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Notes

106.31 What proportion of square-free numbers are
divisible by 2? or by 30 but not by 7?

In 1885 Gegenbauer proved that the natural density of the set of square-
free integers, i.e., the proportion of natural numbers which are square-free,
is  [1, Theorem 333; reference on page 272]. In 2008 J. A. Scott
conjectured that the proportion of natural numbers which are odd square-
free numbers is  or, equivalently, the proportion of natural numbers
which are square-free and divisible by 2 is  [2]. The conjecture was
proven in 2010 by G. J. O. Jameson, in an argument adapted from one
computing the natural density of the set of all square-free numbers [3]. In
this note we give a simple elementary argument which uses the classical
result for all square-free numbers to reprove Jameson’s result and in fact to
generalise it:
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Theorem: Let  be distinct primes and . Then the
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The term numbers will always refer to positive integers. Empty
products, such as , are understood to equal 1.∏k > j > k pj

Example 1: Set  and . Setting  in the theorem we see that

the natural density of the set of odd square-free numbers is ;

taking  we see that the natural density of the set of even square-free

numbers is . Thus one third of the square-free numbers are

even and two thirds are odd. (These are Jameson's results of course.)
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Example 2: Set  and  in the theorem.
Then the theorem says that the natural density of the set of square-free

numbers divisible by 30 but not by 7 is , so the

proportion of square-free numbers which are divisible by 30 but not by 7 is

.
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For any real number  and set  of numbers, we let  denote the

number of elements  of  with . Recall that if  exists, then it

is by definition the natural density of  [4, Definition 11.1].

x B B [x]
t B t ≤ x lim
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Let  denote the set of square-free numbers. Suppose  and  are

relatively prime square-free numbers. Then we let  denote the set of
A r s
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elements of  which are divisble by  and relatively prime to  (so, for
example, ). The set of square-free numbers analysed in the
theorem is .

A r s
A = A (1,  1)
A (p1p2… pi, pi + 1pi + 2… pk)

Lemma 1: For  and  as above, we have .r, s x A (r, s) [x] = A (rs,  1) [xs]

Proof: This is immediate from the fact that multiplication by  gives a
bijection from the set of elements of  less than or equal to  to the set
of elements of  less than or equal to .

s
A (r, s) x

A(rs,  1) xs

This lemma implies that the calculation of the natural density of the sets
 reduces to the calculation of the natural density of the sets of the

form . More precisely we have 
A (r, s)

A (t,  1)
Lemma 2: If the set  has natural density , then the set  has
natural density .

A(rs,  1) D A (r, s)
sD

Proof: The previous lemma tells us that

A (r, s) [x]
x

= s
A (rs, 1) [xs]

xs
.

The lemma follows from taking the limit as  (and hence ) goes to infinity.x xs

The theorem itself will follow from the previous lemma if we can prove
the theorem in the case of sets of the form . The theorem in this case
is proved by induction on ; thus the next lemma completes the proof of the
theorem since it gives the required induction step.

A (t, 1)
k

Lemma 3: Let  be a prime number not dividing the square-free number . If
the set  has natural density , then the set  has natural density

.

p t
A (t, 1) D A (pt, 1)

1
p + 1D

Proof: For any real number  we set . Let . The
lemma says that

x E (x) = A (pt, 1) [x] ε > 0

lim
x → ∞

E (x)
x

=
1

p + 1
D.

Therefore it suffices to show for all choices of  above that, for all
sufficiently large  (depending on ),

ε
x ε

|E (x)
x

−
1
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Note that  is the disjoint union of  and . Hence by
Lemma 1 for any real number ,

A (t, 1) A (tp, 1) A (t, p)
x
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x
p

⎤⎥⎦
= E (x
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and so by the definition of  there exists a number  such that ifD M x > M
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then
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We next pick an even integer  such that . Thenk
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and also (using the usual formula for summing a geometric series)
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Now suppose that . Then for all  we have  and
hence (applying the choice of  above),
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and similarly
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Using the triangle inequality to combine the inequalities (1) and (2) together
with all those between (3) and (4) (inclusive) and dividing through by , we
can conclude that

x

|E (x)
x

−
1

p + 1
D| <

ε
3 (∑k

i = 1

1
pi) +

ε
3

+
ε
3

< ε,

which was to be proved.
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Remark 1: In the language of probability theory, the theorem says that the
probability that a number in  is divisible by a prime  is  (so the
probability that it is not is ) and, moreover, for any finite set  of
primes not equal to , being divisible by  is independent of being divisible
by all of the elements of .

A p 1 / (p + 1)
p / (p + 1) S

p p
S

Remark 2: If we only know that  has a natural density (but not its value
), then the arguments above can still be used to compute the proportion

of square-free numbers which are in  for any numbers  which are
relatively prime.

A
6 / π2

A (r, s) r, s

Remark 3: One can generalise the Theorem and give a simple formula for
the natural density of the set of square-free numbers which are divisible by
each of the elements in a finite set of primes and not divisible by any of the
elements in a possibly infinite second set of primes (disjoint from the first of
course). For example, the formula would imply that the set of square-free
numbers which are not divisible by any of the infinite number of primes
congruent to 1 modulo 4 has natural density 0 [5].
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106.32 Pentagonal numbers and their relationships to
other figurate numbers

Proposition: Where , ,  and  stand for the  pentagonal number,
the  triangular number, the  hexagonal number, and the  star
number, respectively; for , the following identities hold:

Pn Tn hn Sn n th
n th n th n th

n ∈ N

2Pn = hn + (2n − 1) Pn + Pn +1 + n = hn +1 3Pn = T3n − 1

4Pn + n = P2n 6Pn = h2n − hn 12Pn = S2n − Sn
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