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Abstract. In a suitable experimental device, laboratory plasma is produced with
conditions and parameters analogous to magnetospheric plasma; we light a rare
plasma in a semi-machine using rf-frequency discharge. Three ranges of low-
frequency instabilities appear, one of which is identified as drift, caused by electron–
neutral collisions. A full theoretical elaboration adapted to production conditions
and geometrical symmetry is carried out; one solution of the dispersion relation is
sufficient justification for the existence of the instability. The mathematical analysis
also has the ambition to give interpretation for other low-frequency waves. Here
we make a sound identification of the instability type as drift resistive due to
electron–neutral collisions by an investigation of the growth rate. An agreement
between experimental results and the theoretical model is obtained. As in the
magnetosphere, an external magnetic field restrains the plasma.

1. Introduction
Drift waves have attracted much interest over recent decades. Drift instabilities
are one of the major problems on the way towards an exploitable thermonuclear
fusion, since they cause enhanced losses. Furthermore, drift waves appear in space
plasma, as well as in the magnetosphere and magnetograph of the Earth (Silveira
et al. 2002) and involve many other phenomena. Thus, the drift instabilities remain
an open issue today, although they have been studied persistently.
The first experimental observations and measurements of the collisional drift

instabilities were reported in the early 1960s (D’Angelo 1961; Chu et al. 1967;
Hendel et al. 1967). A large contribution to the drift wave theory was also given
by Chen the early 1960s (Chen 1965, 1967, 1979). Drift waves due to density,
electric field and temperature gradients, in Q-machine plasmas, have been studied
extensively in the years that followed (Ellis et al. 1980; Marden-Marshall et al.
1986). There is extensive literature on this subject (Wesson 1997) and a long list of
references on previous works on the field could be constructed, but in the present
paper we only mention a few of the most relevant works.
As drift waves are produced and propagate in the laboratory or space plasma,

various phenomena are caused. Thus, they are affected by current-carrying dusty
plasmas, where we have a coupling of drift waves with the dynamics of dust grains
(Vranjes et al. 2004). Drift waves also trap plasma electrons, affecting plasma
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conductivity (Xaplanteris 1987). Moreover, since drift instabilities are controllable
by external electrical signals, their study makes the understanding of wave–wave
interaction feasible (Anastassiades and Xaplanteris 1983; Block et al. 2001).
Sometimes, we distinguish between the drift instabilities of the laboratory plasma

instabilities (Anastassiades andXaplanteris 1983;Benilov andPower 2007; Schröder
et al. 2004, 2005; Shukla et al. 2002) and the magnetospheric and space plasma
instabilities (Mikhailovskii et al. 2007; Silvers et al. 2002). However, this distinction
is not clear today, as experiments are carried out using the simulation methods and
the results can be valid for both laboratory and space plasmas (Vranjes and Poedts
2005; Vranjes et al. 2004; Salimullah et al. 2003, 2004).
Up to now drift waves have been the subject of investigation in various experi-

ments and studied using different devices with various plasma parameter ranges,
weakly ionized plasma as well as fully ionized plasma, magnetized and non-
magnetized plasma, collisionless and collisional plasma. Most of the experiments
have been carried out in plasmas with β (the ratio of plasma pressure to magnetic
pressure) much smaller than the electron to ion mass ratio me/mi. If β is small,
drift waves are electrostatic, and in contrast, if β is larger, electromagnetic effects
may become important and the wave becomes Alfvénic.
Schröder et al. (2004, 2005) defined a method of sound identification of a drift

wave. Recently, Vranjes and Poedts (2007) have described the behavior of electro-
static drift and ion sound waves into plasmas, which have a density gradient that
is perpendicular to and along the external magnetic field. In laboratory cylindrical
plasmas, the parallel density gradient may be formed by the variation of the plasma
density as we move away from the source. In a similar way, in space plasmas, as in
the Solar coronal magnetic flux tubes, a parallel density gradient may be formed
due to stratification in the external gravity field, or for other external reasons.
Plasma particle collisions give rise to diffusion and other transport processes.

Thus, there is transfer of momentum and energy between particles resulting from
plasma resistance. Collisions in plasmas depend on the particle relative velocities
and the final result is the integrated effect of these interactions. The value of the
electric field at a given point is the result of the distribution of all charged particles.
Thus, each particle is subject to a force due to the electric field of all of the other
particles and in the presence of a magnetic field we have a drift velocity (Wesson
1997).
Strong low-frequency waves appear almost persistently in our Q-machine quies-

cent plasma. In a previous paper (Anastassiades and Xaplanteris 1983) we presen-
ted the waves due to rf-frequency (rf)-field gradients and in here we study the
effects of this instability on Hall plasma conductivity due to electron trapping.
In the present paper we present experimental results concerning drift waves due

to the electron collisions with neutral atoms and molecules. Furthermore, we make
an effort to understand the cause of these instabilities. A satisfactory interpretation
based on a theoretical model is given.
In the present set-up, we increased the measuring capabilities concerning wave

parameters and the plasma localization. All plasma parameters are taken close
to magnetospheric plasma parameters, so that the experiment becomes a good
simulation. The new instability is located in a cylindrical cell of average radius
R ∼= 2.5 cm, with standard spectrum and a frequency that is close to 100 kHz. As
our theoretical model shows, electron–neutral collisions may cause growth. A good
agreement between the experimental results and the mathematical approximation,

https://doi.org/10.1017/S0022377809007818 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377809007818


Collisional instability in a rare magnetized plasma 397

Figure 1. The experimental arrangement; the rf-field antenna, probes and disk probe
are shown.

as well as some calculated values, can result in wave rotation around the system
axis with phase velocity close to the electron drift ue. In addition, the growth is
caused by electron–neutral collisions ve, as the investigation of growth rate shows.
In Sec. 2 we give a description of our experimental device with its appropriate

probes. A detailed account of the experimental observations, measurements and
calculations is also given. An extensive study of the dispersion relation is presented
in Sec. 3. In Sec. 4 we elaborate on the experimental results in relation to our theor-
etical model. Finally, in Appendix A the drift velocity for ions and electrons caused
from any kind of electrical field gradient is determined. After this, in Appendix B
the complete dispersion relation is found.

2. Experimental results
2.1. Description of the set-up

The experimental device is shown schematically in Fig. 1. A cylindrical metallic
tube of a 6 cm inner diameter, approximately 70 cm length and with closed ends
is placed into the magnetic field B, which is directed along the cylinder axis. A
5 mm-diameter and 40 cm length conductor is placed along the cylinder axis
with one of its ends attached to the center of the cyclic base of the cylinder.
This conductor together with the tube creates a coaxial conductive line through
which the microwaves enter the cavity. An electrostatic cylindrical probe, which
can be moved radially, has its metallic end oriented along the z-axis. The plasma
density, the electron temperature and all of the wave parameters (e.g. frequencies,
amplitudes, waveforms, spectrum) are measured with the help of this electrical
probe (Wesson 1997). Another electrical probe is oriented along the magnetic field
B and it can be moved parallel to the z-axis at a distance of 2 cm. Using this probe,
the various parameters of the whole plasma column along the cylindrical cavity,
can be determined. Moreover, we have placed a 2 mm diameter electrical probe, so
that the drift currents can be measured. This disk probe can be moved radially as
well as around its axis.
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Table 1. Average typical values of plasma parameters.
Parameters Average typical values

Argon pressure p 0.40 Pa
Argon number density ng 5.8 × 1019 m−3

Magnetic field intensity B 80 mT
Microwaves’ power P 70 W
Electron density n0 5 × 1016 m−3

Electron temperature Te 2 eV
Ion temperature Ti 0.07 eV
Ionization rate 0.1%
Electron drift velocity ue 1.2 × 104 m s−1

Electron–neutral collision frequency ve 2 × 107 s−1

Figure 2. A typical wave spectrum with fundamental f1
∼= 92.4 kHz and its higher

harmonics.

Two portals have been fixed at the external cylinder side; the first is used to
connect the cavity with the vacuum pump. The second portal is supplied with a
glass window and the argon flows in through a side tube.

2.2. Experimental results

Our first concern was to determine the range of the magnetic field, rf-microwave
power and pressure, keeping two of the parameters at typical values and varying the
third. We found that plasma exists for magnetic fields in the range of 20–150 mT,
rf-microwave power (input-reflected) of 35–150 W and pressure of 0.1–0.7 Pa. The
plasma density varied in the range of 2 × 1016–8 × 1016 m−3 and the electron
temperature of 1.3–3.9 eV.
Average typical values of plasma parameters are listed in Table 1.
A typical wave spectrum is shown in Fig. 2. The parameter values areW = 50W,

B = 40 mT and p = 0.11 Pa. The fundamental frequency with its exact harmonics
appears. It is easy to see that fl = l · f1 , l = 1, 2, 3, . . . .
Figure 3(a) shows the plasma density radial profile, which presents the largest

value at a distance R ∼= 2.0 cm from the system axis. The density profile has the
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Figure 3. (a) A radial density profile. (b) The radial dc potential φdc and the wave
amplitude φW are presented versus the distance r from the cylinder axis.

Figure 4. The electron drift velocity ue, the wave amplitude φW, and the wave frequency
f , with points (�) in arbitrary units are plotted versus the pressure p. Electron drift
measurements are taken with the disk probe placed at R = 2.5 cm, where the wave is
strong. The accuracy is not high owing to the large dimensions of the probe.

same form as the rf power increases, although the absolute value grows linearly with
the external microwave power. Typical radial profiles have been drawn in Fig. 3(b),
for the dc potential φdc and wave amplitude potential φW. The wave amplitude
persists showing a maximum at a distance R ∼= 2.5 cm from the axis, although the
absolute value increases when the magnetic field B becomes smaller than Bres.
Figure 4 shows the electron drift velocity versus the pressure; in the same diagram

the wave amplitude and the wave frequency have been plotted. Measurements were
taken with the disk probe, at R = 2.5 cm and for a magnetic field B = 40 mT. One
can see that electron drift velocity and wave frequency decrease, whereas the wave
amplitude grows as the pressure rises.
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Figure 5. The amplitude of the wave potential is plotted versus the magnetic field B. The
wave grows as the magnetic field deviates from Bres. In addition, the theoretically calculated
points (◦) of the imaginary part ωim of the frequency are shown.

Finally, Fig. 5 presents the dependence of the wave amplitude on the magnetic
field; measurements are taken at the usual distance from the axis for p = 0.12 Pa
and W = 45 W. We see that the deviation from Bres causes a rapid increase of the
wave amplitude.

3. Wave development ability
3.1. Case I

When the external magnetic field is equal to zero (no magnetized plasma and
therefore ωci = ωce = 0), by using the complete dispersion relation (B 14) of
Appendix B, we obtain the following relation[

Π2
i − viΠi + Q2

i

]
·
[
Π2
e − veΠe + Q2

e

]
· Πi · Πe = ω2

piω
2
pe · Πi · Πe.

We consider the following particular cases.
• If Πi = 0, then ω = kui − jvi and we have heavy damping when kui � vi.
• If Πe = 0, then ω = kue−jve and very heavy damping occurs when kue ≺≺ ve.
• If [

Π2
i − Πivi + ω2

pi + Λ2
i

]
·
[
Π2
e − Πeve + ω2

pe + Λ2
e

]
= ω2

pi · ω2
pe (1)

and there are no drift velocities, that is, when ui = ue = 0 it follows that Πk =
vk − jω, where k = e, i. Then, relation (1) gives the two branches of acoustic modes,
the ion-acoustic wave (low-frequency mode) and the electron-acoustic wave (high-
frequency mode).

3.2. Case II

Next we consider the case ωci, ωce � 0.
For the low-frequency limit, ω ≺≺ ve, ωpi and ω2

pi �� ω2
ci, k

2U 2
i , we have Q2

i ��
ω2
ci and the dispersion relation (B.14) becomes:

Π3
e − veΠ2

e + Q2
eΠe − veω

2
ce =

ω2
piω

2
peΠe

Π2
i − viΠi + Q2

i
,
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from which we have{
Π2
e + ω2

ce + k2U 2
e + ω2

pe

(
1 −

ω2
pi

Π2
i − viΠi + Q2

i

)}
· (Πe − ve)

= −
{

k2U 2
e + ω2

pe

(
1 −

ω2
pi

Π2
i − viΠi + Q2

i

)}
· ve. (2)

After using the relationΠ2
i −viΠi = −(kui−ω)2 +jvi(kui−ω) proved in Appendix B,

relation (2) becomes
[
ω2
ce + j

vi(kui − ω)ω2
pe

ω2
pi

]
j(kui − ω)

= −
[
k2U 2

e +
ω2
pe

ω2
pi

(
ω2
ci + k2U 2

i − (kui − ω)2) + j
ω2
pe

ω2
pi

vi(kui − ω)
]

· ve.

Considering ω ∼= kue, we finally find

ω ∼= kue + jve

[
k2(ui − ue)2 − ω2

ci − k2U 2
i

ω2
ce

·
ω2
pe

ω2
pi

− k2U 2
e

ω2
ce

]
. (3)

Using the relation

k2U 2
e ·

ω2
pi

ω2
pe

= k2 kBTe
mi

= k2 · C2
s ,

then the relation (3) becomes

ω ∼= kue + jve
ω2
pe

ω2
pi

k2(ui − ue)2 − k2(U 2
i + C2

s ) − ω2
ci

ω2
ce

. (4)

Since Te �� Ti, we have C2
s �� U 2

i and (4) can be written as

ω ∼= kue + jve
ω2
pe

ω2
pi

· k2(u2 − C2
s ) − ω2

ci

ω2
ce

, (5)

where u = |ui − ue| is the relative drift velocity between electrons and ions.
Equation (5) can give growth under the conditions of our experiment as explained

in Sec. 4. Evidently growth requires a strong drift, that is,

k2u2 � k2C2
s + ω2

ci.

We next elaborate more on (3).
When

k2u2 � k2(U 2
i + C2

s

)
+ ω2

ci � k2C2
s , (6)

that is, u = |ue − ui| � Cs, the other two low-frequency solutions can be obtained
when (B.14) takes the form

[
Π2
e − veΠe +

(
Q2
e −

ω2
piω

2
pe

Π2
i − viΠi + Q2

i

)]
· Πe = ve · ω2

ce. (7)

For the low-frequency limit the inequality ω, kue ≺≺ ve is valid and Πe
∼= ve for

the multiplier Πe in the parentheses.
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In addition,

Π2
i − viΠi = −(kui − ω)2 + jvi(kui − ω)

Π2
e − veΠe = −(kue − ω)2 + jve(kue − ω)

and (7) becomes[
Q2
i − (kui − ω)2] ·

[
ω2
pe + k2U 2

e − (kue − ω)2] + jvi(kui − ω)

·
[
ω2
pe + k2U 2

e − (kue − ω)2] − ω2
piω

2
pe + jve(kue − ω)

·
[
Q2
i − (kui − ω)2] + j2vive(kue − ω) · (kue − ω) = 0. (8)

Neglecting the collision terms and considering that ω2
pe �� k2U 2

e , (kue − ω)2 ,
then (8) takes the form

Q2
i − (kui − ω)2 ∼=

ω2
piω

2
pe

ω2
pe + k2U 2

e
. (9)

We also have

ω2
piω

2
pe

ω2
pe + k2U 2

e

∼= ω2
pi

(
1 − k2U 2

e

ω2
pe

)
= ω2

pi − k2C2
s

and then (9) gives

ω ∼= kui ±
√

k2U 2
i + k2C2

s + ω2
ci. (10)

If kCs �� kUi, ωci, the last equation is simplified as follows:

ω ∼= k(ui + Cs) − j
vi
2

+ j
me

mi

ve
2

ue − (ui + Cs)
Cs

(11)

or

ω ∼= k(ui − Cs) − j
vi
2

− j
me

mi

ve
2

ue − (ui − Cs)
Cs

.

The last two equations clearly lead to the conclusion that we can have growth rate
of resistive instabilities under the conditions stated above.

4. Interpretation of the results
In Fig. 2 we show the wave spectrum with its fundamental frequency f1 ∼= 92.4 kHz
and its exact upper harmonics. This is in accordance with (5), where ω ∼= kue =
(l/R)Ωe · R = l · Ωe, l = 1, 2, 3, . . . , Ωe = ue/R is the electron drift angular velocity.
From Fig. 2 (and Fig. 4 below), we confirm that the maximum wave frequency
f1,max

∼= 92.4 kHz occurs at the maximum electron drift velocity ue = 1.45 ×
104 m s−1 , while the minimum wave frequency f1,min

∼= 70 kHz occurs at the
minimum drift value ue ∼= 1.10 × 104 m s−1 .
After observing the wave, we had to measure certain properties of the plasma

necessary for the calculation of its parameters. In Fig. 3(a) the density profile is
depicted, while in Fig. 3(b) the dc and wave amplitude potentials are given and,
from their gradients, the drift velocities have been located.
In Fig. 4 the small circles (◦) show the wave frequency f (arbitrary units) versus

pressure. The linear relation between wave frequency and electron drift velocity is
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Table 2. Imaginary parts of ω and wave amplitudes versus the magnetic field B. For
calculating E ′

0/E0 we used the relation E ′
0/E0 ∝ e(ω im/ω )×100 .

B(×10−2 T) ωim(×105 rad s−1 ) (ωim/ω) × 100 (E ′
0/E0 ) ∝ e(ω im/ω ) × 100

8 0.094 1.6 1.016
6 0.166 2.9 1.029
5 0.24 4.13 1.042
4 0.374 6.45 1.067
3 0.665 11.48 1.122

easily confirmed. The electron drift velocity is reduced as the pressure increases
because of the fact that the electron–neutral collisions are opposed to the electron
drift motion.
We next examine the ability of growth rate: the imaginary part of the wave

frequency is

ωim = ve ·
ω2
pe

ω2
pi

· (ku)2

ω2
ce

⇒ ωim = ve · me · mi · (ku)2

e2 · 1
B2 (12)

and the electron collision time τe in our experiment is estimated to be very small
(τe ≺ 0.0132 μs), due to the low electron temperature Te (Wesson 1997). Therefore,
the electron collision frequency ve always exceeds 7.6 × 107 Hz, and, under our
experimental conditions, it may give the growth rate. This is in agreement with
Fig. 4, where the wave amplitude increases as the pressure p assumes larger values.
Another experimental result concerns the influence of the magnetic field B on

the wave amplitude. In Fig. 5 one can observe the decrease of the growth rate as
the magnetic field becomes stronger, in agreement with (12), which assumes the
numerical form

ωim ∼= 15.5x
1

B2 B in T (Weber/m2).

For the physical explanation we must consider two opposite views. The first is
that as the magnetic field increases while approaching Bres, the plasma density also
increases, and ve becomes larger. According to the other view, when the magnetic
field increases, the motion of electrons is limited and consequently ve decreases. In
the present case, the second view appears to be the predominant one.
Table 2 shows the calculated results for ωim and the growth for certain values

of the magnetic field. As one can see from Figure 5, the calculated points of ωim
versus B, (◦), are in good agreement with the wave amplitude measurements.
One can conclude that our experimental results (Table 2 and Figs 2–5) are

in agreement with the dispersion relation (5). In addition, the waves caused by
electron–neutral collisions are interpreted as of ‘resistive instability’ type.
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Appendix A. Drift velocities
Using u to denote the total drift velocity due to the electric field ε and υ(r, t) to
denote the perturbed velocities caused by the plasma electric field wave E(r, t), the
whole magnitude can be written as V = u+ υ(r, t).
We make the hypothesis that all perturbed magnitudes are harmonic, that is,

E(r, t) = êx · E · ej (kx−ωt)

υ(r, t) = υ · ej (kx−ωt)

p ∝ ej (kx−ωt) (pressure)

n(r, t) = n · ej (kx−ωt) (density).

Then, for B = êz · B, the following relations are valid:

ε = êy · ε,u = êx · u

and the total density is N(r, t) = n0 + n(r, t).
The momentum equation for both kinds of charged particle (ions and electrons) is

Nm

[
∂

∂t
+ V · ∇

]
· V = N · q(E+ ε) + N · q · V× B

c
− NmvV− ∇p. (A 1)

When there are no waves, E,u(r, t) and n vanish and (A 1) becomes

0 = n0qε + n0q
u× B

c
− n0mvu (A 2)

and the drift velocity u, with q = e for ions and q = −e for electrons can be
determined.
Using cylindrical coordinates θ and r, we find the corresponding drift velocities:

uθ =
qε

m
· ωc
ω2
c + v2 and ur =

v

ωc
· uθ .

When the ion–neutral collisions are negligible, v = 0 and the last equations give

uθ =
ε

B
and ur = 0.

Appendix B. Dispersion relation
Equations (A 1) and (A 2) give the momentum equation:

nm

(
∂

∂t
+ u · ∇

)

υ = nq

(
E+

υ × B
c

)
− ∇p − nmvυ. (B 1)

The continuity equation assumes the form

∂n

∂t
+ u · ∇n + n0 · ∇υ = 0. (B 2)

Using the indices x and y for the vector components corresponding to r and θ
of our cylindrical system and taking U 2 ≡ kBT/m and Π ≡ j(ku − ω) + v, the
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momentum equation (B 1) becomes

Πυx − ωcυy = −j
q

m
kφ − jkU 2 n

n0
, (B 3)

Πυy + ωcυx = 0. (B 4)

From Poisson’s equation

∇2 · φ = 4π · e(ne − ni) (B 5)

we have

k2φ = 4π · e(ni − ne) (B 6)

and the continuity equation becomes:

−ωn + knu + n0kυx = 0 (B 7)

or

υx = j
Π − v

k
· n

n0
. (B 8)

From (B3), (B 4), (B 6) and (B 8) with Λ2 ≡ k2U 2 , after some mathematical
elaboration we obtain[

Π(Π − v) + ω2
c
Π − v

Π
+ Λ2

]
· n =

q

|q|ω
2
p(ne − ni), (B 9)

where ω2
p = 4πe2n0/m is the plasma frequency.

Equation (B 9) for ions has the form[
Πi(Πi − vi) + ω2

ci
Πi − vi

Πi
+ Λ2

i + ω2
pe

]
· ni = ω2

pine (B 10)

and for electrons it has the form[
Πe(Πe − ve) + ω2

ce
Πe − ve

Πe
+ Λ2

e + ω2
pe

]
· ne = ω2

pe · n2
i . (B 11)

By introducing the notation

ω2
ci + ω2

pi + Λ2
i ≡ Q2

i , ω2
ce + ω2

pe + Λ2
e ≡ Q2

e ,

the last two equations become[
Πi(Πi − vi) − ω2

ci
vi
Πi

+ Q2
i

]
· ni = ω2

pi · ne, (B 12)

[
Πe(Πe − ve) − ω2

ce
ve
Πe

+ Q2
e

]
· ne = ω2

pe · ni. (B 13)

Finally, after multiplication by parts we have[
Π3
i − viΠ2

i − viω
2
ci + Q2

i Πi
]

·
[
Π3
e − veΠ2

e − veω
2
ce + Q2

eΠe
]

= ω2
piω

2
peΠiΠe, (B 14)

which is the complete dispersion relation, when a plasma with streaming particles
exists perpendicular to the magnetic field.
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