taken as a primitive in the
object language, and the core proof Σ has no zero-premise subproofs (including itself).
Omitting the conditional from the language, of course, in the case of Core Logic, would
reduce the expressive power of the object language. Here we shall replace the overly
brief and inadequate treatment of the conditional with one that is more detailed, and
that draws on the appropriate resources.

It was stressed in Observation 11 at p. 253 that model-relative verifications (and
falsifications), on the one hand, and core proofs, on the other hand, were extremal
special cases of constructions more generally (and somewhat ploddingly) called, in the
text, ‘conditional M-relative constructs’.5 We shall repeat that Observation here:

M-relative truthmakers, M-relative falsitymakers, and core proofs are
all conditionalM-relative constructs.

Conditional M-relative constructs that lie in the ‘middle range’—ones that are
neither M-relative evaluations (i.e., verifications or falsifications) nor core proofs—

5 It would be good to have a snappier and more suggestive label. But at least ‘conditional
M-relative construct’ is descriptively adequate.
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870 ETHAN BRAUER AND NEIL TENNANT

are similar to evaluations in containing applications of M-relative verification and/or
falsification rules, but also similar to certain core proofs in having undischarged
assumptions (premises) for which no M-relative evaluation (neither verification nor
falsification) is yet in hand.

The ‘calculation’ referred to above would be carried out by applying the relevant
transformations involved in the inductive definition of the notion

[
Π,Σ

]M
,

where Π is an M-relative truthmaker (typically, for a premise of Σ) and the argument Σ
is a conditional M-relative construct. It should be noted that, in the full language that
contains the conditional as a primitive, and with the inadequate conversion uncorrected,
the final output could itself be a conditional M-relative construct with undischarged
assumptions, and therefore not (yet) a genuine or ‘thoroughbred’ truthmaker for its
conclusion. This is what Brauer’s example clearly reveals.

§5. Two troublesome examples. There are two kinds of examples occasioning
the need for extension and revision of the original treatment of how one converts
truthmakers for premises into a truthmaker for the conclusion of a core proof. §5.1
deals with the first kind of example, and §5.3 with the second.

5.1. Examples where a conditional is inferred, with discharge of assumption. We can
proceed at the propositional level. Let A and B be atoms interpreted (i.e., made true
or false) by M. Suppose A is true in M. Consider the following (simplest possible)
M-relative verification Π of A, and core proof Σ.

Π :
M

A Σ :
A

(1)
B

A ∧ B (1)
B → (A ∧ B)

The defective definition of the binary operation [ , ]M (defective because of the
inadequate conversion) that was given in chap. 9 of Tennant (2017) yields the result
that

[
Π,Σ

]M
=

⎡
⎢⎢⎣ M

A ,
A

(1)
B

A ∧ B (1)
B → (A ∧ B)

⎤
⎥⎥⎦
M

=

M

A B

A ∧ B
B → (A ∧ B)

Note that this last reduct ends with an application of →-Verification. But the
assumption B remains undischarged, which makes it the case that the reduct, though
final, is not an M-relative verification of its (conditional) conclusion.

In chapter 9, the superscript M in the notation [ , ]M was suppressed at a certain
stage, to make for less clutter. But it remains the case that the determination of [Π,Σ]M

could in general have recourse to facts about M. The main interest, of course, is how,
and to what extent.

The final reduct on the right in the last display is not (for the reason just explained) an
M-relative verification of B→(A ∧ B), but rather a conditional M-relative construct
(because conditional upon B) withB→(A ∧ B) as its conclusion. This untoward result
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is owing to the inadequate conversion

[Π,→I Σ1] = {→I}[Π,Σ1]

in the definition of the binary operation [ , ]M , on p. 256 of Tennant (2017).
In any truthmaker for a conditional, the final step is an application of the appropriate

half of the rule →V of →-Verification:

→V �

ϕ → �

� (i)
ϕ
...
⊥ (i)

ϕ → �
Note that this is a full statement of →-Verification. Conspicuously absent from it is any
analogue of that part of the deductive rule of →-Introduction (conventionally called
Conditional Proof) that allows for the discharge of the assumption ϕ upon deriving �
(
= ⊥) from it:

(i)
ϕ
...
�

(i)
ϕ → �

In the foregoing version of Brauer’s example, both A and B have been assumed to
be atoms. More generally now, let us consider possibly complex sentences ϕ and �, all
of whose logical vocabulary is completely interpreted by M. We have to consider an
M-relative verification Π of ϕ, along with the ‘same’ core proof Σ, only now involving
the sentences ϕ and � in place of A and B respectively.

Π : V
ϕ

Σ :
ϕ

(1)
�

ϕ ∧ �
(1)

� → (ϕ ∧ �)

There are two possible general forms for the outcome in calculating the reduct[
Π,Σ

]M
, i.e.,

[
V,Σ

]M
,

if it is to be an M-relative truthmaker for � → (ϕ ∧ �). These are

V
ϕ

V ′

�

ϕ ∧ �
(1)

� → (ϕ ∧ �)

and

(1)
�
F
⊥ (1)

� → (ϕ ∧ �)
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depending, respectively, on whether� is true (courtesy ofV ′), or false (courtesy of F ),
in M. We say ‘general forms’ of outcomes for the calculation, because, although (ex
hypothesi) the M-relative verification V of ϕ is assumed given, we have no guarantee
that (in the first case) the choice of M-relative verification V ′ for � will be unique; nor
do we have any guarantee that (in the second case) the choice of M-relative falsification
F for � will be unique. In general, there may be many distinct M-relative truthmakers
(falisitymakers, respectively) for a given sentence that is true (false) in M. Each of these
represents a distinctive way in which the sentence enjoys the truth value that it does in
M. All we know (see below) is that there exists at least one M-relative evaluation of �
(as true, or as false, in M), and that any such evaluation can be deployed appropriately
as just indicated.

The binary ‘operation’ [
Π,Σ

]M
is therefore not (yet) single-valued. We could, however, impose uniqueness of choice for
M-relative evaluations of � by resorting to some lexicographic ordering of primitives,
along with a well-ordering of the domain of M, and using those orderings to define a
well-ordering of saturated terms and formulae, and thereafter of evaluations of �. If
we were to do this systematically whenever an M-relative evaluation of any sentence
needed to be determined, we would end up with a binary operation

[
Π,Σ

]M
that is

single-valued.

5.2. The fix for the first class of examples. In this section we amend the definition
of [ , ] given in chapter 9 to deal with Brauer’s first class of examples.

Definition 2. If M � ϕ, then let VMϕ be the first M-relative verification of ϕ in the
well-ordering of M-relative verifications.

IfM,ϕ � ⊥, then let FMϕ be the first M-relative falsification of ϕ in the well-ordering
of M-relative falsifications.

(If M is decidable, then VMϕ and FMϕ can be found effectively.)
We now restrict applications of the inadequate distribution conversion

[Π,→I Σ1] = {→I}[Π,Σ1]

on p. 256 of Tennant (2017) to cases of the following two kinds:
(1) the terminal step of →-Introduction in Σ inferring �→� involves no discharge

of the antecedent � as an assumption in the subordinate proof Σ1 of the consequent
�, i.e.

[Π,→I Σ1] is

⎡
⎢⎢⎣ Π ,

Γ
Σ1

→-I � (i)
�→�

⎤
⎥⎥⎦ ;

(2) the terminal step of →-Introduction in Σ inferring �→� has as its subordinate
proof Σ1 a refutation of the antecedent �:6

6 Note that in case (2) the immediate subconstruction for the terminal step of→V in the reduct
on the right (once truthmakers have eventually been [ , ]-applied on the left of the comma for
every premise in Γ) will be an M-relative falsification of �.
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[Π,→I Σ1] is

⎡
⎢⎢⎢⎢⎢⎣ Π ,

Γ ,
(i)
�︸ ︷︷ ︸

Σ1

⊥ (i)
�→�

⎤
⎥⎥⎥⎥⎥⎦ .

Cases (1) and (2), however, are not exhaustive. It remains to specify what [Π,→I Σ1]
is to be in the important remaining case (overlooked in chapter 9) where the terminal
step of →-Introduction in Σ inferring �→� has � as the conclusion of its subordinate
proof Σ1 and discharges the antecedent �, which is a premise of Σ1. For this remaining
case, we stipulate that

[Π,→I Σ1] , i.e.

⎡
⎢⎢⎢⎢⎢⎣ Π ,

Γ ,
(i)
�︸ ︷︷ ︸

Σ1

� (i)
�→�

⎤
⎥⎥⎥⎥⎥⎦, is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[VM� , {→V}[Π,Σ1]] ifM � �

(i)
�
FM�

→V ⊥ (i)
�→�

ifM,� � ⊥.

The well-founded relation (the compound-argument complexity ordering) on which
the definition of [ , ] is now based will accord highest priority to reducing the complexity
of the embedded argument Σ. This will ensure that the proposed way of applying
the ‘new’ truthmaker-argument VM� in the reduct in the case where M � � will not
obstruct the inductive definability of [ , ] overall. Note that by exploiting VM� in this
way, we sustain the theme that the truthmakers supplied are ‘intimately and organically’
contributing to the determination of a final M-relative truthmaker for the conclusion
of the original proof Σ. It is just that these ‘newly supplied’ truthmakers need not be
among those originally given for the premises of Σ. To the extent that we might need
to invoke such truthmakers, however, we make them (as far as is possible) contribute
to the final determination of an M-relative truthmaker for the conclusion of Σ in the
same way as do the truthmakers originally given for the premises of Σ.

5.3. Examples involving a logical theorem, i.e. a conclusion being inferred from no
assumptions. Let us now assume, as we go forward, that we have secured in the
manner described above the single-valuedness of the operation

[
Π,Σ

]M
. We shall

then be in a position to address another problem that Brauer has raised—this time
arising from the possibility that Σ might include a subproof with no undischarged
assumptions. The following core proof Σ illustrates this kind of problem.

Σ :

∅
Ξ
ϕ �

ϕ ∧ �

Here, as indicated by the empty-set symbol ∅, the subproof Ξ establishes ϕ from no
premises at all.

Suppose now that one is given an M-relative verification Π of the sole premise �
of Σ. How does one obtain from it an M-relative verification of ϕ ∧ � ? That is, what

https://doi.org/10.1017/S1755020320000234 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000234
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should be the output in this case of the operation
[

Π,Σ
]M

? The answer should be
reasonably obvious. It will be an M-relative verification of the form

V
ϕ

Π
�

ϕ ∧ �

where V is an M-relative verification of ϕ.
The choice of V could be determined by the well-ordering method we are assuming

has been adopted so as to be able to make such choices in general. All we need, of
course, is the assurance that there exists an M-relative verification of �. But we have
such assurance. First, note the following.

Lemma 1 (Soundness of Core Logic). Let M be a model for a language L. Let Δ be
a finite set of sentences in L, and let ϕ be a sentence in L. Then for all Π, if P(Π, ϕ,Δ),
then ifM � Δ, thenM � ϕ.

Proof. Taken for granted, since Core Logic is a subsystem of Classical Logic, which
we know to be sound. �

So the rules of Core Logic are sound, i.e. validity-preserving. Suppose now that ϕ
is the conclusion of a core proof from the empty set of premises (whence Δ = ∅). It
follows by Lemma 1 that ϕ is true in any model interpreting its extralogical vocabulary.
Hence by Metatheorem 9, there exists an M-relative verification of ϕ.

We can, however, improve somewhat on this rather brute method of determining
V. In §6 we shall prove a result about truthmakers for logical theorems that reveals
more detail about their structures. This affords a fix for the second troublesome kind
of examples.

§6. Truthmakers for logical theorems. In this section we will prove a result
guaranteeing the existence of truthmakers for logical theorems. This result forms the
basis of our solution to Brauer’s second class of problems.

Metatheorem 1 in Tennant (2017), at p. 74 has as an easy corollary the following:
Noncontradictoriness of Evaluation. For any coherent model M interpreting the

extralogical vocabulary of ϕ, it is not the case both that there exists an M-relative
verification of ϕ and that there exists an M-relative falsification of ϕ. Hence also:
for no such sentence ϕ is there an M-relative verification of ϕ and an M-relative
verification of ¬ϕ.

The following result about Core Logic is easy to extend to Classical Core Logic; but
the more modest form (that for just Core Logic) is all we need for present purposes.

Metatheorem 1. Let M be a model for a language L. Let ϕ be a sentence in L. Then for
all core proofs Π :

(i) if P(Π, ϕ, ∅), then there is an M-relative verification of ϕ; and
(ii) if P(Π,⊥, {ϕ}), then there is an M-relative falsification of ϕ.

Proof. By induction on the complexity of ϕ.
Basis: ϕ is an atomic sentence A. There is no core proof or disproof of any atomic

sentence. So the antecedents of the conditionals (i) and (ii) are false. Hence (i) and (ii)
are true.
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Inductive hypothesis: Suppose (i) and (ii) hold for cases less complex than the one
being dealt with.

Inductive step: We show by cases that (i) and (ii) hold for ϕ of the forms ¬�, � ∧ �,
� ∨ �, �→�, ∃x�, and ∀x�.

Case (1). ϕ is ¬�.
Ad (i). Suppose P(Π, ϕ, ∅), i.e. P(Π,¬�, ∅). Then the proof Π has the form

(i)
�
Π1

⊥ (i)
¬�

By IH(ii), there is an M-relative falsification of �. Call it F. Then

(i)
�
F
⊥ (i)
¬�

is an M-relative verification of ¬�. Its final step is an application of the rule ¬V .
Ad (ii). Suppose P(Π,⊥, {ϕ}), i.e. P(Π,⊥, {¬�}). Then either

(a) Π has the form ¬�

∅
Π1

�

⊥
or

(b) Π has the form ¬�

¬�
Π1

�

⊥
First consider case (a). By IH(i) there is an M-relative verification of �. Call it V.

Then

¬�
V
�

⊥
is an M-relative falsification of ¬�. Its final step is an application of the rule ¬F .

Now consider case (b). Suppose there is an M-relative falsification of �. Call it F.
Then

(i)
�
F
⊥ (i)
¬�

is an M-relative verification of ¬�. Its final step is an application of the rule ¬V .
It follows by Lemma 1 applied to Π1 that there is an M-relative verification of �.
By Noncontradictoriness of Evaluation, this contradicts our supposition, since M
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is coherent. So there is no M-relative falsification of �. It follows by Bivalence of
Evaluation that there is an M-relative verification of �. Call it V. Then

¬�
V
�

⊥

is an M-relative falsification of ¬�. Its final step is an application of the rule ¬F .
Case (2). ϕ is � ∧ �.
Ad (i). Suppose P(Π, ϕ, ∅), i.e. P(Π, � ∧ �, ∅). Then the proof Π has the form

∅
Π1

�

∅
Π2

�

� ∧ �

By IH(i) applied to Π1 and Π2, there are M-relative verifications of � and of �. Call
them V1 and V2 respectively. Then

V1

�
V2

�

� ∧ �

is an M-relative verification of � ∧ �. Its final step is an application of the rule ∧V .
Ad (ii). Suppose P(Π,⊥, {ϕ}), i.e. P(Π,⊥, {� ∧ �}). Then the proof Π has the

form

� ∧ �

(i)
�,

(i)
�︸︷︷︸

Π1

⊥
(i)

⊥

By Lemma 1 applied to Π1, it is not the case both that there is an M-relative verification
of � and that there is an M-relative verification of �. It follows by the Bivalence of
Evaluation in the object language and by bivalence in the metalanguage that either
(a) there is an M-relative falsification of � or (b) there is an M-relative falsification
of �.

In case (a), let the falsification of � be called F. Then

� ∧ �

(i)
�
F
⊥

(i)
⊥

is an M-relative falsification of � ∧ �. Its final step is an application of the rule ∧F .
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In case (b), let the falsification of � likewise be called F. Then

� ∧ �

(i)
�
F
⊥

(i)
⊥

is an M-relative falsification of � ∧ �. Its final step is an application of the rule ∧F .
Case (3). ϕ is � ∨ �.
Ad (i). Suppose P(Π, ϕ, ∅), i.e. P(Π, � ∨ �, ∅). Then the proof Π has one of the

following two forms:

(a)
∅
Π1

�

� ∨ �

(b)
∅
Π1

�
� ∨ �

In case (a), by IH(i) applied to Π1, there is an M-relative verification V, say, of �.
Then

V
�

� ∨ �
is an M-relative verification of � ∨ �. Its final step is an application of the rule ∨V .

Similarly in case (b), by IH(i) applied to Π1, there is an M-relative verification V,
say, of �. Then

V
�
� ∨ �

is an M-relative verification of � ∨ �. Its final step is an application of the rule ∨V .
Ad (ii). Suppose P(Π,⊥, {ϕ}), i.e. P(Π,⊥, {� ∨ �}). Then Π has the form

� ∨ �

(i)
�
Π1

⊥

(i)
�
Π2

⊥
(i)

⊥

By IH(ii) applied to both Π1 and Π2, there are M-relative falsifications F1 of � and
F2 of �, respectively, that can feature thus:

� ∨ �

(i)
�
F1

⊥

(i)
�
F2

⊥
(i)

⊥
in an M-relative falsification of� ∨ � whose final step is an application of the rule ∨F .
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Case (4). ϕ is �→�.
Ad (i). Suppose P(Π, ϕ, ∅), i.e. P(Π, �→�, ∅). Then the proof Π has one of the

following three forms:

(a)
∅
Π1

�
�→�

(b)

(i)
�
Π1

⊥ (i)
�→�

(c)

(i)
�
Π1

� (i)
�→�

In case (a), by IH(i) applied to Π1, there is an M-relative verification, V say, of �,
which can feature thus:

V
�
�→�

in an M-relative verification of�→� whose final step is an application of the rule →V .
In case (b), by IH(ii) applied to Π1, there is an M-relative falsification, F say, of �,

which can feature thus:

(i)
�
F
⊥ (i)
�→�

in an M-relative verification of�→� whose final step is an application of the rule →V .
In case (c), suppose on one hand that there is an M-relative falsification, F say, of

�. Then use F as in case (b) to obtain an M-relative of �→�.
Now suppose on the other hand that there is no M-relative falsification of �. Then

by Bivalence of Evaluation there is an M-relative verification of�. By Lemma 1 applied
to Π1, it follows that there is an M-relative verification, V say, of �. Then use V as in
case (a) to obtain an M-relative verification of �→�.

Ad (ii). SupposeP(Π,⊥, {ϕ}), i.e.P(Π,⊥, {�→�}). Then the proof Π has the form

�→�

∅
Π1

�

(i)
�
Π2

⊥
(i)

⊥

By IH(i) applied to Π1 there is an M-relative verification, V say, of�. By IH(ii) applied
to Π2 there is an M-relative falsification, F say, of �. Then V and F can feature thus:

�→�
V
�

(i)
�
F
⊥

(i)
⊥

in an M-relative falsification of �→� whose final step is an application of the rule
→F .
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Case (5). ϕ is ∃x�.
Ad (i). Suppose P(Π, ϕ, ∅), i.e. P(Π,∃x�, ∅). Then the proof Π has the following

form:

∅
Π1

�xt
∃x�

Let α be the denotation, in M, of the term t. Then (Π1)tα is a saturated proof to which
IH(i) applies. Thus there exists an M-relative verification, V say, of �xα . Then V can
feature thus:

V
�xα
∃x�

in an M-relative verification of ∃x� whose final step is an application of the rule ∃V .
Ad (ii). Suppose P(Π,⊥, {ϕ}), i.e. P(Π,⊥, {∃x�}). Then the proof Π has the form

∃x�

(i)
�xa
Π1

⊥
(i)

⊥

For each α in the domain D of M, consider the saturated disproof

�xα
(Π1)aα
⊥

By IH(ii) there is an M-relative falsification Fα , say, of �xα . These falsifications Fα can
be used thus:

∃x�

⎧⎪⎨
⎪⎩

(i)
�xα
Fα
⊥

⎫⎪⎬
⎪⎭
α∈D (i)

⊥

to obtain an M-relative falsification ∃x�. Its final step is an application of the rule ∃F .
Case (6). ϕ is ∀x�.
Ad (i). Suppose P(Π, ϕ, ∅), i.e. P(Π,∀x�, ∅). Then the proof Π has the form

∅
Π1

�xa
∀x�
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For each α in the domain D of M, consider the saturated proof

∅
(Π1)aα
�xα

By IH(i) there is an M-relative verification Vα , say, of �xα . These verifications Vα can
be used thus: {

Vα
�xα

}
α∈D

∀x�

to obtain an M-relative verification of∀x�. Its final step is an application of the rule∀V .
Ad (ii). Suppose P(Π,⊥, {ϕ}), i.e. P(Π,⊥, {∀x�}). Then the proof Π has the form

∀x�

(i)
�xt1 , ... ,

(i)
�xtn︸ ︷︷ ︸

Π1

⊥
(i)

⊥

Let the denotations of t1, ... , tn inD be α1, ... , αn respectively. By Lemma 1 applied to
Π1, there cannot be verifications for all of �xα1

, ... , �xαn . It follows by the Bivalence of
Evaluation in the object language and by bivalence in the metalanguage that for some
k (1 ≤ k ≤ n) there is an M-relative falsification, Fαk say, of�xαk . We can use Fαk thus:

∀x�

(i)
�xαk
Fαk
⊥

(i)
⊥

to obtain an M-relative falsification of ∀x� whose final step is an application of the
rule ∀F . �

We are now in a position to take care of Brauer’s second class of examples. All
that is called for is more careful consideration of the basis, or ‘grounding’ cases, in the
inductive definition of [Π,Σ]M . One simply adds a new grounding case. (Its noninclusion
in the book, at p. 254, is precisely what gives rise to Brauer’s second class of examples.)
Consider the case where cΠ 
∈ pΣ (i.e., where the conclusion of Π is not a premise of
Σ). What the book failed to note was that this might be because pΣ = ∅. In such a case,
cΣ is a logical theorem. Take for the sought truthmaker [Π,Σ]M the truthmaker for cΣ
that is determined by the well-ordering method (explained at the end of §5.1) that we
are (safely) assuming has been adopted so as to be able to make such choices in general.
The recursion imposed by the definition of [Π,Σ]M ensures that every zero-premise
subproof of a proof Σ that has a premise will be dealt with by this provision, when such
a subproof comes up for consideration ‘as a Σ’ in its own right—that is, as the second
argument in an application of the binary function [ , ].
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We conclude this section by revisiting the topic to which we referred in footnote 4.
The binary function [Π,Σ]M can now be extended (in its domain) so as to apply to
classical core proofs Σ as the process of normalization begins. This is effected by the
simple stratagem of classicizing by means of the rule of Double Negation Elimination:

¬¬ϕ
ϕ

Any truthmaker for ¬¬ϕ contains a falsitymaker for ¬ϕ; and this in turn contains a
truthmaker for ϕ.

§7. Conclusion. According to the Tarskian conception, logical consequence is a
matter of truth preservation. The motivating idea for the treatment in chapter 9 of
Tennant (2017) was that logical consequence can alternatively be thought of as a
matter of truthmaker-transformation. That work aimed to show that there exists a
uniform, general method of using a core proof of conclusion ϕ with premises Δ to
transform M-relative truthmakers for the premises in Δ into an M-relative truthmaker
forϕ. As the examples above reveal, however, there were two oversights in the treatment
of chapter 9 that prevented it from achieving that aim in full generality. The procedure
[ , ]M defined there could fail to terminate in a truthmaker for ϕ when the core proof
of ϕ from Δ either (i) contains an application of →-I that discharges an assumption,
or (ii) contains a subproof that has no undischarged premises. This paper makes up
for both of those oversights.
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